Refine
Publication Type
- Conference Proceeding (12)
- Article (8)
- Part of a Book (2)
- Report (1)
Keywords
- Analysis (1)
- Battery State Estimation (1)
- Deep Learning (1)
- Development and implementation (1)
- End of charge (1)
- GNSS (1)
- Highly Sensitive (1)
- Hochintegrierte Mikro- und Nanosysteme (1)
- Interval analysis · Particle filtering · Kalman filtering · Bayesian filtering · Sequential Monte Carlo simulation · Bounded-error estimation (1)
- Isotropic Scalar (1)
Faculty
Quantum magnetometry based on optically detected magnetic resonance (ODMR) of nitrogen vacancy centers in nano- or micro-diamonds is a promising technology for precise magnetic-field sensors. Here, we propose a new, low-cost and stand-alone sensor setup that employs machine learning on an embedded device, so-called edge machine learning. We train an artificial neural network with data acquired from a continuous-wave ODMR setup and subsequently use this pre-trained network on the sensor device to deduce the magnitude of the magnetic field from recorded ODMR spectra. In our proposed sensor setup, a low-cost and low-power ESP32 microcontroller development board is employed to control data recording and perform inference of the network. In a proof-of-concept study, we show that the setup is capable of measuring magnetic fields with high precision and has the potential to enable robust and accessible sensor applications with a wide measuring range.
The demand for energy storage is increasing massively due to the electrification of transport and the expansion of renewable energies. Current battery technologies cannot satisfy this growing demand as they are difficult to recycle, as the necessary raw materials are mined under precarious conditions, and as the energy density is insufficient. Metal–air batteries offer a high energy density as there is only one active mass inside the cell and the cathodic reaction uses the ambient air. Various metals can be used, but zinc is very promising due to its disposability and non-toxic behavior, and as operation as a secondary cell is possible. Typical characteristics of zinc–air batteries are flat charge and discharge curves. On the one hand, this is an advantage for the subsequent power electronics, which can be optimized for smaller and constant voltage ranges. On the other hand, the state determination of the system becomes more complex, as the voltage level is not sufficient to determine the state of the battery. In this context, electrochemical impedance spectroscopy is a promising candidate as the resulting impedance spectra depend on the state of charge, working point, state of aging, and temperature. Previous approaches require a fixed operating state of the cell while impedance measurements are being performed. In this publication, electrochemical impedance spectroscopy is therefore combined with various machine learning techniques to also determine successfully the state of charge during charging of the cell at non-fixed charging currents.
Keywords:
electrochemical impedance spectroscopy; artificial neural networks; support vector regression; zinc-air battery; state estimation; state of charge
Metal air batteries provide a high energy density as the ca-thodic reaction uses the surrounding air. Different metals can be usedbut zinc is very promising due to its disposability and nontoxic behav-ior. State estimation is quite complicated as the voltage characteristicof the battery is rather flat. Especially estimating the state of chargeis important as a secondary electrolysis process during overcharging canlead to an unsafe state. Another technique for state estimation is theelectrochemical impedance spectroscopy. Therefore, this paper describesthe process of setup and measuring a time series of impedance spectraat known states of charge. Then these spectra are used to derive anequivalent circuit. Finally the development of the circuit’s parameter areanalyzed to extract most important parameters.
The main task of battery management systems is to keep the working area of the battery in a safe state. Estimation of the state of charge and the state of health is therefore essential. The traditional way uses the voltage level of a battery to determine those values. Modern metal air batteries provide a flat voltage characteristic which necessitates new approaches. One promising technique is the electrochemical impedance spectroscopy, which measures the AC resistance for a set of different frequencies. Previous approaches match the measured impedances with a nonlinear equivalent circuit, which needs a lot of time to solve a nonlinear least-squares problem. This paper combines the electrochemical impedance spectroscopy with neural networks to speed up the state estimation using the example of zinc air batteries. Moreover, these networks are trained with different subsets of the spectra as input data in order to determine the required number of frequencies.
Oxygen consumption of zinc-air batteries and theirperformance at low oxygen concentration levels
(2018)
Already existing primary Zinc-air batteries providea high energy density. Due to new secondary cells, its tech-nology can become an alternative for energy storage. Sincethese applications require a big amount of storable energy, theoxygen consumption has to be taken into account. This articledetermines the oxygen consumption of zinc-air batteries duringdischarging. Furthermore the performance of zinc-air batteries atlow oxygen concentrations is analyzed. Both aspects are validatedby practical experiments.