The 50 most recently published documents
Nature-Based Interventions Promoting the Well-Being of Finnish Youth Outside Education or Employment
(2025)
Nature-based interventions have a potential to activate and rehabilitate youth facing challenges with social, mental, or physical functioning. In Finland, nature-based interventions have been integrated into youth workshops to foster sustainable well-being. Using an exploratory mixed-methods design, this study explores the value of nature-based interventions for the well-being of Finnish youth outside education or employment. Participants (N = 18, aged 20-26) were drawn from three nature-based youth workshops. Sixteen participants completed survey questionnaires assessing the cognitive and social outcomes of the interventions and the key elements contributing to their effectiveness. Nine participants took part in qualitative interviews. Thematic analysis of the interview data revealed that the interventions promoted factors supporting well-being, including physical activity, structure and routine, skill development, social belonging, and meaningful participation. Participants also reported enhanced connections with nature and sustainable lifestyles. Central to these well-being experiences were the therapeutic benefits of nature, meaningful nature-related activities, and supportive social contexts. This study provides valuable insights for social workers and social service professionals to leverage nature for health and social outcomes among marginalized youth. Future research should investigate young people’s preferred environments and activities toward developing tailored nature-based interventions that promote positive well-being experiences.
Alternative Ernährungsformen, Teil 3: Ernährungsformen mit Gesundheitsversprechen im Vordergrund
(2025)
Optimierte Rückgewinnung von Kupfer und Kupferlegierungen mittels Röntgenfluoreszenz-Sortiersystemen
(2022)
WDVS wiederverwerten
(2024)
Vacancy doping and charge transport in Bi2S3 nanoparticle films for photovoltaic applications
(2019)
Native point defect doping via thermal treatment is an easy and promising method to tune the electrical transport properties of semiconductors made for renewable-energy conversion. In this study, we investigate the vacancy doping of the lowly toxic semiconductor Bi2S3
using electrical conductivity as well as thermoelectric power measurements. We enhance the electrical conductivity of bismuth sulfide nanoparticle layers by more than four orders of magnitude by a stepwise thermal treatment in a moderate temperature range (300–480 K). Via thermoelectric power measurements we attribute this enhancement to an increase in charge-carrier mobility by two orders of magnitude and to an increase in charge-carrier density by more than two orders of magnitude. We find that the energetic position of the electron-doping sulfur vacancies of bismuth sulfide nanoparticles is significantly shallower than previously reported for bulk material. Subsequently, we implement Bi2S3
nanoparticles doped with sulfur vacancies by thermal annealing in photovoltaic devices using P3HT as an electron donor molecule. We find that annealing up to 383 K yields the best compromise between improving charge-carrier transport and increasing defect densities.
The thermal stability of thick (≈4 μm) plasma-grown hydrogenated amorphous silicon (a-Si:H) layers on glass upon application of a rather rapid annealing step is investigated. Such films are of interest as precursor layers for laser liquid-phase crystallized silicon solar cells. However, at least half-day annealing at T ≈550 °C is considered to be necessary so far to reduce the hydrogen (H) content and thus avoid blistering and peeling during the crystallization process due to H. By varying the deposition conditions of a-Si:H, layers of rather different thermal stability are fabricated. Changes in the surface morphology of these a-Si:H layers are investigated using scanning electron microscopy and profilometry measurements. Hydrogen effusion, secondary-ion mass spectrometry (SIMS) depth profiling, and Raman spectroscopy measurements are also carried out. In summary, amorphous silicon precursor layers are fabricated that can be heated within 30 min to a temperature of 550 °C without peeling and major surface morphological changes. Successful laser liquid-phase crystallization of such material is demonstrated. The physical nature of a-Si:H material stability/instability upon application of rapid heating is studied.
Double layers of deuterated and hydrogenated amorphous silicon (a-Si:H) on glass are heated in the ambient by scanning with a green (532 nm) continuous wave laser. The hydrogen diffusion length in the laser spot is obtained from the deuterium (D)–hydrogen (H) interdiffusion measured by secondary ion mass spectrometry (SIMS), the temperature in the laser spot is obtained by calculation. Under certain conditions, detachment of the deuterated layer from the hydrogenated layer is observed in the SIMS depth profiles, visible by rising oxygen and carbon signals at the D/H interface attributed to in-diffusion of atmospheric gas species like water vapor, oxygen, and carbon oxide. Stacks involving both undoped and boron-doped a-Si:H films show disintegration. The results suggest that the parameters leading to the disintegration effects are the presence of a plane of reduced material cohesion at the D/H interface, a sizeable H diffusion length and a rather high heating rate. Herein, it is likely considered that the observed layer disintegration process is involved in the peeling of a-Si:H films upon fast heating. Furthermore, the results show that rapid laser heating can be used to detect planes of reduced material cohesion which may compromise the electronic properties of a-Si:H-based stacks.
