• Deutsch
Internal Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Bücker, Michael (15)
  • Krämer, Walter (5)
  • Szepannek, Gero (4)
  • Biecek, Przemyslaw (3)
  • Gosiewska, Alicja (3)
  • Arnold, Matthias (1)
  • Hoops, Christian (1)
  • Hoti, Kreshnik (1)
  • Kayser, Franz (1)
  • Mayer, Thomas (1)
  • Rose, Olaf (1)
  • Schlüsener, Niels (1)
  • Staniak, Mateusz (1)
  • Weihs, Claus (1)
  • van Kampen, Maarten (1)
- less

Year of publication

  • 2025 (1)
  • 2024 (1)
  • 2022 (1)
  • 2021 (1)
  • 2020 (1)
  • 2019 (1)
  • 2014 (1)
  • 2013 (1)
  • 2012 (1)
  • 2011 (4)
+ more

Document Type

  • Article (7)
  • Book (2)
  • Article in Conference Proceedings (2)
  • Contribution to a Periodical (2)
  • Part of a Book (1)
  • Preprint (1)

Language

  • English (10)
  • German (4)
  • Multiple languages (1)

Has Fulltext

  • no (13)
  • yes (2)

Is part of the Bibliography

  • no (15)

Keywords

  • Artificial intelligence, Pharmacotherapy, Medication review, Cardiology, Clinical decision support system, Pharmacy practice (1)

Institute

  • Wirtschaft (MSB) (15)

15 search hits

  • 1 to 10
  • BibTeX
  • CSV
  • RIS
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Lokale Diskrimination diskreter Daten (2008)
Bücker, Michael
Reject inference in consumer credit scoring with nonignorable missing data (2013)
Bücker, Michael ; van Kampen, Maarten ; Krämer, Walter
A Hausman test for non-ignorability (2012)
Bücker, Michael ; Krämer, Walter ; Arnold, Matthias
Determinants, Moderators and Consequences of Organizational Interaction Orientation (2014)
Hoops, Christian ; Bücker, Michael
Probleme des Qualitätsvergleichs von Kreditausfallprognosen (2011)
Krämer, Walter ; Bücker, Michael
Local Classification of Discrete Variables by Latent Class Models (2010)
Bücker, Michael ; Szepannek, Gero ; Weihs, Claus
Statistische Modelle mit nicht-ignorierbar fehlender Zielgröße und Anwendung in der reject inference (2011)
Bücker, Michael
Statistischer Qualitätsvergleich von Kreditausfallprognosen (2011)
Bücker, Michael ; Krämer, Walter
Reject inference in consumer credit scoring with nonignorable missing data (2011)
Bücker, Michael ; Krämer, Walter
Transparency, Auditability and eXplainability of Machine Learning Models in Credit Scoring (2020)
Bücker, Michael ; Szepannek, Gero ; Gosiewska, Alicja ; Biecek, Przemyslaw
A major requirement for credit scoring models is to provide a maximally accurate risk prediction. Additionally, regulators demand these models to be transparent and auditable. Thus, in credit scoring, very simple predictive models such as logistic regression or decision trees are still widely used and the superior predictive power of modern machine learning algorithms cannot be fully leveraged. Significant potential is therefore missed, leading to higher reserves or more credit defaults. This paper works out different dimensions that have to be considered for making credit scoring models understandable and presents a framework for making ``black box'' machine learning models transparent, auditable and explainable. Following this framework, we present an overview of techniques, demonstrate how they can be applied in credit scoring and how results compare to the interpretability of score cards. A real world case study shows that a comparable degree of interpretability can be achieved while machine learning techniques keep their ability to improve predictive power.
  • 1 to 10

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks