Vennemann, Peter
Refine
Document Type
- Article (9)
- Article in Conference Proceedings (6)
- Other (4)
- Part of Periodical (2)
- Report (2)
- Working Paper (2)
- Contribution to a Periodical (1)
Is part of the Bibliography
- no (26)
Keywords
- PIV (5)
- Lüftungstechnik (3)
- energy system model (3)
- energy system modeling (3)
- instationäre Lüftung (3)
- modeling tools (2)
- unsteady ventilation (2)
- urban energy system (2)
- CFD (1)
- Dynamic airflow (1)
Institute
Der Spreadsheet Energy System Model Generator (SESMG) ist ein Werkzeug zur Modellierung und Optimierung von (urbanen) Energiesystemen. Der SESMG hat eine browserbasierte grafische Benutzeroberfläche, eine tabellenbasierte Dateneingabe und eine ausführliche Dokumentation, was einen einfachen Einstieg ermöglicht. Zudem erfordern die Installation und Anwendung keine Programmierkenntnisse. Im SESMG sind verschiedene Modellierungsmethoden implementiert, wie z. B. die Anwendung des Multi-Energie-System-Ansatzes, die multikriteriale Optimierung, modellbasierte Methoden zur Reduktion des Rechenaufwands sowie die automatisierte Erstellung von räumlich hoch aufgelösten Energiesystemmodellen. Somit können urbane Energiesysteme mithilfe des SESMGs mit vergleichsweise geringem Aufwand, aber unter Berücksichtigung einer Vielzahl von Parametern und Randbedingungen, modelliert und optimiert werden.
Die Transformation der Energiesysteme im Rahmen der Energiewende macht diese durch zusätzliche Komponenten und Wechselwirkungen immer komplexer. Das ökonomische und ökologische Potenzial, dass sich aus der Nutzung der Synergien dieser Komponenten ergeben kann, erfordert eine gemeinsame Betrachtung des gesamten Energiesystems hinsichtlich sämtlicher Energie- und Verbrauchssektoren.
Die Energiesystemmodellierung stellt eine geeignete Methode zur Modellierung und Optimierung dieser urbanen Energiesysteme dar. Mit dem „Spreadsheet Energy System Model Generator“ (SESMG) hat die FH Münster ein Open Source Tool entwickelt, das die Betrachtung urbaner Quartiere ermöglicht. Diese können hinsichtlich verschiedener Zielkriterien wie z. B. monetären Kosten und THG-Emissionen optimiert werden. Die tabellenbasierte Eingabe erfordert keine Programmierkenntnisse. Das implementierte Urban District Upscaling Tool erleichtert die effektive Modellierung auch größerer Systeme. Die automatisierte Ergebnisaufbereitung ermöglicht eine schnelle Analyse der Ergebnisse.
A novel approach for ventilation systems is a periodically varying supply air flow rate, the so-called unsteady mode of operation. So far, useful effects of this unsteady operating mode have been observed, but the effect mechanisms are still unknown. In this manuscript, simulations using the recently proposed k-ω-ζ - f model implemented in a sensitized RANS computational framework for a cuboid room with swirl diffusers are compared and validated with PIV measurements.
The Educational Journal of Renewable Energy Short Reviews (EduJRESR, formally published as ‘EGU Journal of Renewable Energy Short Reviews’) is a teaching project rather than a regular scientific journal.
To publish in this journal, it is a premise to take part in the master course wind power, hydro power and biomass usage at the department of Energy, Building Services and Environmental Engineering of the Münster University of Applied Sciences.
Students receive an equivalent of 2.5 credit points (European Credit Transfer and Accumulation System – ECTS) for their engagement in the course and for publishing a short review article of at most 3 000 words in this periodical. The publication process closely mimics the typical publication procedure of a regular journal.
The peer-review process, however, is conducted within the group of course-participants.
