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Abstract 

For acoustic procedures which rely on the speed of sound to derive process parameters, the 

determination of the acoustic time of flight is essential. In this work, a method for the 

determination of the time of flight (TOF) is presented. It is intended for reverberant and noisy 

environments and can be applied in the gas holdup determination in bubbly liquids via 

acoustic transmission tomography (GHATT) for example. The method includes the selection 

and design of the transmitted signal to optimize the disambiguate of the autocorrelation, the 

narrowing of the time window based on the Fractional Fourier Transform (FrFT) to accelerate 

the TOF estimation. Furthermore, it includes the consideration of the system-induced signal 

distortion through prior quasi-anechoic measurements and the sparse reconstruction of the 

spatial impulse response for TOF estimation using non-negative sparse deconvolution 

algorithms. The method is tested analytically on numerically generated signals and various 

sparse deconvolution algorithms are investigated with respect to their applicability and 

limitations. 
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1. Introduction 

Time of Arrival (TOA) and Time of Flight (TOF) 

estimation is a widely used and widely studied part of Time 

Delay Estimation (TDE) [1]. Among others, TOF is applied in 

localization problems with active radar and sonar systems. In 

the last two decades, the knowledge gained has been 

increasingly applied to the determination of transit times in 

acoustic transmission tomography systems [2, 3]. In these 

systems, unlike in localization, the distance between the sound 

sources and receivers is known in advance, and the speed of 

sound is the desired measurand. The knowledge of the speed 

of sound allows the characterization of further process 

variables. The dependence of process parameters on the speed 

of sound is already utilized in various acoustic systems and 

applications and is, furthermore, the subject of current 
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research in other areas. For example, high frequency 

ultrasonic signals in the form of ultrasonic tomography are 

applied in areas of non-destructive testing (NDT) [4] and 

medical diagnostics [5]. Signals with audible frequencies are 

used to determine temperatures and flow velocities in 

industrial furnaces [6], the atmosphere as well as contained 

environments [7–9], and in oceanography [3]. Furthermore, 

gas holdup determination in bubbly liquids via acoustic 

transmission tomography (GHATT) is the subject of current 

research. Elfering et. al [10, 11] utilize the dependency of 

sound velocity on volumetric gas content in GHATT. This 

dependency, first described mathematically by Wood [12], is 

valid for the so-called subcritical frequency range (i.e., below 

the resonance frequency for radial pulsations of the bubbles) 

[13]. Thus, for the time-of-flight determination in GHATT, 

the resonance frequency of the bubbles represents a natural 

upper frequency bound for the signals to be used. 

Depending on the application and the environmental 

conditions, noise as well as reflections from surfaces occur in 

transmission tomography, thereby complicating the accurate 

determination of the transit times using established methods.  

In acoustic transmission tomography where reflections are 

superimposed on the direct sound, various methods have been 

established, they include the following methods [14–16]. 

Simple cross-correlation-based methods are widely used in 

TOF estimation but prove to be particularly vulnerable when 

direct sound is superimposed with reflections, since here the 

receiver signal is not a simple time-delayed copy of the 

transmitted signal. More advanced cross correlation methods 

that are more robust to reflections are susceptible to noise and 

signal distortion [15, 17].  TOF estimation based on the 

Akaike Information Criterion (AIC), can be applied directly to 

the receiver signal without a reference signal, similar to 

threshold methods and other characteristic functions. 

However, the estimated TOF is highly dependent on the noise 

component. For cross-talk interference and reflection echoes, 

they are only applicable under certain conditions [15]. 

In ultrasonic pulse echo methods, which determine 

distances based on TOF of reflected or scattered high-

frequency signals, blind deconvolution approaches or 

deconvolution approaches with modeled building blocks are 

used for the TOF estimation [14, 16]. These modeled building 

blocks of the dictionary describe theoretical signal 

components that can be expected under defined reflection and 

scattering conditions of the high-frequency signals. In 

contrast, these models are not useful for transmission 

tomography with low-frequency signals, since in these cases 

the building blocks can better be derived directly from the 

defined transmitted signal. 

The method presented in this paper is intended to 

counteract the limitations of previous methods for use in 

GHATT and other acoustic transmission tomography 

applications. For this purpose, the proposed method exploits 

the non-negative sparse structure of the room impulse 

response of reverberant rooms by applying a non-negative 

sparse deconvolution for the first time in TOF estimation. It 

focuses on the sparse early reflections (echoes), which 

promptly follow the direct sound, and are thus of particular 

relevance for TOF estimation.  A signal design is described, 

which on the one hand is unambiguously correlated. On the 

other hand, the short signal durations mean that later dense 

reflections (reverb) do not superimpose with the direct sound 

and can therefore be ignored in the deconvolution. The 

proposed method offers the possibility to consider distortions 

caused by the system, e.g. by the transducers. Fractional 

Fourier transform (FrFT), which works particularly 

effectively with linear frequency modeled signals, is used for 

truncation of the receiver signal before deconvolution. 

The remainder of the paper is organized as follows. First, 

in Section 2, an overview of TOF estimation approaches is 

given, and, based on this, a new approach is derived in Section 

3. Finally, in Section 4, this new approach is tested using 

simulated signals. 

2. Methods for Time-of-Flight Estimation 

For TOF estimation in transmission tomography, the 

transmitted signal and received signal must be compared. In 

the following, both the source signal and the recorded received 

signal are assumed to be known, which can generally be taken 

for granted in acoustic transmission tomography like GHATT. 

2.1 Signal Model 

Under ideal environmental conditions, the received signal 

𝑥(𝑡) of a measurement path is a time-delayed and attenuated 

copy of the source signal with additive noise. 

 𝑥(𝑡) = 𝛼 ⋅ 𝑠(𝑡 − 𝜏𝑇𝑂𝐹) + 𝑤(𝑡) (1) 

Here, 𝛼 describes the attenuation factor, 𝑠(𝑡) denotes the 

transmitted source signal, 𝑤(𝑡) denotes the additive noise and 

𝜏𝑇𝑂𝐹  denotes the TOF. Therefore, the ideal propagation model 

only considers the direct path. This model can be applied to an 

ideal free field environment without any substantial acoustic 

reflections. 

