Morawetz, Klaus
Refine
Year of publication
Document Type
- Part of a Book (67)
- Article (55)
- Lecture (37)
- Article in Conference Proceedings (24)
- Book (1)
Language
- English (146)
- Multiple languages (34)
- German (4)
Is part of the Bibliography
- no (184)
Keywords
Institute
Consequences of the consistent exact solution of Einstein{Cartan equation on the time dependence of Hubble parameter are discussed. The torsion leads to a space and time-dependent expansion parameter which results into nontrivial windows of Hubble parameter between diverging behavior.
Only one window shows a period of decreasing followed by increasing time dependence. Provided a known cosmological constant and the present values of Hubble and deceleration parameter this changing time can be given in the past as well as the ending time of the windows or universe. The comparison with the present experimental data allows to determine all parameters of the model.
Large-scale spatial periodic structures appear. From the metric with torsion outside matter, it is seen that torsion can feign dark matter.
The extended quasiparticle picture is adapted to non-Fermi systems by suggesting a Pad´e approximation which interpolates between the known small scattering-rate expansion and the deviation from the Fermi energy. The first two energy-weighted sum rules are shown to be fulfilled independent of the interpolating function for any selfenergy. For various models of one-dimensional Fermions scattering with impurities the quality of the Pad´e approximation for the spectral function is demonstrated and the reduced density matrix or momentum distribution is reproduced not possessing a jump at the Fermi energy. Though the two-fold expansion is necessary to realize the spectral function and reduced density, the extended quasiparticle approximation itself is sufficient for the description of transport properties due to cancellation of divergent terms under integration.
The T-matrix approximation leads to the delay time as the time two particles spend in a correlated state. This contributes to the reduced density matrix and to an additional part in the conductivity which is presented at zero and finite temperatures. Besides a localization at certain impurity concentrations, the conductivity shows a maximum at small temperatures interpreted as onset of superconducting behaviour triggered by impurities. The Tan contact reveals the same universal behaviour as known from electron-electron scattering.
The quantum anomaly is written alternatively into a form violating conservation laws or as non-gauge invariant currents seen explicitly on the example of chiral anomaly. By reinterpreting the many-body averaging, the connection to Pauli–Villars regularization is established which gives the anomalous term a new interpretation as arising from quantum fluctuations by many-body correlations at short distances. This is exemplified using an effective many-body quantum potential which realizes quantum Slater sums by classical calculations. It is shown that these quantum potentials avoid the quantum anomaly but approach the same anomalous result by many-body correlations. Consequently, quantum anomalies might be a shortcut way of single-particle field theory to account for many-body effects. This conjecture is also supported since the chiral anomaly can be derived by a completely conserving quantum kinetic theory. A measure for the quality of quantum potentials is suggested to describe these quantum fluctuations in the mean energy. The derived quantum potentials might be used to describe quantum simulations in classical terms.