Refine
Year of publication
Document Type
- Article in Conference Proceedings (26)
- Article (2)
Has Fulltext
- yes (28) (remove)
Is part of the Bibliography
- no (28)
Institute
The derivation of an abrasion prediction model for concrete hydraulic structures valid in supercritical flows is presented herein. The state of the art saltation-abrasion model from Sklar and Dietrich (2004) is modified using the findings of a recent research pro-ject on the design and layout of sediment bypass tunnels. The model correlates the im-pacting parameters with the invert material properties by an abrasion coefficient kv. The value of this coefficient is verified by a similarity analysis to bedrock abrasion in river systems applying a correlation between the abrasion rate and the bed material strength. A sensitivity analysis reveals that the saltation-abrasion model is highly dependent on an adequate estimation of kv. However, as a first order estimate the proposed model en-ables the practical engineer to estimate abrasion at hydraulic structures prone to super-critical flows.
In order to prevent reservoir sedimentation, sediment bypass tunnels can be an efficient countermeasure restoring sediment continuity of impounded rivers. Although supercritical open channel flow conditions in these tunnelsprevent tun-nel blockage, in combination with the high bypassed sediment volume it may lead tosevere abrasion damages on inverts. Consequently,wear termed hydroabra-sionoccurs. Based on laboratoryexperiments, a theoretical model was devel-oped to predict abrasion rates and service life timeof sediment bypass tunnels. Insituexperiments are further conducted for model calibration to provide an abrasion prediction approach for field applications.Finally,recommendations concerning the hydraulic design of the tunnel as well as the structural design ofthe invertareprovided.
Worldwide, a large number of reservoirs impounded by dams are rapidly filling up with sediments. As on a global level the loss of reservoir volume due to sedimentation increases faster than the creation of new storage volume, the sustainability of reservoirs may be questioned if no countermeasures are taken. This paper gives an overview of the amount and the processes of reservoir sedimentation and its impact on dams and reservoirs. Furthermore, sediment bypass tunnels as a countermeasure for small to medium sized reservoirs are discussed with their pros and cons. The issue of hydroabrasion is highlighted, and the main design features to be applied for sediment bypass tunnels are given.
Sediment bypass tunnels are an effective and sustainable strategy against reservoir sedimentation. Sediments are diverted into the down-stream during floods without deposition in the reservoir, hence mor-phological and ecological variability increases. One major drawback of these tunnels is the severe invert abrasion due to a combination of high flow velocities and bedload sediment transport. The abrasion phenom-ena is briefly described, different abrasion prediction models are pre-sented and their applicability for the estimation of concrete abrasion is discussed.
Hydroabrasion tritt im alpinen Raum hauptsächlich bei Wasserbauwerken auf, die durch hohe Fließgeschwindigkeiten und große Sedimentfrachten belastet werden. Dies sind beispielswei-se Wehrschwellen in Flüssen, Wasserfassungen von Wasserkraftwerken und vor allem Sedi-mentumleitstollen. Letztere dienen dazu sedimentreiche Hochwasserspitzen um die Talsperre herum in den Unterlauf des Flusses zu leiten. Sie verhindern so eine fortschreitende Verlan-dung des Stauraums.
Es gibt verschiedene Konzepte, dem Problem der Hydroabrasion entgegen zu wirken. Einer-seits kann der Umleitstollen hydraulisch optimiert werden, um die Einwirkung auf die Sohle zu minimieren. Auf der anderen Seite kann deren Widerstand verbessert werden. An der Ver-suchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW) der ETH Zürich werden zur Zeit zwei Forschungsarbeiten durchgeführt, die sich jeweils diesen Aspekten widmen. Dieser Beitrag befasst sich mit der hydraulischen Optimierung von Sedimentumleitstollen mit Hilfe von großskaligen Laborversuchen.
In insgesamt drei Versuchsreihen werden die Mittelwert- und Turbulenz-Fließcharakteristik von schießendem Abfluss in einer Versuchsrinne mittels eines Laser-Doppler Anemometrie-Systems (LDA) aufgenommen, die Fortbewegungsart des Sediments mittels eines High-Speed Kamera-Systems analysiert sowie die Abrasion der Stollensohle untersucht. In Abhängigkeit des Sohlgefälles, des Durchflusses, der Größe und Menge der Sedimentfracht erfolgt die Fortbewegung des Sedimentkorns hüpfend, rollend oder gleitend und verursacht unterschied-liche Abrasionserscheinungen in der Stollensohle. Die Ergebnisse der LDA Experimente zei-gen, dass, abhängig vom Verhältnis Gerinnebreite zur Abflusstiefe, Sekundärströmungen auf-treten. Diese Sekundärströmungen beeinflussen im untersuchten Froude-Zahlenbereich 2, 4 und 8 das longitudinale Strömungsprofil sowie die Verteilung der Sohlen- bzw. Reynolds-Schubspannungen und der Turbulenzintensität und somit letztlich die Fortbewegungsart des Sedimentkorns in der Wassersäule.
Mittels der drei Versuchsreihen sollen bestmögliche hydraulische Bedingungen für Sedimen-tumleitstollen gefunden werden, um die Hydroabrasion und somit die Unterhaltskosten signi-fikant zu minimieren.
Positive effects of reservoir sedimentation management on reservoir life: Examples from Japan
(2016)
The effectiveness of different strategies against reservoir sedimentation is demonstrated herein using data sets of Asahi, Nunobiki and Dashidaira reservoirs in Japan. The applied strategies encompass
sediment routing with a bypass tunnel, drawdown flushing during floods and sabo dam construction in the catchment. It is shown that bypassing and flushing are very efficient strategies enlarging reservoir life by 3 to 21 times up to many hundreds of years. Furthermore, it is revealed that also efforts in the catchment, e.g. sabo dam construction, is effective enlarging reservoir life by 2.4 times.
Sediment, which deposits and damages the function of reservoirs, is an essential element of aquatic habitats in downstream ecosystems. We reviewed ecosystem features of degraded channels associated with sediment deficiency below dams and ecosystem responses to changes in sediment conditions after management practices in Japan. Sediment bypass tunnel (SBT) is an effective way to transport sufficient amount of sediment to downstream ecosystems. Based on a concept of suitable mass and size of sediment for ecosystem, some effects and limitations of SBT on downstream ecosystems were discussed.
Single glass sphere motion recordings were conducted in a transitional-rough bed open channel at steady and highly supercritical flow similar to hydraulic conditions in sediment bypass tunnels. A high speed camera with a maximum resolution of 2,560 × 2,160 pixels was used to record the movement of bedload particles with diameters of D = 5.3, 10.3 and 17.5 mm. An in-house developed Particle Tracking Velocimetry (PTV) program was used to determine the transport mode and velocities of each particle for a wide range of Froude numbers up to Fo = 6. The relative roughness defined as the ratio of the bed roughness height ks to the water depth h varied from ks/h = 0.02–0.03. Particles were observed to move in rolling and saltation modes depending on the Shields number. The particle velocity shows a linearly increasing relationship with both friction velocity and Froude number nearly independent on the particle diameter. A linear relationship was also found between rolling and saltating particle velocities indicating that particle velocity does not depend on the transport mode in the range of the investigated hydraulic conditions. Scaling of particle velocity with the wave celerity plotted as a function of the Froude number adequately merged external data sets with the present data. As a consequence, a linear fit for a large Froude number range was obtained.
Supercritical sediment-laden open channel flows occur in many hydraulic structures including dam outlets, weirs, and bypass tunnels. Due to high flow velocities and sediment flux severe problems such as erosion and abrasion damages are expected in these structures (Jacobs et al., 2001). Sediment bypass tunnels (SBT), as an effective measure to decrease reservoir sedimentation by bypassing sediments during floods, are exceptionally prone to high abrasion causing significant annual maintenance cost (Sumi et al., 2004; Auel and Boes, 2011). The Laboratory of Hydraulics, Hydrology and Glaciology (VAW) of ETH Zurich conducted a laboratory study to counteract these negative effects (Auel, 2014). The main goals of the project were to analyze the fundamental physical processes in supercritical flows as present in SBTs by investigating the mean and turbulence flow characteristics (Auel et al., 2014a), particle motion (Auel et al., 2014b; 2015b), and abrasion development caused by transported sediment. Besides new insights into the three listed topics, paramount interest is given to their inter-relations and the development of an easily applicable abrasion prediction model (Auel et al., 2015a). This paper presents selected results on the second topic, i.e. the analysis of saltation trajectories of single coarse particles in supercritical flow.
Due to high bedload sediment transport, many sediment bypass tunnels (SBT) are prone to severe invert abrasion. However, there is little information about the flow characteristics in SBTs after invert abrasion initiated and progresses with time. In the present study, laboratory flume experiments were performed to investigate how the hydraulic conditions change after abrasion patterns developed on the invert. A typical invert abrasion pattern was produced using 3D-printing technique and implemented in the laboratory flume. Flow depths were measured to compare the initial with the abraded state.
Furthermore, turbulence measurements using 2D-laser Doppler anemometry technique were performed to obtain the mean and turbulence flow characteristics. This paper describes results of these measurements focusing on the streamwise and vertical flow velocities, turbulence intensities and Reynolds shear stress.