In many situations, considering only the direct path is 

insufficient because reflecting walls and surfaces affect the 

recorded signal. In such cases, the transmitted signal arrives at 

the receiver multiple times with individual attenuation and 

time delay. This  multipath model, as it is commonly called, 

can be described by an additive superposition of several 

signals from individual paths [18]. 

 𝑥(𝑡) = ∑𝛼𝑗 ⋅ 𝑠(𝑡 − 𝜏𝑗)

𝑘

𝑗=1

+ 𝑤(𝑡) (2) 
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Here, 𝑘 represents the number of signal paths; 𝛼𝑗 and 𝜏𝑗 

denote the individual attenuation factors and propagation 

times of these paths. The TOF is the propagation time 𝜏𝑗, 

which is associated with the direct path. Hence, it has the 

minimum value of all propagation times. In the case of 

discrete time sampling with a sampling period 𝑇, equation (2) 

leads to (3). 

 𝑥(𝑛𝑇) = ∑ 𝛼𝑗 ⋅ 𝑠(𝑛𝑇 − 𝜏𝑗)

𝑘

𝑗=1

+ 𝑤(𝑛𝑇), 𝑛 ∈ ℤ (3) 

Although this multipath model is not valid for every 

environment [1], it is valid and has been established for most 

applications with hard reflecting boundaries and non-

dispersive media such as room acoustic environments [19]. 

The discrete multipath model in (3) represents a special 

case of a more general convolutional reverberant model. At 

this point, it must be noted that the times 𝜏𝑗 are non-discrete in 

general. Hereafter, they are discretized with the sampling 

period 𝑇, in the same way as the recorded signals are. From 

now on, they are treated as integer multiples of 𝑇. 

 𝐱[𝑛] = ∑ 𝐡[𝑙] ⋅ 𝐬[𝑛 − 𝑙]

𝐿

𝑙=1

+ 𝐰[𝑛] (4) 

Here, 𝐡 ∈ ℝ𝐿 is the impulse response of the system. In the 

special case given in (3), the impulse response is sparse and 

consists of only 𝑘 non-zero entries with amplitudes 𝛼𝑗 at the 

points 𝑙 = 𝜏𝑗𝑇
−1  for 𝑗 = 1,… , 𝑘. 

 𝐡[𝑙] = {
𝛼𝑗 if 𝑙 = 𝜏𝑗𝑇

−1 for  𝑗 = 1,… , 𝑘

0 otherwise                             
  (5) 

The sparse convolution model described in (4) can be 

rewritten as a discrete convolution in vector notation with  

𝐱 ∈ ℝ𝑁, 𝐬 ∈ ℝ𝑀, 𝐡 ∈ ℝ𝐿 and additive noise 𝐰 ∈ ℝ𝑁:  

 𝐱 = 𝐬 ∗ 𝐡 + 𝐰 (6) 

With ∗ the discrete convolution operator is denoted. 

Alternatively, this convolution can be expressed as a linear 

matrix product of 𝐒 and 𝐡, where 𝐒 ∈ ℝ𝑁×𝐿 with  

𝐿 = 𝑁 − 𝑀 + 1 denotes a Toeplitz matrix with possible time-

delayed copies of the transmitted signal 𝐬 = [𝑠1, … , 𝑠𝑀]T [20]: 

 𝐱 = 𝐒 𝐡 + 𝐰 (7) 

with 

 𝐒 = [𝐬𝟏 𝐬𝟐 ⋯ 𝐬𝐋] =

[
 
 
 
 
 
𝑠1 0 ⋯ 0
⋮ 𝑠1 ⋱ ⋮

𝑠𝑀 ⋮ ⋱ 0
0 𝑠𝑀 ⋱ 𝑠1

⋮ ⋱ ⋱ ⋮
0 ⋯ 0 𝑠𝑀]

 
 
 
 
 

  

In enclosed spaces with acoustically reflective walls, such 

as an industrial plant, the transmission model can be 

approximated by (7). The transmitted signal of a GHATT 

measurement thus arrives at the receiver temporally 

overlapping with the reflections. 

2.2 Sparse Deconvolution Approach 

An obvious approach to determine the TOF of signals 

according to (6) and (7) is to invert the convolution 

(deconvolution). The goal is to invert the problem and to 

reconstruct the impulse response �̂� ∈ ℝ𝐿. For a TOF 

estimation, the first peak of this reconstructed impulse 

response has to be identified. This peak has the shortest time 

of flight and thus represents the direct sound. Therefore, its 

time delay corresponds to the sought estimated TOF �̂�𝑇𝑂𝐹 . A 

direct linear deconvolution without constraints on the impulse 

response is sensitive to additive noise and corresponds to the 

ordinary least-square optimization without constraints or 

penalization term. For real-life signals with noise, a sparse 

deconvolution is more suitable and established for 

determining the impulse response of multipath systems [1]. 

The following underdetermined optimization problem arises: 

 argmin
�̂�

‖𝐱 − 𝐒 �̂�‖
2
 s. t.  ‖�̂�‖

0
≤ �̂� (8) 

Here, the ℓ0-pseudo-norm ‖⋅‖0 denotes the number of non-

zero components with an upper bound �̂�. For solving this 

problem, the two families of Greedy algorithms and convex 

optimization have been established for reconstructing the 

sparse signal from the measured values. 

2.2.1 Greedy Algorithms. Orthogonal Matching Pursuit 

(OMP) and Orthogonal Least Squares (OLS) are two 

important representatives of Greedy algorithms [21]. 𝒓𝑗 

represents the residual of the 𝑗-th iteration. 

