Gurevich, Evgeny
Refine
Year of publication
Document Type
- Article (81)
- Article in Conference Proceedings (4)
- Part of a Book (2)
Is part of the Bibliography
- no (87)
Keywords
- Additive manufacturing (1)
- High-entropy alloy (1)
- Laser metal deposition (1)
- Laser shock peeningFemtosecond laserNiTi alloyCorrosion behaviorLaser surface treatment (1)
- Powder blend (1)
- Refractory (1)
- laser mode locking; polymerisation; optical waveguides; high-speed optical techniques; two-photon processes; optical pulse compression; optical saturable absorption; integrated optics; semiconductor lasers (1)
- laser nitriding; wear resistance; NiTi alloy; roughness; microhardness (1)
- laser shock peeningfemtosecond laserNiTi alloymicrohardness (1)
Institute
In this paper, the formation of laser-induced periodic surface structures
(LIPSS) on atomic-layer deposited MoS 2 layers are studied experimentally. The
process parameters (laser fluence and the pulse overlap) corresponding to
formation of low- and high-spatial frequency LIPSS as well as ablation and
modification of the layers are identified for different pulse durations in the
range from 0.2 to 10 ps. The role of the temperature accumulation is evaluated by changing the repetition rate from 0.2 to 2 MHz. The negative accumulation effect, i.e., the ablation of the layers becomes more difficult at higher laser pulse overlaps, is also observed. A simple model explaining the transition between different types of the LIPSS and the decrease of the ablation efficiency with the pulse overlap is suggested.
The use of photons to directly or indirectly drive chemical reactions has
revolutionized the field of nanomaterial synthesis resulting in appearance of
new sustainable laser chemistry methods for manufacturing of micro- and
nanostructures. The incident laser radiation triggers a complex interplay
between the chemical and physical processes at the interface between the
solid surface and the liquid or gas environment. In such a multi-parameter
system, the precise control over the resulting nanostructures is not possible
without deep understanding of both environment-affected chemical and
physical processes. The present review intends to provide detailed
systematization of these processes surveying both well-established and
emerging laser technologies for production of advanced nanostructures and
nanomaterials. Both gases and liquids are considered as potential reacting
environments affecting the fabrication process, while subtractive and additive
manufacturing methods are analyzed. Finally, the prospects and emerging
applications of such technologies are discussed.
Laser shock peening is a new and important surface treatment technique that can enhance the mechanical properties of metal materials. Normally, the nanosecond laser with pulse-width between 5 ns and 20 ns is used to induce a high-pressure shock wave that can generate plastic deformation in the top layer of metals. The femtosecond laser shock peening in the air has been studied recently, which can induce higher pressure shock wave than that of traditional nanosecond laser shock peening in a very short time. The NiTi alloy is processed by femtosecond laser shock peening, then a nanoindentation device is used to measure its surface hardness and residual stress. The hardness results of NiTi alloy before and after treatment show that the femtosecond laser shock peening can increase the hardness of NiTi alloy, which also shows that the femtosecond laser can be used to perform laser shock peening on NiTi alloy without coating.
Laser shock peening with a femtosecond laser system was presented in this research work. The NiTi shape memory alloy was processed by the femtosecond laser shock peening (FsLSP) treatment without a protective layer in the air. Femtosecond laser shock peening is a new surface technology, which can induce an intense shock wave with low single laser pulse energy under atmospheric conditions. The surface topography, roughness, microhardness, and wear resistance were measured on the surface of NiTi alloy before and after femtosecond laser peening treatment. The results showed that the surface roughness and microhardness could be increased after femtosecond laser shock peening, which may be due to the laser ablation and micro-plastic deformation induced by the shock wave. The wear property of NiTi alloy was improved, which may be attributed to the FsLSPed surface texturing and …
The colourisation of metallic surface which appears due to periodic surface patterns induced by ultrashort laser pulses is studied. Ripples due to the sub-micrometer size of their period act as a diffraction grating, generating structural colours. Carefully chosen strategy of the laser spot scanning allows us to mimic the nanostructures responsible for structural colours of some flowers on the metal substrate. We investigate the correlation between the colourising effects and the artificially-induced defects in the ripples structure and show that these defects can make the colours observable in a larger range of viewing angles. Further we address the influence of the processing parameters on the spectral profile of the reflected light.
In this Letter, the authors present the construction of three-dimensional microstructures by two-photon polymerisation induced by ultrashort pulses of a mode-locked diode laser. The ultrafast light source is based on a diode laser with segmented metallisation to realise a waveguide integrated saturable absorber. It is subsequently amplified and compressed resulting in ultrashort laser pulses of 440 fs length and average output power of 160 mW at a fundamental repetition rate of 383.1 MHz. These pulses are coupled into a customised two-photon polymerisation setup. A series of suspended lines were fabricated between support cuboids for testing the process behaviour. A 3D structure with complex features was polymerised to demonstrate the high potential for mode-locked diode lasers in the field of direct laser writing.
Laser shock peening with femtosecond laser was used to improve the corrosion resistance of biomedical NiTi alloy without protective coating in the air environment. The energy dispersive X-ray analysis (EDX) and X-ray diffraction (XRD) based analysis showed that the laser ablation could produce titanium oxide layer and femtosecond laser shock peening (FsLSP) can generate residual stress in the surface layer of NiTi alloy. The FsLSP improved the corrosion resistance of NiTi in 3.5% NaCl solution and Hank’s solution and also prevented the formation of corrosion cracks and pits during corrosion testing. The reasons for the improvement of corrosion behavior may be the generation of residual stress and titanium oxide film during the laser surface treatment.
The experiment study presents the influence of femtosecond laser shock peening (FsLSP) without a protective layer in the air on the surface hardness and surface mechanical property of NiTi shape memory alloy. Femtosecond laser shock peening is a new possibility of direct laser ablation without any protective layer under atmospheric conditions, which can produce intense shock waves with low pulse energy in the air. The average surface roughness values of the NiTi alloy samples were measured, because the surface roughness may affect its friction resistance. The results showed that the surface roughness of NiTi increased after femtosecond laser shock peening treatment. In comparison with the initial state, the coefficient of friction decreased and surface microhardness increased after femtosecond laser shock peening treatment with different FsLSP parameters. This improvement of wear properties may be attributed to the enhancement of surface microhardness and surface titanium oxide layer induced by the shock wave and laser ablation during FsLSP treatment.
In this study, we use a hybrid mode-locked external cavity diode laser with subsequent amplification and pulse compression. The system provides laser pulses of 440 fs width (assuming a sech² pulse shape) and 160 mW average output power at a repetition rate of 383.1 MHz. The laser oscillator consists of a double quantum well laser diode with a gain segment of 1080 μm length and an absorber element of 80 μm lengths. The chip’s back facet is covered with a high reflective coating, the front facet with an anti-reflective coating. The resonator itself is operated in a collimated geometry and folded by two dielectric mirrors. The used output coupler provides a transmission of 20 percent, which is coupled into a tapered amplifier. Two Faraday isolators are used to decouple the laser and the amplifier from any back reflections. Subsequently, the pulses are compressed using a single pass Martinez type pulse compressor …