The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 6 of 13
Back to Result List

Distribution-Based Calibration of a Stormwater Quality Model

  • Stormwater quality models are usually calibrated using observed pollutographs. As current models still rely on simplified model concepts for pollutant accumulation and wash-off, calibration results for continuous pollutant concentrations are highly uncertain. In this paper, we introduce an innovative calibration approach based on total suspended solids (TSS) event load distribution. The approach is applied on stormwater quality models for a flat roof and a parking lot for which reliable distributions are available. Exponential functions are employed for both TSS buildup and wash-off. Model parameters are calibrated by means of an evolutionary algorithm to minimize the distance between a parameterized lognormal distribution function and the cumulated distribution of simulated TSS event loads. Since TSS event load characteristics are probabilistically considered, the approach especially respects the stochasticity of TSS buildup and wash-off and, therefore, improves conventional stormwater quality calibration concepts. The results show that both experimental models were calibrated with high goodness-of-fit (Kolmogorov–Smirnov test statistic: 0.05). However, it is shown that events with high TSS event loads (>0.8 percentile) are generally underestimated. While this leads to a relative deviation of −28% of total TSS loads for the parking lot, the error is compensated for the flat roof (+5%). Calibrated model parameters generally tend to generate wash-off proportional to runoff, which is indicated by mass-volume curves. The approach itself is, in general, applicable and creates a new opportunity to calibrate stormwater quality models especially when calibration data is limited.
Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
https://doi.org/10.3390/w10081027

Export metadata

Additional Services

Metadaten
Author:Dominik Leutnant, Dirk Muschalla, Mathias Uhl
URL:https://www.mdpi.com/2073-4441/10/8/1027
DOI:https://doi.org/10.3390/w10081027
Parent Title (English):Water
Document Type:Article
Language:English
Date of Publication (online):2020/05/26
Year of first Publication:2018
Provider of the Publication Server:FH Münster - University of Applied Sciences
Release Date:2020/05/26
Volume:2018
First Page:1027
Last Page:10
Faculties:Bauingenieurwesen (BAU)
Publication list:Uhl, Mathias
Leutnant, Dominik
Licence (German):License LogoBibliographische Daten