 𝐫𝑗 = 𝐱 − 𝐒 �̂�|
𝑗
  

As Greedy algorithms, they both start from an all zero 

solution of �̂�, and initialize the residual 𝐫0 ∈ ℝ𝑁with the 

recorded measurement 𝐫0 = 𝐱 (i.e. at the beginning no atom 𝐬𝑖 

of the dictionary 𝐒 is selected). From there, they both 

recursively increase the number of non-zero entries in �̂� one-

by-one at each iteration, but they differ in the way of choosing 

new entries. In OMP [22] at the 𝑗-th iteration, the atom 𝐬𝑖 that 

is maximally correlated with the residual 𝐫𝑗−1 of the previous 

iteration is chosen: 

 argmax
𝑖

|〈𝐫𝑗−1, 𝐬𝑖〉|,  

where 〈⋅,⋅〉 denotes the inner product. Then, the values of the 

non-zero identified entries of �̂� are chosen such that 𝐫𝑗 is 

orthogonal to 𝐒 �̂�: 
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 �̂� = argmin
�̂�

‖𝐱 − 𝐒 �̂�‖
2
  

In OLS [23], on the other hand, the ℓ2-norm ‖𝐫𝑗‖2
 is 

minimized by adjusting the values among all previously 

identified supports including one new component 

simultaneously: 

 argmin
�̂�𝑗−1,ℎ𝑖,𝑖

‖𝐱 − 𝐒 �̂�𝑗−1 − 𝐬𝑖  ℎ𝑖‖2
  

The recursive Greedy algorithms OLS and OMP are 

repeated until 𝑗 =  �̂�. 

2.2.2 Convex Optimization. In convex optimization, the 

sparse deconvolution problem is addressed not by bounding 

the ℓ0-pseudo-norm, as in (8), but by an ℓ1-penalization [21]. 

Thus, the sparse deconvolution problem is transformed into 

the following optimization problem by the least absolute 

shrinkage and selection operator (LASSO) approach: 

 argmin
�̂�

 
1

2
‖𝐱 − 𝐒 �̂�‖

2

2
+ λ‖�̂�‖

1
 (9) 

The advantage of switching to this convex problem is, that 

efficient algorithms like the modified least-angle regression 

(LARS), the so-called homotopy algorithm, exist to approach 

their solution. Here, starting from 𝜆0 = max |𝐒𝐓 𝐱|, iteratively 

reducing the value of 𝜆 until a total of �̂� distinct entries in �̂� 

have been identified as non-zero in at least one of the iteration 

steps. [24] 

2.2.3 Non-negative sparse Deconvolution. Since the 

direct sound as well as the reverberant wall reflections are 

recorded non-inverted by the receiver, the reliability of the 

sparse deconvolution can be improved by restricting the 

impulse response to non-negative entries only. Lin and Lee 

exploited this non-negative, sparse structure of acoustic room 

impulse response first [25]. Here, the sparse impulse response 

was reconstructed from the received signal using least-square 

optimization with ℓ1-penalization. The problem from (8) thus 

becomes (10). 

 argmin
�̂�

‖𝐱 − 𝐒 �̂�‖
2
 s. t.   ‖�̂�‖

0
≤ �̂�, ℎ̂𝑖 ≥ 0 (10) 

The problem described in (10) is similar to the non-negative 

matrix factorization (NMF), which already provides sparse 

solutions. However, sparsity in regular NMF results as a by-

product, since only non-negative components are allowed 

[26]. However, there are several approaches of NMF which 

enforce sparseness. Moreover, there are extensions of the 

Greedy algorithms [20] and convex optimization approaches 

[27] that enforce non-negativity. Bruckstein et al. first 

introduced a non-negative implementation of the OMP 

algorithm (NNOMP) [28]. Where the non-negativity of �̂�, 

besides selecting only non-negative atoms, is ensured by 

determining the values using the non-negative least square 

(NNLS). For a faster implementation, Yaghoobi et al. [29] 

developed the fast implementation as Fast NNOMP 

(FNNOMP), which dispensed with the time-intensive 

computation of the pseudo-inverse of the dictionary. The 

FNNOMP algorithm has a slightly different atom selection 

procedure which also does not always guarantee identical 

results. Peharz and Pernkopf proposed a sparse approach to 

NMF (sNMF, Sparse NNLS), pointing out parallels to 

NNOMP, even though identical outputs are not always 

guaranteed [26]. Yaghoobi and Davies first proposed a non-

negative OLS (NNOLS) and a faster approximated suboptimal 

NNOLS (sNNOLS) [30]. A non-negative implementation of 

the LARS algorithm (NLARS) was proposed by Mørup et al. 

[27]. 

2.3 Akaike Information Criterion 

The use of the Akaike Information Criterion (AIC) for TOF 

estimation of seismic signals was described by Sleeman and 

van Eck  [31]. It was further developed and used for time of 

flight estimation of ultrasonic signals for the first time by Li 

et al. [32]. Here the AIC is calculated as: 

 
AIC(𝑛) = 𝑛 ⋅ ln(Var(𝑥1 …𝑥𝑛)) + (𝑁 − (𝑛 + 1))

⋅ ln(Var(𝑥𝑛+1 …𝑥𝑁)) 
 

The TOF 𝜏TOF,AIC is calculated as a weighted average: 

 𝜏TOF,AIC ≔ ∑ 𝑊𝑛

𝑁

𝑛=1

⋅ (𝑛 − 1)𝑇  

with 

 

𝑊𝑛 ≔
exp(−Δ𝑛/2)

∑ exp(−Δ𝑗 2⁄ )𝑁
𝑗=1

 

Δ𝑛 ≔ AIC(𝑛) − min (AIC) 

 

Since this method is susceptible to interference and cross-

talk, it was adapted by Bao and Jia for labscale use of an 

acoustic transmission tomography system to determine 

temperature distributions [15]. They added an adaptive 

analysis window, which limits the analysis to the relevant 

region and ignores later reflections. In addition, they 

introduced a phase correction, which improves the robustness 

of the AIC against signal noise. The phase of the signal is 

reconstructed from 𝜏TOF,AIC to the maximum of the signal's 

envelope. The phase shift of the reconstructed phase with 

respect to a reference signal is estimated and considered in the 

TOF estimation. This has significantly improved the results; 

however, a reliable correction assumes that the phase within 

the evaluated range corresponds to that of the direct sound and 

has not been superimposed and influenced by reflections 
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significantly within this range. This step is therefore of limited 

use for reflections that closely follow the direct sound. 

2.4 Cross-correlation-based Methods 

Another more intuitive way to determine the TOF is the 

generalized cross correlation (GCC). Here, the transmitted and 

the recorded signal are correlated in a frequency-dependent 

weighted manner [33]. 

