Refine
Document Type
- Article (10)
- Article in Conference Proceedings (6)
- Other (4)
- Report (2)
- Working Paper (2)
- Contribution to a Periodical (1)
Is part of the Bibliography
- no (25)
Keywords
- PIV (5)
- Lüftungstechnik (3)
- energy system model (3)
- energy system modeling (3)
- instationäre Lüftung (3)
- modeling tools (2)
- unsteady ventilation (2)
- urban energy system (2)
- CFD (1)
- Dynamic airflow (1)
Institute
Unsteady ventilation is being discussed to improve indoor air quality and comfort by simultaneously reducing the energy consumption. But until now, neither any standard system has been established nor are there any design parameters and clear specifications in standards. One reason for this lack of standardisation might be the ver-satile approaches for creating unsteady room airflows: sinusoidal variations, intermittent flow rates, and simu-lated natural wind or temperature variations in forced convection and the use of chaotic structures in free convection. Thus, this article gives an overview of systems available in Germany/Europe, international research and unresolved issues. It allows a clear focus for future investigations to be developed so that unsteady venti-lation concepts will be successfully utilised in practice. Experiments showed positive effects on indoor air quality (IAQ), comfort and energy consumption. However, two main questions have not been answered, yet: what are the fluid mechanical reasons for the observed effects and what are the best parameters to create unsteady room airflows?
The effects of different unsteady ventilation strategies on flow-structures in a room are investigated and compared to steady ventilation with the same mean exchange rate. For this, whole-field optical flow measurements were executed by means of a particle image velocimetry system (PIV) in a Reynolds-scaled room model in water. In a first series of experiments, sinusoidal varied supply flows with different frequencies were analysed; two equally supplied simple nozzles in the ceiling were used as inlets. The setup was validated by comparing jet velocities with literature values.
Typically, room airflows are investigated with punctual measurement techniques (e.g.
anemometers), which have an impact on the flow field, or with smoke gas experiments. By using PIV, the flow can be analysed without any influence of sensors or stands/traverses and whole-field measurement data with high spatial resolution and detailed information on the flow field can be collected.
Local and time-averaged velocities and standard deviations were calculated for all scenarios. Unsteady conditions were created by a sinusoidal variation of the supply flow rate with frequencies between 0.025 1/s and 0.050 1/s, an offset of about 1.1 m3/h and an amplitude of about ±1.0 m3/h, which leads to a mean exchange rate of 3.5 1/h. Although averaged velocity fields only show slight differences between steady and unsteady conditions, single pictures vary widely. First effects of unsteady ventilation on flow structures can be recognized. Steady structures are destroyed, and velocities change rapidly.
The inlets will be changed to small-scale ceiling-diffusors in future experiments to create more realistic room ventilation conditions. Other types of unsteady supply flows will be implemented, and parameters will be varied. The results of the PIV-measurements can be used to validate CFD simulations and to derive dimensioning rules and application recommendations.
(1) The use of renewable energy for power and heat supply is one of the strategies to reduce greenhouse gas emissions. As only 14% of German households are supplied with renewable energy, a shift is necessary. This shift should be realized with the lowest possible environmental impact. This paper assesses the environmental impacts of changes in energy generation and distribution, by integrating the life cycle assessment (LCA) method into energy system models (ESM). (2) The integrated LCA is applied to a case study of the German neighborhood of Herne, (i) to optimize the energy supply, considering different technologies, and (ii) to determine the environmental impacts of the base case (status quo), a cost-optimized scenario, and a CO2-optimized scenario. (3) The use of gas boilers in the base case is substituted with CHPs, surface water heat pumps and PV-systems in the CO2-optimized scenario, and five ground-coupled heat pumps and PV-systems for the cost-optimized scenario. This technology shift led to a reduction in greenhouse gas emissions of almost 40% in the cost-optimized, and more than 50% in the CO2-optimized, scenario. However, technology shifts, e.g., due to oversized battery storage, risk higher impacts in other categories, such as terrestrial eco toxicity, by around 22%. Thus, it can be recommended to use smaller battery storage systems. (4) By combining ESM and LCA, additional environmental impacts beyond GHG emissions can be quantified, and therefore trade-offs between environmental impacts can be identified. Furthermore, only applying ESM leads to an underestimation of greenhouse gas emissions of around 10%. However, combining ESM and LCA required significant effort and is not yet possible using an integrated software.
