Refine
Year of publication
Document Type
- Article in Conference Proceedings (29)
- Article (12)
- Book (1)
Is part of the Bibliography
- no (42)
Institute
The Solis dam was built in 1986 by the Electric Power Company of Zurich (ewz). Ever since the construction, large amounts of sediments accumulated in the reservoir and led to severe sediment aggradation. As a consequence, the storage volume was reduced by about 50% till 2012 causing loss of energy production. Additionally, in the near future sediments may have caused severe damage at the dam due to blockage of the bottom outlets. Therefore, in 2011 and 2012 a sediment bypass tunnel was realized in order to redirect the incoming sediments into the tailwater to inhibit sediment aggradation. Since its inauguration, the tunnel was operated four times including a 100-year flood event in August 2014. First operational experiences are described herein.
The Gaulwerk hydropower plant (HPP) has a design discharge of 3.5 m3/s and generates about 6.5 GWh per year. The HPP has been in operation since 1963 and uses the flow of two alpine streams. The HPP impounds a 300 m long reservoir with a 6.50 m high weir. The storage is completely filled with sediments and is classified as a valuable habitat for fauna and flora. Due to the sedimentation, the area upstream of the reservoir head inundates about two to three times per year during small flood events, leading to complaints from affected landowners and adjacent municipalities. To investigate sustainable solutions, a study of alternatives has been carried out in which three alternatives to im-prove both the sediment and flood situation are being investigated. In addition, the residual flow release will be adjusted and fish facilities realized in all alternatives. The paper will summarize the analysis of the alternatives encompassing the (1)
flood situation, (2) sediment management, (3) reha-bilitation measures of the hydraulic structures and their costs and (4) the environmental impact.
This paper describes the design of the new tunnel invert lining of the 9-foot tunnel at Mud Mountain Dam, Washington, USA. The tunnel diverts all bed load sediments into the tailwater. Major invert abrasion has been observed in the existing steel lining. The new invert design consists of 0.59 m2 and 0.79 m2 granite blocks that are 0.25 m thick and placed tightly together along the tunnel. Stability analysis showed factors of safety ranging from 1.2 to 2.6 against uplift. This will be achieved with strip drains placed in the bedding material along the tunnel. A service-design-life analysis was performed using abrasion prediction modelling.
This model was based on abrasion measurement data acquired from granite field tests at Pfaffensprung sediment bypass tunnel, Switzerland. The estimated annual abrasion depths for the granite were approximately 0.50 mm/year for average sediment transport conditions.
Field Investigation on Hydroabrasion in High-Speed Sediment-Laden Flows at Sediment Bypass Tunnels
(2020)
Wear due to sediment particles in fluid flows, also termed hydroabrasion’ or simply ‘abrasion’, is an omnipresent issue at hydraulic structures as well as in bedrock rivers. However, interactions between flow field, particle motion, channel topography, material properties and abrasion have rarely been investigated on a prototype scale, leaving many open questions as to their quantitative interrelations. Therefore, we investigated hydroabrasion in a multi‐year field study at two Swiss Sediment Bypass Tunnels (SBTs). Abrasion depths of various invert materials, hydraulics and sediment transport conditions were determined and used to compute the abrasion coefficients kv of different abrasion models for high‐strength concrete and granite. The results reveal that these models are useful to estimate spatially averaged abrasion rates. The kv‐value is about one order of magnitude higher for granite than for high‐strength concrete, hence, using material‐specific abrasion coefficients enhances the prediction accuracy. Three‐dimensional flow structures, i.e., secondary currents occurring both, in the straight and curved sections of the tunnels cause incision channels, while also longitudinally undulating abrasion patterns were observed. Furthermore, hydroabrasion concentrated along joints and protruding edges. The maximum abrasion depths were roughly twice the mean abrasion depths, irrespective of hydraulics, sediment transport
conditions and invert material.
To achieve the sustainable use of dams, the development of methods for sediment management in reservoirs is required. One such method includes the use of Sediment Bypass Tunnels (SBTs) to divert sediment around a dam, thereby preventing sedimentation in the reservoir. However, SBTs are prone to severe invert abrasion caused by the high sediment flux. Therefore, it is necessary to establish a measurement system of the sediment transport rate in these tunnels. One system to measure sediment transport in rivers is the Swiss plate geophone, which can register plate vibrations caused by particle impact. In Japan, the Japanese pipe microphone is used, and sediment transport is measured based on the sound emitted by the particle impact. In this study an attempt was made to optimize the advantages of both systems by fixing a microphone and an acceleration sensor to a steel plate. The results of calibration experiments with this new system are presented and compared with the existing methods. It was found that the acceleration sensor can detect sediment particles larger than 2 mm in diameter. Moreover, a new parameter, referred to as the detection rate, was introduced to describe the correlation between the actual amount of sediment and the registered output. Finally, two parameters - the saturation rate and hit rate - are introduced and exhibit strong correlation with the detection rate.