 𝑅𝑠𝑥(𝜏) = ℱ−1{𝛹 ℱ{𝑠}̅̅ ̅̅ ̅̅  ℱ{𝑥}} (11) 

ℱ{⋅} describes the Fourier transformation;  

⋅ ̅ describes the complex conjugate; ℱ−1{⋅} describes the 

inverse Fourier transform function and Ψ denotes a weighting 

function. In the case of non-reverberant sound propagation, as 

in (1), the estimated TOF �̂�𝑇𝑂𝐹,𝐺𝐶𝐶  can be obtained by the 

maximum of the correlation and a positive constant weighting 

function. 

 �̂�TOF,GCC ≔ argmax
𝜏

(𝑅𝑠𝑥(𝜏)) (12) 

However, this method is shown to be unsuitable for 

multipath problems. Therefore, the weighting function 

according to the generalized cross correlation with phase 

transform (GCC-PHAT) has been established for these 

applications [33]. It is defined as 

 𝛹𝑃𝐻𝐴𝑇 ≔ |ℱ{𝑠}̅̅ ̅̅ ̅̅  ℱ{𝑥}|
−1

.  

This results in sharp peaks in the GCC-PHAT function for 

ideal noise-free signals, similar to those peaks in ℎ in (4). 

These peaks can be assigned to the propagation times 𝜏𝑗. The 

estimated TOF �̂�𝑇𝑂𝐹,𝐺𝐶𝐶 results from the first peak of the 

correlation function, as in (3). However, the GCC-PHAT is 

sensitive to additive noise and the improvement of this issue 

is the subject of current research [17]. 

2.5 Fractional Fourier Transform based Methods 

As an alternative to the methods mentioned above, there is 

an established analytical approach for pulse compression and 

TOF estimation. In this method, linear frequency modeled 

signals (sweeps) are generated and transmitted by a 

transducer. The recorded signals can be analyzed using the 

Fractional Fourier Transform (FrFT) [34] defined as 

 ℱ𝑎{𝑥(𝑡)}(𝑢) ≔ ∫ 𝐵𝜑(𝑢, 𝑡)𝑥(𝑡)d𝑡
∞

−∞

 (13) 

with 

 
𝐵𝜑(𝑢, 𝑡) ≔ 𝐴𝜑 exp [𝑖𝜋 (𝑢2 cot(𝜑) −

2𝑢𝑡

sin(𝜑)

+ 𝑡2 cot(𝜑))], 

 

𝐴𝜑 ≔
 exp (−

𝑖𝜋
4

sgn(sin(𝜑)) +
𝑖𝜑
2

) 

|sin(𝜑)|
1
2

 

and 

 𝜑 ≔ 𝑎
𝜋

2
.  

With this method, the signals are not examined in the time 

or Fourier domain but in an intermediate domain, the 

fractional Fourier domain 𝑢. If the choice of the order 𝑎 and 

the angle 𝜑 of the fractional domain is tuned to the slope of 

the chirp-rate (i.e. the rate of frequency change) of the signal, 

the energy of the signals of every path projected into the 

fractional domain will be compressed [35]: 

 𝑎𝑜𝑝𝑡 = −
2

𝜋
⋅ arctan (

𝑇𝑠

2 𝑇2 𝑁 Δ𝑓
)  

This helps to identify the signals of individual paths 

(s. Figure 1) and has been successfully implemented in NDT 

[35] [36] and medical diagnostics [37]. However, there are 

limitations to the TOF estimation; the cause is analogous to 

the classical Fourier transform, where signals with finite 

signal duration yield main lobes with significant width in 

Fourier domain. Signals with multiple closely spaced 

frequency components superimpose in the Fourier domain. 

This also applies to FrFT with swept signals and closely 

spaced reflections, as in GHATT. Despite these limitations, 

there is an application of this method for these signals (s. 

Section 4). 

 
Figure 1. Schematic representation of the Fractional Fourier Transform of a 

signal with three time-delayed linear sweeps 

3 Proposed Method for TOF estimation 

Building on previous work, a new method for determining 

the TOF and the effective sound slowness of low-frequency 

acoustic signals between transmitters and receivers is 

presented below. This method can be used in GHATT to 

determine the gas content distribution and other acoustic 

transmission tomography application. Figure 2 schematically 

shows the steps of the proposed method. 
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Figure 2. Scheme of the individual steps of the proposed method 

The proposed method uses a non-negative sparse 

deconvolution and exploits the fact of the non-negative sparse 

structure of the room impulse response of sound-hard rooms 

for TOF estimation for the first time. To implement this, the 

method concentrates on the sparse early reflections (echo), 

which follow closely in time to the direct sound.  A signal 

design is described, which consists of one or more short signal 

sweeps, so that the direct sound does not overlap with the later 

dense reflections (reverb). This short signal duration has the 

advantage that the dense reverb does not have to be 

reconstructed during deconvolution, since its influence on the 

TOF estimation is negligible, as these signal components do 

not arrive simultaneously with the direct sound. A 

consideration of system-conditioned distortions is realized by 

prior quasi-anechoic measurements during the deconvolution. 

FrFT is used for the first time for truncation of the receiver 

signal before deconvolution, which is particularly robust for 

linear frequency-modulated signals. 

3.1 Signal Design 

Two aspects are particularly relevant for the selection of the 

frequency spectrum of the transmitted signal. On the one hand, 

the signal should only contain frequency components that can 

be reliably reproduced by the transducers. On the other hand, 

when determining the signal propagation time in bubbly 

liquids, the frequency spectrum has to be selected in such a 

way that all signal components are completely below the 

resonance frequency of the bubbles [13]. Only in this range, 

the Wood correlation is valid for the GHATT measurements 

and the dispersion of the phase velocity becomes negligible. 

For pulse compression and to reduce temporal overlap of 

the direct sound with the reflections, the proposed method uses 

a short signal with sufficient length and energy for a good 

signal-to-noise ratio (SNR) and a linearly modulated 

frequency according to (14). 

