Refine
Year of publication
- 2020 (3)
Document Type
Language
- German (3)
Has Fulltext
- no (3)
Is part of the Bibliography
- no (3)
Keywords
Institute
An improvement on a concept for all optical mag- netometry using nitrogen vacancies in diamond is presented. The concept is based on the fluorescence attenuation of optically pumped nitrogen vacancies by magnetic fields up to ≈ 50 mT. The attenuation is registered by modulating the pumping power to generate a constant signal at a photodetector. A sensitivity of 2.6μT/√Hz at a sampling frequency of 500 Hz is achieved.
Magnetic field sensors based on quantum mechanic effects are often
susceptible to misalignments of the magnetic field or need advanced
procedures to compensate for these. Also, the record breaking sensitivities reported for superconducting quantum interference devices and alkali vapor magnetometers come along with large and complex experimental setups. The nitrogen vacancy center in diamond can be used to design a simple, small, and robust sensor without employing microwave radiation. By using compressed nanodiamond particles, it is possible to eliminate the need of an alignment of the magnetic field and still obtain the absolute magnetic flux density in a single measurement. In order to demonstrate the capabilities of this approach, a centimeter-sized modified automotive demo board is employed as a complete sensor with a sensitivity of 78 µT/Wurzel Hz.
Magnetometry with nitrogen–vacancy (NV) defects in diamond has been extensively stud-ied in the past [1]. While most approaches in-clude the use of microwaves (MW) for the de-tection of electron spin resonance, only few investigate the sensitivity of the photolumines-cence (PL) from NV centers to an external magnetic field without MW [2, 3, 4]. This work aims to utilize this effect to build a highly sensi-tive and compact room temperature magne-tometer. The avoidance of MW serves the re-duction of production costs and allows a com-mercialization at the current patent situation.