Abrasion in a concrete-lined sediment bypass tunnel is estimated using a Japanese state-of-the-art prediction model and validated by measured invert abrasion data at Asahi Reservoir, Japan. The model is described in detail, certain shortcomings are disclosed, and a revised version is proposed. The model consists of a kinetic energy term accounting for the impact by saltating particles, and a friction work term accounting for the grinding stress. It is found that the latter term yields concrete abrasion values being consistently a multiple compared to its kinetic term contradicting other research. Based on that, and a possible particle impact angle inconsistency, it is proposed to omit the friction work term. It is shown that the calculated abrasion is overestimated by 138% on average compared with that measured, if both terms are accounted for. However, promising results are obtained with only 30% overestimation by neglecting the friction work term.
Four dams in Japan and Switzerland with Sediment Bypass Tunnels (SBT) as a measure against reservoir sedimentation were monitored to analyse the effects of sediment supply on the downstream environment based on up- to downstream differences in geomorphological and biological characteristics. SBT operation times ranged from 93 years at Pfaffensprung and 17 at Asahi to only three years at Solis and no operation at Koshibu. Sediment grain size distribution was monitored, and microhabitats and invertebrates were analysed in terms of richness and composition. Results showed that grain sizes were coarser down- than upstream at dams with newly established SBTs, while they were similar or finer for dams with long SBT operation. Analysis of biotic data revealed that microhabitat and invertebrate richness was low directly below the dam but increased further downstream the longer the SBT operation. Sedentary species dominated at locations where bed conditions were stable, e.g. directly downstream of the dam at Koshibu. Recovery of downstream environment with increasing SBT operation time was disclosed by the Bray–Curtis similarity index, which evaluated an overlap between up- and downstream reaches for both microhabitat composition and invertebrate communities. With increasing operation time, both indices increased, revealing the positive effects of long-term SBT operation.
Sediment transport in high-speed flows over a fixed bed. 2: Particle impacts and abrasion prediction
(2017)
Single bed load particle impacts were experimentally investigated in supercritical open channel flow over a fixed planar bed of low relative roughness height simulating high-gradient non-alluvial mountain streams as well as hydraulic structures. Particle impact characteristics (impact velocity, impact angle, Stokes number, restitution and dynamic friction coefficients) were determined for a wide range of hydraulic parameters and particle properties. Particle impact velocity scaled with the particle velocity, and the vertical particle impact velocity increased with excess transport stage. Particle impact and rebound angles were low and decreased with transport stage. Analysis of the particle impacts with the bed revealed almost no viscous damping effects with high normal restitution coefficients exceeding unity. The normal and resultant Stokes numbers were high and above critical thresholds for viscous damping. These results are attributed to the coherent turbulent structures near the wall region, i.e. bursting motion with ejection and sweep events responsible for turbulence generation and particle transport. The tangential restitution coefficients were slightly below unity and the dynamic friction coefficients were lower than for alluvial bed data, revealing that only a small amount of horizontal energy was transferred to the bed. The abrasion prediction model formed by Sklar and Dietrich in 2004 was revised based on the new equations on vertical impact velocity and hop length covering various bed configurations. The abrasion coefficient kv was found to be vary around kv ~ 105 for hard materials (tensile strength ft > 1 MPa), one order of magnitude lower than the value assumed so far for Sklar and Dietrich's model.
Particle dynamics are investigated experimentally in supercritical high-speed open channel flow over a fixed planar bed of low relative roughness height simulating flows in high-gradient non-alluvial mountain streams and hydraulic structures. Non-dimensional equations were developed for transport mode, particle velocity, hop length and hop height accounting for a wide range of literature data encompassing sub- and supercritical flow conditions as well as planar and alluvial bed configurations. Particles were dominantly transported in saltation and particle trajectories on planar beds were rather flat and long compared with alluvial bed data due to (1) increased lift forces by spinning motion, (2) strongly downward directed secondary currents, and (3) a planar flume bed where variation in particle reflection and damping effects were minor. The analysis of particle saltation trajectories revealed that the rising and falling limbs were almost symmetrical contradicting alluvial bed data. Furthermore, no or negligible effect of particle size and shape on particle dynamics were found. Implications of experimental findings for mechanistic saltation-abrasion models are briefly discussed.