Refine
Year of publication
Document Type
- Article in Conference Proceedings (29)
- Article (12)
- Book (1)
Is part of the Bibliography
- no (42)
Institute
Reservoir sedimentation, a serious problem affecting the majority of reservoirs worldwide, was not systematically accounted for in the past. After 50 years of operation, a constantly decreasing reservoir volume becomes currently a serious challenge for reservoir owners, against which countermeasures have to be developed. This research focuses on sediment routing using a bypass tunnel to convey sediments past a dam.
By transporting sediments into the tailwater past a dam, their accumulation in the reservoir is reduced significantly. However, the global number of sediment bypass tunnels is limited primarily due to high investment and maintenance cost. The main problem of all bypass tunnels is the massive invert abrasion due to high flow velocities combined with high sediment transport rates. Therefore, VAW started two research projects to counter this problem. The main goal of the first project Layout and design of sediment bypass tunnels is to investigate the invert abrasion process by conducting hydraulic laboratory tests and to establish general design criteria for optimal flow conditions in which both sediment depositions in the tunnel are avoided and the resulting abrasion damages are kept at a minimum. The second project Optimizing hydroabrasive-resistant materials at sediment bypass tunnels and hydraulic structures investigates the hydraulic resistance of different tunnel invert materials, such as high performance concrete or cast basalt plates in prototype tests at the Solis bypass tunnel. The sediment transport measurement technique used in this project was optimized during preliminary model tests.
Field Investigation on Hydroabrasion in High-Speed Sediment-Laden Flows at Sediment Bypass Tunnels
(2020)
Wear due to sediment particles in fluid flows, also termed hydroabrasion’ or simply ‘abrasion’, is an omnipresent issue at hydraulic structures as well as in bedrock rivers. However, interactions between flow field, particle motion, channel topography, material properties and abrasion have rarely been investigated on a prototype scale, leaving many open questions as to their quantitative interrelations. Therefore, we investigated hydroabrasion in a multi‐year field study at two Swiss Sediment Bypass Tunnels (SBTs). Abrasion depths of various invert materials, hydraulics and sediment transport conditions were determined and used to compute the abrasion coefficients kv of different abrasion models for high‐strength concrete and granite. The results reveal that these models are useful to estimate spatially averaged abrasion rates. The kv‐value is about one order of magnitude higher for granite than for high‐strength concrete, hence, using material‐specific abrasion coefficients enhances the prediction accuracy. Three‐dimensional flow structures, i.e., secondary currents occurring both, in the straight and curved sections of the tunnels cause incision channels, while also longitudinally undulating abrasion patterns were observed. Furthermore, hydroabrasion concentrated along joints and protruding edges. The maximum abrasion depths were roughly twice the mean abrasion depths, irrespective of hydraulics, sediment transport
conditions and invert material.