Wittrock, Ulrich
Refine
Year of publication
Document Type
- Article (20)
- Article in Conference Proceedings (19)
- Contribution to a Periodical (2)
- Book (1)
- Part of a Book (1)
- Part of Periodical (1)
- Preprint (1)
Language
- English (36)
- German (7)
- Multiple languages (2)
Is part of the Bibliography
- no (45)
Keywords
- adaptive optics (3)
- deformable mirror (3)
- active optics (2)
- active optics, adaptive optics, sharpness metrics, aberration compensation, algorithm design (2)
- deformable mirrors (2)
- laser machining (2)
- space optics (2)
- space telescopes (2)
- Active or adaptive optics (1)
- Deformable mirror, adaptive mirror, unimorph mirror, high-power laser (1)
Institute
Spectrally broad laser radiation from continuous wave (cw) lasers can exhibit second-order autocorrelation traces virtually indistinguishable from those of mode-locked lasers. Consequently, based only on autocorrelations, one might erroneously conclude that a cw laser is mode-locked. This pitfall in interpretation can be avoided by carefully characterizing radio frequency transients and spectra. However, optoelectronics are often too slow for lasers with an axial mode spacing in the multi-GHz range. Carefully evaluated autocorrelations then remain the last resort for validating mode locking. We demonstrate in detail what needs to be observed. We compare autocorrelation measurements and calculations of a mode-locked titanium-sapphire (Ti:Sa) laser with 76 MHz repetition rate and a spectrally broad monolithic cw Ti:Sa laser and devise a new, additional measurement to safeguard against misinterpretation of their autocorrelations.
We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.
This paper presents the results of the technology development project “Enabling Technologies for Piezo-Based Deformable Mirrors in Active Optics Correction Chains” conducted by OHB System AG together with its partner Münster University of Applied Sciences (MUAS). The project was funded by ESA within their General Support Technology Programme
(GSTP).
We address in this paper mainly the definition, flow-down and verification of the requirements for the Deformable Mirror (DM). The requirements were derived from a set of real space mission applications. The deformation of the mirror is performed by piezo-ceramic actuators in an unimorph configuration. The finally developed DM is able produce Zernike modes with a stroke of several tens of µm over a clear optical aperture of 50 mm in diameter. It underwent successfully a full environmental qualification campaign including thermal cycling, shock- and vibration testing, as well as exposure to
proton and γ–ray radiation. Thermal and performance tests were performed in the temperature range from 100 K to 300 K.
Furthermore, the DM sustained all vibration (random 17.8 g RMS and sinus) and shock (300 g) testing. Thereby all criticalities which were identified a previous study have been overcome successfully.
A Technology Readiness Level (TRL) of 5 is reached, as the component has been validated in relevant environment. Based on the high level of maturity, this deformable mirror is now ready for the incorporation in future flight instruments. The achieved TRL of 5 is sufficient for the status of a PDR at payload level and gives thus a very good basis for all kinds of potential B2, C/D payload developments.
We present our latest results on a refined unimorph deformable mirror which was developed in the frame of the ESA GSTP activity ”Enabling Technologies for Piezo-Based Deformable Mirrors in Active Optics Correction Chains”. The identified baseline concept with the soft piezoceramic material PIC151 successfully sustained all vibration requirements (17.8 gRMS random and 20 g sine) and shock testing (300 g SRS). We cover the mirror design development which reduces the stress in the brittle piezo-ceramic by 90 % compared to the design from
a former GSTP activity. We briefly address the optical characterization of the deformable mirror, namely the achieved Zernike amplitudes as well as the unpowered surface deformation (1.7 µm) and active flattening (12.3 nmRMS). The mirror produces low-order Zernike modes with a stroke of several tens of micrometer over a correction aperture of 50 mm, which makes the mirror a versatile tool for space telescopes.
This work deals with the spectroscopic properties of praseodymium doped single crystalline lutetium aluminum garnet (LuAG:Pr3+). A special focus was set on temperature- and time-dependent spectroscopy. Beyond the well-known down-conversion luminescence of LuAG:Pr3+, also UV-A/B up-conversion luminescence under excitation with a 488 nm laser was thoroughly investigated. Furthermore, the results of the spectroscopic investigations on the single crystalline material were supplemented and compared with measurements on a microscale powder sample.
In addition, to the spectroscopic investigations, mechanistic considerations are presented to obtain a closer look at the up-conversion process in LuAG:Pr3+. We promote the thesis of a temperature-dependent energy transfer up-conversion mechanism.
Cross-saturation of the gain media in intra-cavity pumped lasers leads to complex dynamics of the laser power. We present experimental results and a detailed theoretical analysis of this nonlinear dynamics for an intra-cavity pumped Yb:YAG thin-disk laser in the framework of a rate-equation model. The gain medium of this laser is residing in the resonator of a conventional, diode-pumped Yb:YAG thin-disk laser. Continuous-wave operation, periodic pulse trains, and chaotic fluctuations of the optical power of both lasers were observed. The dynamics is not driven by external perturbations but arises naturally in this laser system. Further examination revealed that these modes of operation can be controlled by the resonator length of the diode-pumped laser but that the system can also show hysteresis and multi-stability.
We recently presented a novel unimorph deformable mirror which allows for dynamic focus shift with an actuation rate of 2 kHz. Such mirrors suffer from hysteresis and creep. Therefore, they have to be operated in closed-loop. For this purpose, we developed a defocus sensor based on an astigmatic detection system. In this paper, we present the sensor design and discuss its performance.
On-the-fly remote laser processing plays an increasingly important role in modern fabrication techniques. These processes require guiding of the focus of a laser beam along the contours of the workpiece in three dimensions.
State-of-the-art galvanometer scanners already provide highly dynamic and precise transverse x−y beam steering. However, longitudinal focus shifting (“z-shifting”) relying on conventional optics is restricted to a bandwidth of a few hundred Hz. We have developed and manufactured a fast piezo-based z-shifting mirror with diffraction-limited surface fidelity providing a focus shift of 1z> 60 mm with an actuation rate of 2 kHz.