Glösekötter, Peter
Refine
Year of publication
Document Type
- Part of a Book (46)
- Article (25)
- Article in Conference Proceedings (14)
- Lecture (14)
- Book (1)
- Mitarbeit an einer DIN-Norm, Richtlinie, RFC (1)
- Report (1)
Language
- English (67)
- German (28)
- Multiple languages (7)
Is part of the Bibliography
- no (102)
Keywords
- Analysis (1)
- Battery State Estimation (1)
- Deep Learning (1)
- Development and implementation (1)
- Diamond (1)
- End of charge (1)
- GNSS (1)
- Highly Sensitive (1)
- Hochintegrierte Mikro- und Nanosysteme (1)
- Interval analysis · Particle filtering · Kalman filtering · Bayesian filtering · Sequential Monte Carlo simulation · Bounded-error estimation (1)
Institute
We investigate the magnetic field-dependent fluorescence lifetime of microdiamond powder containing a high density of nitrogen-vacancy centers. This constitutes a non-intensity quantity for robust, all-optical magnetic field sensing. We propose a fiber-based setup in which the excitation intensity is modulated in a frequency range up to 100MHz. The change in magnitude and phase of the fluorescence relative to 𝐵=0 is recorded where the phase shows a maximum in magnetic contrast of 5.8∘ at 13MHz. A lock-in amplifier-based setup utilizing the change in phase at this frequency shows a 100 times higher immunity to fluctuations in the optical path compared to the intensity-based approach. A noise floor of 20μT/Hz−−−√ and a shot-noise-limited sensitivity of 0.95μT/Hz−−−√
were determined.
Keywords:
nitrogen-vacancy center; quantum sensor; fluorescence lifetime; all-optical; magnetometr
Microcontroller-Optimized Measurement Electronics for Coherent Control Applications of NV Centers
(2024)
Long coherence times at room temperature make the NV center a promising candidate for quantum sensors and quantum computers. The necessary coherent control of the electron spin triplet in the ground state requires microwave 𝜋 pulses in the nanosecond range, obtained from the Rabi oscillation of the mS spin states of the magnetic resonances of the NV centers. Laboratory equipment has a high temporal resolution for these measurements but is expensive and, therefore, uninteresting for fields such as education. In this work, we present measurement electronics for NV centers that are optimized for microcontrollers. It is shown that the Rabi frequency is linear to the output of the digital-to-analog converter (DAC) and is used to adapt the time length 𝜋
of the electron spin flip, to the limited pulse width resolution of the microcontroller. This was achieved by breaking down the most relevant functions of conventional laboratory devices and replacing them with commercially available integrated components. The result is a cost-effective handheld setup for coherent control applications of NV centers.
Keywords:
NV center in diamond; quantum sensing; microcontroller; Rabi oscillation; ODMR; handheld; π pulse
Quantum magnetometry based on optically detected magnetic resonance (ODMR) of nitrogen vacancy centers in diamond nano or microcrystals is a promising technology for sensitive, integrated magnetic-field sensors. Currently, this technology is still cost-intensive and mainly found in research. Here we propose one of the smallest fully integrated quantum sensors to date based on nitrogen vacancy (NV) centers in diamond microcrystals. It is an extremely cost-effective device that integrates a pump light source, photodiode, microwave antenna, filtering and fluorescence detection. Thus, the sensor offers an all-electric interface without the need to adjust or connect optical components. A sensitivity of 28.32nT/Hz−−−√ and a theoretical shot noise limited sensitivity of 2.87 nT/Hz−−−√ is reached. Since only generally available parts were used, the sensor can be easily produced in a small series. The form factor of (6.9 × 3.9 × 15.9) mm3 combined with the integration level is the smallest fully integrated NV-based sensor proposed so far. With a power consumption of around 0.1W, this sensor becomes interesting for a wide range of stationary and handheld systems. This development paves the way for the wide usage of quantum magnetometers in non-laboratory environments and technical applications.
