Refine
Document Type
- Report (5)
- Article (3)
- Article in Conference Proceedings (3)
Is part of the Bibliography
- no (11)
Keywords
- AFS/AFS63 (1)
- Dezentrale Anlagen (1)
- Energie (1)
- Fläche (1)
- Kontinuierliche Gütemessung (1)
- Messdaten (1)
- Quartier (1)
- Regenwasserbewirtschaftung (1)
- Ressourceneffizienz (1)
- Wasser (1)
Institute
In-situ-Monitoring der Reinigungsleistung großer dezentraler Niederschlagswasserbehandlungsanlagen
(2018)
Große dezentrale Niederschlagswasserbehandlungsanlagen
werden mittels kontinuierlicher Gütemesstechnik hinsichtlich ihrer
Frachtwirkungsgrade an Standorten mit hohem Stoffaufkommen untersucht.
Die Bilanzierung der Zulauf- und Ablauffrachten basiert auf dem Zusammenhang
zwischen den abfiltrierbaren Stoffen (AFS) und der Trübung.
Erste Ergebnisse der Installation der Messtechnik, des Datenmanagements
und Frachtwirkungsgrade werden vorgestellt.
Im Rahmen des Forschungsprojekts „Ressourcenplan im Quartier – R2Q“ startete im Frühjahr 2019 ein großer Forschungsverbund aus Hochschulen, wissenschaftlichen Instituten, Praxispartnern und einer Kommune, um die Verwendung der Ressourcen Wasser, Fläche, Baustoffe und Energie in Quartieren zu bilanzieren und zu bewerten, damit ihre effiziente Verwendung im Quartier mit Hilfe neuer rechtlicher Festsetzungen zukünftig gewährleistet werden kann.
The in-situ performance of large decentralised stormwater treatment systems is investigated by means of continuous turbidity measurements. Turbidity measurements are used as a surrogate to continuously estimate Total Suspended Solid (TSS) concentrations. TSS event loads are calculated at the inlet and outlet of two stormwater treatment systems, which both are installed at the outlet of catchments with high pollution potential. The event-specific performance is defined as ratio between TSS loads of inflow and outflow. Based on measurement data obtained, the overall TSS load retention efficiency is about 32 %.
In Germany, the current sectoral urban planning often leads to inefficient use of resources, partly because municipalities lack integrated planning instruments and argumentation strength toward politics, investors, or citizens. The paper develops the ResourcePlan as (i) legal and (ii) a planning instrument to support the efficient use of resources in urban neighborhoods. The integrative, multi-methodological approach addresses the use of natural resources in the building and infrastructural sectors of (i) water (storm- and wastewater) management, (ii) construction and maintenance of buildings and infrastructure, (iii) urban energy system planning, and (iv) land-use planning. First, the development as legal instrument is carried out, providing (i) premises for integrating resource protection at all legal levels and (ii) options for implementing the ResourcePlan within German municipal structures. Second, the evaluation framework for resource efficiency of the urban neighborhoods is set up for usage as a planning instrument. The framework provides a two-stage process that runs through the phases of setting up and implementing the ResourcePlan. (Eco)system services are evaluated as well as life cycle assessment and economic aspects. As a legal instrument, the ResourcePlan integrates resource protection into municipal planning and decision-making processes. The multi-methodological evaluation framework helps to assess inter-disciplinary resource efficiency, supports the spatial identification of synergies and conflicting goals, and contributes to transparent, resource-optimized planning decisions.
Wastewater generation model to predict impacts of urine separation on wastewater treatment plants
(2024)
Wastewater treatment plants (WWTPs) are under increasing pressure to enhance resource efficiency and reduce emissions into water bodies. The separation of urine within the catchment area may be an alternative to mitigate the need for costly expansions of central WWTPs. While previous investigations assumed a spatially uniform implementation of urine separation across the catchment area, the present study focuses on an adapted stochastic wastewater generation model, which allows the simulation of various wastewater streams (e.g., urine) on a household level. This enables the non-uniform separation of urine across a catchment area. The model is part of a holistic modelling framework to determine the influence of targeted urine separation in catchments on the operation and emissions of central WWTPs, which will be briefly introduced. The wastewater generation model is validated through an extensive sampling and measurement series.
Results based on observed and simulated wastewater quantity and quality for a catchment area of 366 residents for two dry weather days indicate the suitability of the model for wastewater generation and transport modelling. Based on this, four scenarios for urine separation were defined. The results indicate a potential influence of spatial distribution on the peaks of total nitrogen and total phosphorus.