Refine
Publication Type
- Article (1)
- Contribution to a Periodical (1)
- Lecture (1)
- Master's Thesis (1)
Keywords
- EnerRegio (1)
- Energy label (1)
- Machine learning (1)
- Open data (1)
- Remote sensing (1)
- Residential building (1)
- Sektorenkopplung (1)
- energy system modelling (1)
- grid modelling (1)
- open source (1)
This review paper presents a short overview of current power system modelling tools especially used for analysing energy and electricity systems for the supply and demand sector. The main focus of this review lies on open source tools and models which are written and used in the programming language “Python”. The modelling tools are represented in a comprehensive table with key information. Five modelling tools with an open source license can be filtered out. The modelling tool PyPSA can be considered as a high performing tool especially as the gap between power system analysis tool (PSAT) and energy system modelling tool.
Energieausweise informieren über den Energiebedarf und -verbrauch von Gebäuden. Für die Erstellung eines Energieausweises werden gebäudespezifische Daten benötigt, weshalb sie oft nicht für alle Gebäude vorliegen oder erst durch eine Begehung vor Ort erfasst werden können. Die vorliegende Arbeit untersucht die Möglichkeit, durch die Identifikation eines Datenschemas, basierend auf einer integrativen Analyse von Energieausweisen, Energiebedarfsvorhersagen für unbekannte Wohngebäude zu treffen. Die Zielsetzung der vorliegenden Arbeit besteht in der Identifikation wesentlicher Merkmale aus offenen Datenquellen, welche den Energiebedarf signifikant beeinflussen sowie deren Integration in ein kompaktes und effizientes Regressionsmodell. Dabei werden verschiedene maschinelle Lernmethoden, insbesondere das Extreme Gradient Boosting (XGB), eingesetzt, um Modelle zu entwickeln und zu validieren, die auf Daten aus Energieausweisen basieren.
Dafür werden unter anderem Merkmale aus den beschriebenen Merkmalen zum Dach, der Außenwände, zu Fenstern und zum Boden extrahiert und in neue Merkmale überführt. Dies sind unter anderem Dach- und Wandtyp, das zugehörige Isolationsniveau und der Verglasungsgrad der Fenster. Im Anschluss werden drei Datensätze entwickelt und auf ihre Leistung untersucht. Eine Analyse der Merkmalsrelevanz hat gezeigt, dass über alle Datensätze hinweg bestimmte Merkmale wie Gebäudetyp, Baujahr, Wohnfläche, Dämmungsgrad und geografische Lage entscheidenden Einfluss auf die Vorhersage des Energiebedarfs haben. Das auf den Fernerkundungsdaten basierte Modell, wies nach Optimierung ein Bestimmtheitsmaß R2 von 0,64 und einen mittleren absoluten Fehler (MAE) von 4,12 auf. Der Fehler bezieht sich auf eine Effizienzskala von 1-100 (Energieklasse G-A). Nach Skalierung der Pipeline und durch Ergänzung weiterer Datenpunkte, konnte der Wert auf 0,84 erhöht werden. Durch die Ergänzung von vebrauchsabhängigen Merkmalen, erreichte das XGB-Regressionsmodell ein R2 von 0,94 und einen MAE von 1,46 über den Trainings- und Testdatensatz. Zur weiteren Validierung werden die Auswirkungen der einzelnen Merkmale über Shapley-Werte quantifiziert, um die Auswirkungen der Merkmale bei der Vorhersage zu interpretieren. Die entwickelten Modelle erreichten eine hohe Prognosegenauigkeit und demonstrierten eine signifikante Verbesserung gegenüber herkömmlichen Methoden. Die Erstellung der Datensätze erfolgte unter Verwendung der Programmiersprache Python sowie des Frameworks Scikit-learn (Version 1.4.1) zur Entwicklung der Modelle. Die erzeugten Datensätze und Modelle wurden in eine reproduzierbare Pipeline überführt und stehen nach Freigabe unter GitHub zur Verfügung.