Mechanical ventilation of buildings is generally based on steadily operating systems. This field is well known and established. But, an approach based on time-varied supply flow rates might improve indoor air quality, comfort, and energy consumption. Typical time-scales of the variation are in the order of seconds or minutes. Until now, the effects of unsteady ventilation scenarios are not fully described and so, reliable dimensioning rules are missing. Hence, with a better understanding of the flow in unsteady ventilation, systems can be calculated and optimised. To understand the effective mechanisms and derive functional relations between the flow field and variation parameters, full-field optical flow measurements are executed with a particle image velocimetry (PIV) system. Experiments are conducted under isothermal conditions in water in a small-scale room model (1.00 m × 0.67 m × 0.46 m) with two swirl ceiling diffusers, Reynolds-scaling assures similarity. In a series of experiments, the effects of different unsteady ventilation strategies on the flow fields are investigated and compared to steady conditions with the same mean exchange rate. Mean exchange rates, signal types, periods, and amplitudes are varied. Time-averaged normalised velocity fields already indicate notable differences between steady and unsteady cases especially for lower exchange rates: the distribution is more homogeneous in unsteady scenarios compared to steady conditions, and low-velocity areas are reduced while the mean velocity of the room increases. So, unsteady ventilation might be beneficial in terms of improved ventilation and energy savings in partial-load operation. Fast Fourier Transformation (FFT) analyses of the mean velocity for each field over the whole series detect the main frequency of the volume flow variation. By dividing the velocity field into smaller areas, this main frequency is still detected especially in the upper part of the room, but side frequencies play a role in the room as well.
In Germany, the current sectoral urban planning often leads to inefficient use of resources, partly because municipalities lack integrated planning instruments and argumentation strength toward politics, investors, or citizens. The paper develops the ResourcePlan as (i) legal and (ii) a planning instrument to support the efficient use of resources in urban neighborhoods. The integrative, multi-methodological approach addresses the use of natural resources in the building and infrastructural sectors of (i) water (storm- and wastewater) management, (ii) construction and maintenance of buildings and infrastructure, (iii) urban energy system planning, and (iv) land-use planning. First, the development as legal instrument is carried out, providing (i) premises for integrating resource protection at all legal levels and (ii) options for implementing the ResourcePlan within German municipal structures. Second, the evaluation framework for resource efficiency of the urban neighborhoods is set up for usage as a planning instrument. The framework provides a two-stage process that runs through the phases of setting up and implementing the ResourcePlan. (Eco)system services are evaluated as well as life cycle assessment and economic aspects. As a legal instrument, the ResourcePlan integrates resource protection into municipal planning and decision-making processes. The multi-methodological evaluation framework helps to assess inter-disciplinary resource efficiency, supports the spatial identification of synergies and conflicting goals, and contributes to transparent, resource-optimized planning decisions.
Heating networks are highly relevant for the achievement of climate protection goals of urban energy systems. This is due to their high renewable energy potential combined with high plant efficiency and utilization rates. For the optimal integration and sector coupling of heating networks in holistic urban energy systems, open source energy system modeling tools are highly recommended. In this contribution, two open source approaches (the "Spreadsheet Energy System Model Generator"-integrated DHNx-Python module (DHNx/SESMG) and Thermos) are theoretically compared, and practically applied to a real-world energy system. Deviations within the results can be explained by incorrectly pre-defined parameters within Thermos and cannot be adjusted by the modeler. The simultaneity is underestimated in the case study by Thermos by more than 20%. This results in undersized heating plant capacities and a 50% higher number of buildings connected to the network. However, Thermos offers a higher end-user usability and over 100 times faster solving. DHNx/SESMG, in contrast, offers the possibility to adjust more model parameters individually and consider multiple energy sectors. This enables a holistic modeling of urban energy systems and the model-based optimization of multi-sectoral synergies.