Refine
Year of publication
Document Type
- Article (12)
- Article in Conference Proceedings (12)
- Part of a Book (2)
- Report (1)
Is part of the Bibliography
- no (27)
Keywords
- Analysis (1)
- Battery State Estimation (1)
- Deep Learning (1)
- Development and implementation (1)
- Diamond (1)
- End of charge (1)
- GNSS (1)
- Highly Sensitive (1)
- Hochintegrierte Mikro- und Nanosysteme (1)
- Interval analysis · Particle filtering · Kalman filtering · Bayesian filtering · Sequential Monte Carlo simulation · Bounded-error estimation (1)
The demand for energy storage is increasing massively due to the electrification of transport and the expansion of renewable energies. Current battery technologies cannot satisfy this growing demand as they are difficult to recycle, as the necessary raw materials are mined under precarious conditions, and as the energy density is insufficient. Metal–air batteries offer a high energy density as there is only one active mass inside the cell and the cathodic reaction uses the ambient air. Various metals can be used, but zinc is very promising due to its disposability and non-toxic behavior, and as operation as a secondary cell is possible. Typical characteristics of zinc–air batteries are flat charge and discharge curves. On the one hand, this is an advantage for the subsequent power electronics, which can be optimized for smaller and constant voltage ranges. On the other hand, the state determination of the system becomes more complex, as the voltage level is not sufficient to determine the state of the battery. In this context, electrochemical impedance spectroscopy is a promising candidate as the resulting impedance spectra depend on the state of charge, working point, state of aging, and temperature. Previous approaches require a fixed operating state of the cell while impedance measurements are being performed. In this publication, electrochemical impedance spectroscopy is therefore combined with various machine learning techniques to also determine successfully the state of charge during charging of the cell at non-fixed charging currents.
Keywords:
electrochemical impedance spectroscopy; artificial neural networks; support vector regression; zinc-air battery; state estimation; state of charge
Quantum magnetometry based on optically detected magnetic resonance (ODMR) of nitrogen vacancy centers in nano- or micro-diamonds is a promising technology for precise magnetic-field sensors. Here, we propose a new, low-cost and stand-alone sensor setup that employs machine learning on an embedded device, so-called edge machine learning. We train an artificial neural network with data acquired from a continuous-wave ODMR setup and subsequently use this pre-trained network on the sensor device to deduce the magnitude of the magnetic field from recorded ODMR spectra. In our proposed sensor setup, a low-cost and low-power ESP32 microcontroller development board is employed to control data recording and perform inference of the network. In a proof-of-concept study, we show that the setup is capable of measuring magnetic fields with high precision and has the potential to enable robust and accessible sensor applications with a wide measuring range.
Accurate self-localisation is a fundamental ability of any mobile robot. In Monte Carlo localisation, a probability distribution over a space of possible hypotheses accommodates the inherent uncertainty in the position estimate, whereas bounded-error localisation provides a region that is guaranteed to contain the robot. However, this guarantee is accompanied by a constant probability over the confined region and therefore the information yield may not be sufficient for certain practical applications. Four hybrid localisation algorithms are proposed, combining probabilistic filtering with non-linear bounded-error state estimation based on interval analysis. A forward-backward contractor and the Set Inverter via Interval Analysis are hybridised with a bootstrap filter and an unscented particle filter, respectively. The four algorithms are applied to global localisation of an underwater robot, using simulated distance measurements to distinguishable landmarks. As opposed to previous hybrid methods found in the literature, the bounded-error state estimate is not maintained throughout the whole estimation process. Instead, it is only computed once in the beginning, when solving the wake-up robot problem, and after kidnapping of the robot, which drastically reduces the computational cost when compared to the existing algorithms. It is shown that the novel algorithms can solve the wake-up robot problem as well as the kidnapped robot problem more accurately than the two conventional probabilistic filters.
When developing new battery technologies, fundamental research means assembling new batteries by hand since a production line is not worthwhile for building and testing individual cells. This causes high production tolerances to occur because manual manufacturing is not as precise as machine-made. When putting these prototypes into operation, problems can arise due to the varying parameters. One of the most important exercise is finding a criterion of a full battery. This can be challenging when parameters like the capacity or the end of charge voltage are not precisely known due to the tolerances. Furthermore, new battery types do not necessarily rely on the same stopping criteria. For example zinc-air secondary batteries do not offer an end of charging voltage. Its charging current is not going to decrease when the battery is full and the charging voltage is held at a fixed value. But instead of de-oxidising zinc oxide, hydrogen is produced. In the majority of cases overcharging should be avoided as it harms the battery. Another even more dangerous consequence is the possibility of an explosion. Especially lithium based batteries are known for their need of compatible ambient and charging parameters. This paper proposes a new criterion for detecting the end of charge that is based on the rate of change of electrochemical impedance spectra of the examined batteries. Device parameter fluctuations influence every measurement. Therefore, using the rate of change offers the possibility to not depend on these fluctuations.
This work describes the setup of an ultrawideband (UWB)
realtime localization system (RTLS) for tracking of particles.We describe
how the RTLS obtains distances and positions through radio waves and
the setup and evaluation of a real world system is stated in detail. In
the proposed system the particles track a subtrates surface
ow inside a
biogas plant for verication of agitation processes.
Magnetic field sensors based on quantum mechanic effects are often
susceptible to misalignments of the magnetic field or need advanced
procedures to compensate for these. Also, the record breaking sensitivities reported for superconducting quantum interference devices and alkali vapor magnetometers come along with large and complex experimental setups. The nitrogen vacancy center in diamond can be used to design a simple, small, and robust sensor without employing microwave radiation. By using compressed nanodiamond particles, it is possible to eliminate the need of an alignment of the magnetic field and still obtain the absolute magnetic flux density in a single measurement. In order to demonstrate the capabilities of this approach, a centimeter-sized modified automotive demo board is employed as a complete sensor with a sensitivity of 78 µT/Wurzel Hz.