The demand for energy storage is increasing massively due to the electrification of transport and the expansion of renewable energies. Current battery technologies cannot satisfy this growing demand as they are difficult to recycle, as the necessary raw materials are mined under precarious conditions, and as the energy density is insufficient. Metal–air batteries offer a high energy density as there is only one active mass inside the cell and the cathodic reaction uses the ambient air. Various metals can be used, but zinc is very promising due to its disposability and non-toxic behavior, and as operation as a secondary cell is possible. Typical characteristics of zinc–air batteries are flat charge and discharge curves. On the one hand, this is an advantage for the subsequent power electronics, which can be optimized for smaller and constant voltage ranges. On the other hand, the state determination of the system becomes more complex, as the voltage level is not sufficient to determine the state of the battery. In this context, electrochemical impedance spectroscopy is a promising candidate as the resulting impedance spectra depend on the state of charge, working point, state of aging, and temperature. Previous approaches require a fixed operating state of the cell while impedance measurements are being performed. In this publication, electrochemical impedance spectroscopy is therefore combined with various machine learning techniques to also determine successfully the state of charge during charging of the cell at non-fixed charging currents.
Keywords:
electrochemical impedance spectroscopy; artificial neural networks; support vector regression; zinc-air battery; state estimation; state of charge
Quantum magnetometry based on optically detected magnetic resonance (ODMR) of nitrogen vacancy centers in nano- or micro-diamonds is a promising technology for precise magnetic-field sensors. Here, we propose a new, low-cost and stand-alone sensor setup that employs machine learning on an embedded device, so-called edge machine learning. We train an artificial neural network with data acquired from a continuous-wave ODMR setup and subsequently use this pre-trained network on the sensor device to deduce the magnitude of the magnetic field from recorded ODMR spectra. In our proposed sensor setup, a low-cost and low-power ESP32 microcontroller development board is employed to control data recording and perform inference of the network. In a proof-of-concept study, we show that the setup is capable of measuring magnetic fields with high precision and has the potential to enable robust and accessible sensor applications with a wide measuring range.
The subject of this paper is the analysis of various switching electronics for batteries with separate electrodes for charging and discharging. The aim is to find a switching method that is energy-efficient on the one hand, but also economically viable on the other. Both relays and MOSFETs are suitable for switching between the electrodes. Both variants have advantages and disadvantages. The results show that a solution with MOSFETs is generally more energy-efficient, but requires a large number of cycles to be economically viable compared to the relay.
State of the art classifiers split Alzheimer’s disease progression into a limited number of stages and use a comparatively small database. For the best treatment, it is desirable to have the highest resolution from the progression of the disease. This paper proposes a reliable deep convolutional neural network for the classification of six different Alzheimer’s disease stages based on Magnetic Resonance Imaging (MRI). The peculiarity of this paper is the introduction of a new, sixth, disease stage, and the large amount of data that has been taken into account. Additionally, not only the testing accuracy is analyzed, but also the robustness of the classifier to have feedback on how certain the neural network makes its predictions.
Piston pumps play a key role in factory automation and their availability is very critical for the smooth running of production processes. Modern installations, such as production plants and machines, are becoming increasingly complex. Therefore, the probability of a complete system failure due to a single critical component also increases. Maintenance processes with intelligent devices are therefore very important to achieve maximum economic efficiency and safety. Periodic or continuous monitoring of system components provides key information about the current physical state of the system, enabling early detection of emerging failures. Knowledge of future failures makes it possible to move from the concept of preventive maintenance to intelligent predictive maintenance. In this way, consequential damage and complete system failure can be avoided, maximizing system availability and safety. This paper reflects the development and implementation of a neural network system for abnormal state prediction of piston pumps. After a short introduction into piston pumps and their potential abnormal states, statistical and periodical analysis are presented. Then the design and implementation of suitable neural networks are discussed. Finally, a conclusion is drawn and the observed accuracies as well as potential next steps are discussed.
This paper deals with the issue of automating the
process of machine learning and analyzing bio-datasets. For this
a user-friendly website has been developed for the interaction
with the researchers. On this website it is possible to upload
datasets and to share them, if desired, with other scientists. The
uploaded data can also be analyzed by various methods and
functions. The signals inside these datasets can also be visualized.
Furthermore several algorithms have been implemented to create
machine learning models with the uploaded data. Based on these
generated models new data can be classified or calculated. For all
these applications the simplest possible handling was
implemented to make the website available to all interested
researchers.
An improvement on a concept for all optical mag- netometry using nitrogen vacancies in diamond is presented. The concept is based on the fluorescence attenuation of optically pumped nitrogen vacancies by magnetic fields up to ≈ 50 mT. The attenuation is registered by modulating the pumping power to generate a constant signal at a photodetector. A sensitivity of 2.6μT/√Hz at a sampling frequency of 500 Hz is achieved.