 

𝑠(𝑡) = 𝑊(𝑡) ⋅ 

ℛe [𝐴 ⋅ exp (2𝜋𝑖 ⋅ [(𝑓0 −
Δ𝑓

2
) 𝑡 +

Δ𝑓

2𝑇𝑠

𝑡2])], 
(14) 

for 0 ≤ 𝑡 ≤ 𝑇𝑠 

Here, 𝑊(𝑡) denotes a window function, ℛ𝑒(⋅) denotes the 

real part of the signal, 𝐴 denotes the maximum amplitude of 

the signal, 𝑓0 is the center frequency, Δ𝑓 is the bandwidth, and 

𝑇𝑠 = (𝑀 − 1)𝑇 is the duration of the sweep. The linear 

frequency modulation provides a pulse compression after a 

cross correlation. This is beneficial for TOF estimation with 

Greedy algorithms or convex optimization, since the 

interferences between the different columns of the dictionary 

are reduced (lower correlation). 

In principle, the SNR can be improved by increasing the 

signal duration. However, increasing the signal duration leads 

to a greater temporal overlap of the direct and reflected sound. 

Therefore, an alternative is chosen in this work. Instead of one 

long signal, several short signals with intermediate pauses are 

used. That means, first a primary signal is emitted. At the same 

time, the received signals are recorded. After the time window 

in which the direct sound and the first reflections occur, the 

recording is stopped. Now, the sound energy can decay in the 

measuring volume. After that, another signal is emitted, so that 

the received signal cannot be influenced by the reverberation 

of the first signal. The signals used and their frequencies are 

different in each instance. The signals are selected in such a 

way that the improvement of the pulse compression is 

achieved in the best possible way. 

The goal of pulse compression is to make the 

autocorrelation as close as possible to an ideal Dirac function, 

so that the correlation of the atoms in the dictionary is 

minimized. Sufficient pulse compression thus directly 

improves the disambiguation of the correlation-based atom 

selection of the OMP. But also the LS term of the OLS and the 

LARS algorithms benefit from the improved autocorrelation, 

since there is a simple and direct relation between the cross-

correlation and the mean-squared distance of two signal 

vectors [38]. 

A single signal sweep with limited bandwidth always 

shows side lobes in the autocorrelation. This can lead to 

ambiguities in peak detection, especially with short 

observation times. The reduction of side lobes is therefore 

important and can be achieved by a suitable window function. 

In the following, a von-Hann window is used to reduce 

unwanted frequency components and the unwanted side lobes 

of the autocorrelation. In order to optimize the autocorrelation 

by additional signals beyond this, the individual signals must 

be appropriately tuned to each other. For this purpose, it is 

desirable that the negative side lobes of one signal coincide 

with the positive ones of another signal in order to cancel them 

by destructive interference. This is achieved, for example, by 

scaling the center frequency 𝑓0,𝑗 and the bandwidth Δ𝑓𝑗 of the 

total of 𝑁𝑝 individual signals by the factor 𝑎𝑓,𝑗: 
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Δ𝑓𝑗 = 𝑎𝑓,𝑗 ⋅ Δ𝑓 

𝑓0,𝑗 = 𝑎𝑓,𝑗 ⋅ 𝑓0 

(15) 

with 

 𝑎𝑓,𝑗 = (
3

2
)

𝑁𝑝−𝑗

  

Figure 3 a) shows the normalized autocorrelation of a single 

sweep and the normalized autocorrelation of two and three 

consecutive sweeps with individually scaled frequencies 

according to (15). To ensure comparability, the total 

bandwidth Δ𝑓 = 3500 Hz around the total center frequency  

𝑓0 = 2250 Hz is kept. This means that only frequencies 

between 500…4000 Hz are used in each case. It can be seen 

that, by using multiple signals, the unambiguity of the 

autocorrelations 𝑅2 and 𝑅3 can be significantly improved 

compared to the autocorrelation 𝑅1 with only a single sweep; 

Hence, the side lobes have significantly lower amplitudes. The 

shown Dirac function 𝛿𝐵𝑎𝑛𝑑𝑝𝑎𝑠𝑠, which is frequency-limited 

by a bandpass, illustrates the optimum which can be realized 

with signals using the limited frequency range; it only serves 

as a comparison. Also, the main lobe of the envelope 𝐸𝑛𝑣𝑁𝑝
 

of the autocorrelations in Figure 3 b), which considers not only 

the real part of the autocorrelation but also the imaginary part 

of its analytic signal, is determined according to 

 𝐸𝑛𝑣𝑁𝑝
≔ |𝑅𝑁𝑝

+ 𝑖ℋ {𝑅𝑁𝑝
}|  

with the Hilbert transform ℋ{⋅}. 

It is shown that by combining multiple sweeps, the 

amplitudes of the first negative as well as the first positive side 

lobes can be significantly reduced without changing the total 

bandwidth or the duration 𝑇𝑠 of the single sweep. A 

requirement for the efficient application of this multiple sweep 

method is that the decay time is significantly smaller than the 

temporal changes of the impulse responses. 

3.2 Signal Recording 

First, the transmitter and receiver are placed at precisely 

known positions in the medium to be examined. The 

measurement signal is transmitted by one acoustic transmitter 

and received by one or more receivers. For the precise 

determination of the transit time, a parallel recording of the 

receiving signals simultaneously with the transmitted signal 

via a multi-channel acquisition unit is required. 

3.3 Truncation of Received Signal 

For the TOF estimation only the direct sound is relevant. 

The first reflections, which occur in superposition with the 

direct sound, are additionally relevant for its estimation. 

Therefore, only the time window in which the direct sound and 

the first reflections occur is of interest. For the determination 

of this time window, two methods are suitable. The first 

method requires the knowledge of a maximum and minimum 

possible speed of sound. This is always the case with GHATT, 

since the influence of the gas content on the speed of sound 𝑐 

varies only to a known extent [13]. Therefore, also the TOF 

sought can only be within a limited time window 

(𝜏𝑇𝑂𝐹,𝑚𝑖𝑛, 𝜏𝑇𝑂𝐹,𝑚𝑎𝑥). If, in addition, prior information about 

the minimum and maximum expected gas hold up 

(𝜀𝑚𝑖𝑛 , 𝜀𝑚𝑎𝑥) and the distance 𝑑 are known, this time window 

can be further restricted. 