Although being just an exercise, we think that publishing the outcome of this course in a citable manner is not only promoting the motivation of our students, but may also be a helpful source of introductory information for researchers and practitioners in the field of renewable energies. We encourage students to write their articles in English, but this is not mandatory. The reader will thus find a few articles in German language.
To further encourage students practicing English writing, perfect grammar is not part of the assessment.
We especially thank our students for working with LATEX on Overleaf, although LATEX is new to some of them. In this way, the editorial workload was reduced to a minimum. We also thank our students for sharing their work under the creative commons attribution licence (CC-BY). We appreciate their contribution to scientific information, being available to every person of the world, almost without barriers. We also thank the corresponding authors and publishers of the cited work, for granting permission.
This study identifies supply options for sustainable urban energy systems, which are robust to external system changes. A multi-criteria optimization model is used to minimize greenhouse gas (GHG) emissions and financial costs of a reference system. Sensitivity analyses examine the impact of changing boundary conditions related to GHG emissions, energy prices, energy demands, and population density. Options that align with both financial and emission reduction and are robust to system changes are called “no-regret” options. Options sensitive to system changes are labeled as “potential-risk” options.
There is a conflict between minimizing GHG emissions and financial costs. In the reference case, the emission-optimized scenario enables a reduction of GHG emissions (-93%), but involves higher costs (+160%) compared to the financially-optimized scenario.
No-regret options include photovoltaic systems, decentralized heat pumps, thermal storages, electricity exchange between sub-systems and with higher-level systems, and reducing energy demands through building insulation, behavioral changes, or the decrease of living space per inhabitant. Potential-risk options include solar thermal systems, natural gas technologies, high-capacity battery storages, and hydrogen for building energy supply.
When energy prices rise, financially-optimized systems approach the least-emission system design. The maximum profitability of natural gas technologies was already reached before the 2022 European energy crisis.
The Educational Journal of Renewable Energy Short Reviews (EduJRESR, formally published as `EGU Journal of Renewable Energy Short Reviews') is a teaching project rather than a regular scientific journal. To publish in this journal, it is a premise to take part in the master course wind power, hydro power and biomass usage at the department of Energy, Building Services and Environmental Engineering of the Münster University of Applied Sciences.
Students receive an equivalent of 2.5 credit points (European Credit Transfer and Accumulation System - ECTS) for their engagement in the course and for publishing a short review article of at most 3000 words in this periodical. The publication process closely mimics the typical publication procedure of a regular journal. The peer-review process, however, is conducted within the group of course-participants.
Although being just an exercise, we think that publishing the outcome of this course in a citable manner is not only promoting the motivation of our students, but may also be a helpful source of introductory information for researchers and practitioners in the field of renewable energies. We encourage students to write their articles in English, but this is not mandatory. The reader will thus find a few articles in German language. To further encourage students practicing English writing, perfect grammar is not part of the assessment.
We especially thank our students for working with LaTeX on Overleaf, although LaTeX is new to some of them. In this way, the editorial workload was reduced to a minimum. We also thank our students for sharing their work under the creative commons attribution licence (CC-BY). We appreciate their contribution to scientific information, being available to every person of the world, almost without barriers. We also thank the corresponding authors and publishers of the cited work, for granting permission to reuse graphics free of charge. All other figures had to be replaced or removed prior to publication.
The Spreadsheet Energy System Model Generator (SESMG) is a tool for modeling and optimizing energy systems with a focus on urban systems. The SESMG is easily accessible as it comes with a browser-based graphical user interface, spreadsheets to provide data entry, and detailed documentation on how to use it. Programming skills are not required for the installation or application of the tool. The SESMG includes advanced modeling features such as the application of the multi-energy system (MES) approach, multi-objective optimization, model-based methods for reducing computational requirements, and automated conceptualization and result processing of urban energy systems with high spatial resolution. Due to its accessibility and the applied modeling methods, urban energy systems can be modeled and optimized with comparatively low effort.