The application of thin underdense hydrogenated amorphous silicon (a-Si:H) films for passivation of crystalline Si (c-Si) by avoiding epitaxy in silicon heterojunction (SHJ) solar cell technology has recently been proposed and successfully applied. Herein, the microstructure of such underdense a-Si:H films, as used in our silicon heterojunction solar cell baseline, is investigated mainly by Raman spectroscopy, effusion, and secondary ion mass spectrometry. In H effusion experiments, a low-temperature (near 400 °C) effusion peak which has been attributed to the diffusion of molecular H2 through a void network is seen. The dependence of the H effusion peaks on film thickness is similar as observed previously for void rich, low substrate-temperature a-Si:H material. Solar cells using underdense a-Si:H as i1-layer with a maximum efficiency of 24.1% are produced. The passivation quality of the solar cells saturates with increasing i1-layer thickness. The fact that with such underdense material combined with a following high-quality i2-layer, instead of only high-quality a-Si:H with a low defect density direct on the c-Si substrate, good passivation of c-Si solar cells is achieved, which demonstrates that in the passivation process, molecular hydrogen plays an important role.
In silicon heterojunction solar cell technology, thin layers of hydrogenated amorphous silicon (a-Si:H) are applied as passivating contacts to the crystalline silicon (c-Si) wafer. Thus, the properties of the a-Si:H is crucial for the performance of the solar cells. One important property of a-Si:H is its microstructure which can be characterized by the microstructure parameter R based on Si─H bond stretching vibrations. A common method to determine R is Fourier transform infrared (FTIR) absorption measurement which, however, is difficult to perform on solar cells for various reasons like the use of textured Si wafers and the presence of conducting oxide contact layers. Here, it is demonstrated that Raman spectroscopy is suitable to determine the microstructure of bulk a-Si:H layers of 10 nm or less on textured c-Si underneath indium tin oxide as conducting oxide. A detailed comparison of FTIR and Raman spectra is performed and significant differences in the microstructure parameter are obtained by both methods with decreasing a-Si:H film thickness.
OPUS to FIS Test
(2025)
Die Y Beteiligungs GmbH ist Komplementärin der Y GmbH & Co. KG. Einziger Kommanditist der Y GmbH & Co. KG ist die natürliche Person X. Vor dem 1.4.01 hielt X über sein einzelkaufmännisches Unternehmen X e. K. sämtliche Anteile an der Y Beteiligungs GmbH. Zum 1.4.01 wurden diese Anteile im Wege einer Ausgliederung nach § 123 Abs. 3 Nr. 1 i. V. mit § 152 UmwG zusammen mit sämtlichen Aktiva und Passiva von X e. K. auf die Y GmbH & Co. KG übertragen, wo sie mit den Buchwerten lt. Schlussbilanz von X e. K. vom 31.3.01 angesetzt wurden. Als Gegenleistung wurde die Kommanditbeteiligung des X an der Y GmbH & Co. KG ohne weitere Zuzahlung (um einen geringeren Betrag als die Summe der Buchwerte) erhöht und die Differenz vereinbarungsgemäß in die Rücklagen eingestellt.
Bei einer im Jahr 04 abgeschlossenen Betriebsprüfung der Y Beteiligungs GmbH sowie des einzelkaufmännischen Unternehmens X e. K., betreffend die Geschäftsjahre 00-02, hat das FA als Wert der im Jahr 00 im Wege einer Schenkung auf X e. K. übertragenen Anteile an der Y Beteiligungs GmbH ca. 1 Mio. € festgestellt. In den derweil aufgestellten Jahresabschlüssen des einzelkaufmännischen Unternehmens X e. K. wurden die besagten GmbH-Anteile bisher mit dem (niedrigeren) Nennbetrag zzgl. bei der Schenkung angefallener Nebenkosten bewertet und im Zuge der Ausgliederung – wie oben beschrieben – mit demselben Buchwert in den Jahresabschluss der Y GmbH & Co. KG übernommen.
Gefragt ist, ob die Bewertung der von X e. K. zum 1.4.01 in die Y GmbH & Co. KG eingebrachten Anteile an der Y Beteiligungs GmbH im handelsrechtlichen Jahresabschluss 04 der Y GmbH & Co. KG mit dem im Rahmen der Betriebsprüfung festgestellten Zeitwert zulässig ist.