 

𝜏𝑇𝑂𝐹,𝑚𝑖𝑛 =
𝑑

𝑐(𝜀𝑚𝑖𝑛)
 

𝜏𝑇𝑂𝐹,𝑚𝑎𝑥 =
𝑑

𝑐(𝜀𝑚𝑎𝑥)
 

 

In addition, a second method can be used to further limit 

the time window. Compared to the Short Time Fourier 

Figure 3. a) Normalized autocorrelation 𝑅𝑵𝒑
 with 𝑁𝒑 signal sweeps and, for comparison, a frequency-limited Dirac function 𝛿𝑩𝒂𝒏𝒅𝒑𝒂𝒔𝒔; b) Envelopes 𝐸𝑛𝑣𝑵𝒑

 of 

the autocorrelations; the use of multiple successive signal sweeps allows a significant improvement of the unambiguity of the autocorrelations by reducing the 

side lobes. 
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Transform (STFT) [16], the FrFT is especially suitable for 

swept signals, since the FrFT is used to identify signal regions 

with high energy content in the fractional frequency domain 

matching the chirp-rate of the transmitted sweep. Although the 

FrFT has its limitation in the identification of individual 

sweeps in close succession, it can be used to identify the 

relevant time window (s. Section 4). This is done by selecting 

the signal part which exceeds a defined threshold 𝜗 in the 

fractional frequency domain: 

 |ℱ𝑎𝑜𝑝𝑡{𝑥(𝑡)}(𝑢)| ≥ 𝜗  

Subsequently, the region in 𝑢 identified as relevant can be 

transferred back to the time domain: 

 

𝑢∗ =
𝑢

𝑎𝑢

 

𝑎𝑢 = cos (𝜑𝑜𝑝𝑡) 

(16) 

The intersection of the determined time windows results in 

the relevant range for the TOF estimation. The original signal 

𝐱′ can be limited to this time range. The result is the truncated 

signal 𝐱. 

3.4 Dictionary Construction 

The dictionary required for deconvolution is constructed 

from the transmitted signal recorded simultaneously. First, the 

sweep of the transmitted signals is extracted. If the time of 

transmission is not known exactly, it can be determined by the 

theoretical signal with the help of the GCC-PHAT. The 

transmitted signal is then cropped to the known signal length 

𝑀. 

Depending on the transducers used, the distortion of the 

transmission system has to be considered. That is, if the signal 

is considerably distorted by the transmitters and/or the 

receivers, the recorded signal results from the convolution of 

the transmitted signal 𝐬 with the anechoic impulse response of 

the measurement system 𝐡𝑠𝑦𝑠 and the sought impulse response 

of the room 𝐡. Thus, (6) becomes 

 𝐱 = �̃� ∗ 𝐡 + 𝐰 (17) 

with 

 �̃� = 𝐬 ∗ 𝐡sys.  

Thus, �̃� corresponds to the transmitted signal 𝐬 after 

considering the distortion caused by the system. In NDT using 

ultrasound, the distortion of the system is approximated by 

convolution models [39]. To account for this system-induced 

bias in GHATT, 𝐡sys has to be determined in advance under 

anechoic or quasi-anechoic conditions (see [40] for more 

information). From �̃�, the dictionary �̃� is constructed for the 

deconvolution according to (7) as a Toeplitz matrix. 

3.5 TOF Estimation 

For the TOF estimation, the deconvolution of (17) is 

performed using one of the algorithms presented in Section 3 

to estimate �̂�. The use of a �̂� -sparse non-negative algorithm 

is feasible if it is guaranteed that the direct sound is among the 

most �̂�-dominant signal components in the evaluated time 

window. The first peak of the reconstructed impulse response 

�̂� provides the transit time of the direct sound when the 

truncation of the original signal 𝐱′ is considered. 

4 Analytical Testing of Proposed Method 

For the analytical evaluation and testing of the proposed 

method for the determination of the TOF, their individual 

steps from section 4 are then tested for signals with pseudo-

random impulse responses. On the one hand, this investigation 

serves to evaluate the applicability of the steps and, on the 

other hand, it allows a qualitative comparison of the sparse 

deconvolution algorithms. In the end the Proposed Method is 

compared to the established methods (GCC, GCCPHAT, 

AIC) for TOF estimation. Although this analytical 

investigation does not provide direct insight into the absolute 

reliability of real GHATT system it does shows which 

algorithms are suitable for use given certain influencing 

parameters and boundary conditions. 

4.1 Signal Design 

For the analytical investigation of the proposed method, the 

evaluation of signals with known underlying impulse response 

is useful, so that a direct comparison of the reconstructed 

results with the true impulse response and the true TOF can be 

made. For this purpose, the simulated received signals x are 

generated according to (6) in such a way that it corresponds 

approximately to real GHATT signals. Therefore, the 

transmitted signal 𝐬 is designed as linear sweeps according to 

(14) using a von-Hann window and a frequency spectrum of 

500…4000 Hz (Δ𝑓 = 3500 Hz; 𝑓0 = 2250 Hz), the signal 

duration 𝑇𝑠 = 4 ms and the sampling rate 𝑇−1 = 192 kHz.  

The true impulse response 𝐡 has a duration of 4 ms, 

resulting in a signal duration of the received signal of 8 ms. 

The impulse response 𝐡 is sparse and contains 𝑘 = 6 positive 

components (peaks), which are randomly distributed over the 

duration of the impulse response. This results in a median time 

interval of 667 µs between two successive peaks. This interval 

corresponds to only 1.5 times the period of the mean 

frequency 𝑓0 and therefore leads to a significant temporal 

overlap of the sweeps in the received signal. To investigate the 

influence of the amplitudes 𝛼𝑗 (5), they are varied according 

to a unity distribution resembling the inverse law of sound 

pressure: 

 𝛼𝑗 ~ 𝒰(0, 1 𝑗⁄ ) for 𝑗 = 1,… , 𝑘  
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For studies with multiple sweeps, the frequencies of the 

individual sweeps are selected according to (15). Additive 

white noise 𝐰 is added, so that corresponding SNR is reached: 

 𝑆𝑁𝑅 = 10 log10 (
𝑃𝐒 𝐡

𝑃𝐰

)  dB  

with the power of the noise-free signal 𝑃𝐒 𝐡 = ‖𝐒 𝐡‖2
2/𝑁 and 

the noise power (i.e. noise variance) 𝑃𝐰 = ‖𝐰‖2
2/𝑁. 

4.2 Time Window Identification via FrFT 

For a reliable determination of the time range relevant for 

the TOF estimation via FrFT, it is necessary that the sweeps 

clearly raise the magnitude of the FrFT above its noise floor. 

Figure 4 shows the FrFT for an example signal with 

SNR = 0 dB. The abscissa is scaled according to (16) in order 

to project 𝑢 onto the time 𝑡. For comparison, the true 

underlying impulse response 𝐡 is shown. 

 

Figure 4. Fractional Fourier Transform of an exemplary signal with 

SNR = 0 dB, the underlying impulse response of the signal is shown as stems, 

time has been projected onto the abscissa by the factor au 

The testing showed that even at a low SNR of 0 dB, the 

peaks in the FrFT domain can still be clearly distinguished 

from the noise. Although it is not possible to determine the 

time precisely, especially for sweeps in close succession, there 

is nevertheless a high degree of congruence between the 

impulse response and the results of the FrFT. Thus, the FrFT 

seems to be very suitable for the determination of the time 

window for the subsequent steps of the TOF estimation. For 

this purpose, a threshold 𝜗 =
1

4
⋅ max (|ℱ𝑎𝑜𝑝𝑡{𝑥(𝑡)}|) 

provided a reliable indicator of the signal reception and thus 

of the relevant range for the TOF estimation. 

4.3 Comparison of Deconvolution Methods 

In order to statistically evaluate the various sparse 

deconvolution algorithms from section 3 for TOF estimation 

application, 300 pseudorandom signals are generated for each 

algorithm and for each SNR, and then TOF estimation is 

performed according to section 4. In the following, the Greedy 

algorithms NNOMP [41, 42], FNNOMP [43] and sNMF [26] 

of the family of OMP as well as NNOLS and sNNOLS [41, 

42] of the family of OLS and the convex approach NLARS 

[44] are tested. In particular, the influence of the �̂� 

reconstructed peaks in �̂� is investigated. For this purpose, �̂� 

was varied around the true value 𝑘 = 6. 

4.3.1 Single Sweep Signals. First, receiver signals with a 

single sweep over the entire defined frequency range of 

500...4000 Hz were generated and evaluated. Figure 5 shows 

the computation time of the investigated algorithms as a 

function of the �̂� reconstructed peaks in �̂� for receiver signals 

with a single sweep. Here, it can be seen that the computation 

time increases with the number of �̂� components to be 

reconstructed for all algorithms. NLARS and NNOLS show 

the strongest dependence; whereas sNMF suffers the least 

from the increase of �̂�. For the signals examined, FNNOMP 

always provided the fastest calculation for all �̂�. 

  

Figure 5. Computation time of the various algorithms as a function of the �̂� 

reconstructed peaks in �̂� for receiver signals with one sweep. 

Figure 6 shows the percentage of correctly determined TOF 

of the various algorithms at various SNRs as a function of the 

�̂� reconstructed peaks in ĥ for receiver signals with a sweep. 

All estimated TOF are considered to be correct, which deviate 

at most 2 samples (10.4 µs) from the true TOF. A deviation of 

an amount this small can be considered uncritical in most 

cases with GHATT. Besides, it must be considered that the 

achieved values of the TOF estimation with pseudo-random 

impulse responses primarily serve the qualitative evaluation 

of the algorithms among themselves and cannot be transferred 

directly as absolute values to a real GHATT measurement. 

Hence, the estimated TOF declared as false mostly occur for 

receiver signals with very low pseudo-random amplitude 𝛼1 

of the first peak. Such low first peaks are not to be expected in 

real GHATT measurements to this extent. For an in-depth 

view of the deviation distribution, Figure 7 shows the 50 %, 

75 % and 90 % percentiles of the absolute deviations  

𝐸𝜏 ≔ |𝜏 − �̂�| of the estimated TOF �̂� from the true TOF 𝜏. 
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The investigation shows that all the OMP approaches 

(sNMF, NNOMP, FNNOMP) deliver almost identical results, 

only the calculation times differ. Here, the FNNOMP shows 

the fastest computation of all OMP algorithms for the short 

signals with only one sweep. The OLS approaches always 

deliver slightly better results compared to the OMP 

Figure 6. Percentage of correctly determined TOF of the various algorithms at various SNRs as a function of the �̂� reconstructed peaks in �̂� for receiver signals 

with one sweep. 𝑘 is dash-dotted for reference. 

Figure 7. Percentiles of the deviations of the estimated TOF from the true TOF for the various algorithms at various SNRs as a function of the �̂� reconstructed 

peaks in �̂� for receiver signals with one sweep. 𝑘 is dash-dotted for reference. 
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approaches. However, this comes at the price of a significantly 

increased computation time. The results of the NLARS 

algorithm are clearly superior, showing significantly less 

dependence of the results on �̂�. This means that with this 

approach the suboptimal choice of �̂� is less critical for a 

satisfying result. It is noticeable that with the Greedy 

algorithms the optimum is achieved when �̂� slightly 

underestimates the true value 𝑘. In the case of the convex 

approach, however, the opposite is true. This can be explained 

by the fact that in the NLARS, similar to the LARS, selected 

entries �̂� can become zero again in a later iteration step. Here 

�̂� only represents an upper limit, which can also be undershot 

if sufficient. With the Greedy algorithms, an increased �̂� 

increasingly leads to a false estimation of the TOF. The reason 

for this is an overfitting of the signal, which results in non-

zero entries within the reconstructed impulse response �̂� ahead 

of the first true peak. The fact that LARS usually requires 

more iteration steps than OMP algorithms for comparable 

solution accuracy is known [21, 45] and can also be assumed 

to apply to the non-negative modifications based on the 

results. The fact that Greedy algorithms produce less accurate 

results for highly correlated atoms in the dictionary [45] 

appears to be also true for its non-negative approaches. 

4.3.2 Multiple Sweep Signals. In section 4 it is already 

shown that the use of multiple sweeps with tuned frequencies 

according to (15) can disambiguate the autocorrelation of the 

transmitted signals. Hereafter, it will be examined to what 

extent this optimized correlation behavior can be transferred 

to the deconvolution algorithms. For this purpose the receiver 

signals were generated and evaluated with three sweeps 

according to (15) with the identical 300 pseudo random 

impulse responses from above. 
The use of three consecutive sweeps triples the total signal 

duration and thus also increases the computing time for sparse 

deconvolution. However, the time does not increase equally 

for all algorithms. Figure 9 shows the computation time of the 

various algorithms as a function of the �̂� reconstructed peaks 

in �̂� for receiver signals with three sweeps. Compared to the 

computation time for signals with one sweep, the computation 

time for signals with three sweeps results in three times for 

FNNOMP and 2.5 times for NNOLS, sNNOL, NNOMP. For 

sNMF and NLARS however, the time increases by only 25% 

and 20%, respectively. 

 

Figure 9. Computation time of the various algorithms as a function of the �̂� 

reconstructed peaks in �̂� for receiver signals with three sweeps. 

Figure 8 shows the percentage of correctly determined TOF 

of the various algorithms at various SNRs as a function of the 

�̂� reconstructed peaks in �̂� for receiver signals with three 

sweeps. For the Greedy algorithms, a small improvement in 

Figure 8. Percentage of correctly determined TOF of the various algorithms at various SNRs as a function of the �̂� reconstructed peaks in �̂� for receiver signals 

with three sweeps. 𝑘 is dash-dotted for reference. 
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the results of about 5% is shown. Also, the independence of �̂� 

is improved to a minor extent here. For the NLARS, on the 

other hand, there is a significant improvement in the correctly 

determined TOF. The maximum value for SNR = 20 dB 

increases from 75% to over 90%. The independence of �̂� is 

also significantly improved at all SNRs for NLARS. 

4.3.3 Summary. In summary, it can be seen that the OMP 

algorithms sNMF and FNNOMP provide the fastest 

computation. However, the Greedy algorithms, especially the 

OMP algorithms, require a precise prior estimation of �̂�. A 

misestimation of �̂� usually leads to a significant reduction in 

the quality of the results. The NLARS approach demands 

significantly longer computation times for signals with one 

sweep compared to the Greedy algorithms, but also delivers 

satisfying results over a broader range of �̂�. Another 

advantage of the NLARS approach is the possibility to further 

improve the results by using signals with more than one 

sweep. It has been shown that the use of three sweeps 

significantly improves the results for the entire range of �̂� and 

SNR. It is significantly better than those of the Greedy 

algorithms, without the computation time suffering from the 

longer signals. 

4.4 Comparison to established Time of Flight Methods 

In the following, the proposed method is compared to the 

established methods (GCC, GCCPHAT, AIC) for TOF 

estimation. For these tests, 300 signals are generated and 

subsequently evaluated in the same way as in Section 4.1. For 

the proposed method (with NLARS and k̂  = 8), GCC and 

GCCPHAT, signals with three sweeps according to (15) are 

used. The AIC is implemented including the adaptive window 

as introduced by Bao and Jia [15] to increase the robustness to 

interference from reflections and crosstalk.  A sinusoidal burst 

with 2 µs duration and steep amplitude slope is used as the 

transmit signal for AIC, as this gave the best results (cf. [46]). 

Figure 10 shows the correctly estimated TOF of the 

investigated methods at different SNR. The proposed method 

is particularly robust against noise and achieves the highest 

reliability in TOF estimation. Only with almost noise-free 

signals (SNR = 96 dB) the estimates of the proposed method 

could be surpassed by the AIC, which however, like the 

GCCPHAT, suffers strongly from the influence of the noise. 

Although the GCC is also very robust against noise, only 

about two-thirds of the TOF are correctly determined by the 

GCC compared to the proposed method. 

Comparable results show up for the percentiles of the error 

of estimated TOF in Fig. 11. Here, it can be observed that for 

GCCPHAT and AIC the error of the estimated TOF increases 

significantly with increasing noise. GCC and the proposed 

method work robustly against noise. Only at low noise 

(SNR > 24 dB) the 90 %-percentile error of the AIC was 

lower compared to the proposed method. 

 

 
Figure 10. Percentage of correctly determined TOF of proposed method 

compared to GCC, GCCPHAT and AIC at various SNRs 

 
Figure 11. Percentiles of the deviations of the estimated TOF from the true 

TOF for proposed method compared to GCC, GCCPHAT and AIC at various 

SNRs 

The proposed method appears to be a suitable method for 

TOF estimation, especially in the case of highly noisy signals 

with strong reflections. For the simulated GHATT signals, the 

quality of the estimated TOF by the proposed method clearly 

exceeds that of established methods. 
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5 Conclusion 

A new method for TOF estimation was presented, which 

consists of the preparatory steps for data acquisition, signal 

truncation and dictionary construction, as well as the final step 

of TOF estimation by means of sparse non-negative 

deconvolution. The method shows promising possibilities 

especially for low frequency applications such as GHATT 

systems. Depending on the room conditions, wall reflections 

occur, which lead to ambiguous results with conventional 

methods. The method exploits the non-negativity of 

reverberant reflections. Furthermore, it allows to consider the 

system-related distortions of the transducer and the 

measurement equipment on the basis of prior quasi-anechoic 

measurements. 

Based on the analytical signals, various sparse non-

negative algorithms were investigated comparatively. The 

NLARS algorithm in particular was found to be suitable for 

practical application. It provided the highest quality of results 

and is only weakly dependent on the sparsity �̂� estimated in 

advance.  

The unambiguity of the autocorrelation of the signals and 

thus also the quality of the results, in particular of the NLARS, 

could be improved by the use of multiple sweeps with tuned 

frequencies, so that a reliable TOF estimation can be 

performed in moderately transient processes. 

For the simulated GHATT signals with superimposed 

reflections and high noise level, the proposed methods shows 

a superior quality of estimated TOF compared to established 

methods. 

Furthermore, the findings of this work are to be numerically 

as well as experimentally investigated for practical GHATT 

systems, depending on various influencing factors, so that a 

tool for active investigations with (low-frequency) temporally 

overlapping signals is created. 
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