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Abstract

This thesis describes the development of Multi-part Nanocubes. It is a further development
of Nanocubes, an in-memory data structure for spatiotemporal data cubes. Partitioning the
structure to parallelize the build process as well as merging query results is the principal part
of this document. Furthermore, a new memory management (slab allocation with offset
pointers) was implemented to enable 32-bit support and faster load times of already built
nanocubes. Porting the project to Windows and implementing on-the-fly compression and
decompression of nanocube files is also described.
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3 Introduction

3.1 Motivation

Yellow Pages is known for their telephone directory of businesses. Nowadays, they also offer
their services online and are active in the online marketing industry. Among other things they
offer personalized location based advertising. For example, they can restrict ad campaigns to
select U.S. states or only show the ad if you are close to a store of the advertiser. Many more
filters can be applied to target a specific group of people.

Real-time bidding (RTB) is a modern way of online marketing adopted by the mobile and
desktop advertising industry. Companies like Smaato Inc., MoPub Inc., Nexage LLC, Tapad
Inc., and many more provide software development kits (SDK) that app/web developers
use to take part in their RTB system. Smart phone apps and websites using the SDK will
trigger an auction, offering their advertising space every time they are about to show an
advertisement. The auction is hosted on the RTB ad exchange platform the SDK is bound to.
Companies running Demand-side platforms (DSP) like Yellow Pages (YP) and others, have
contracts with ad exchange platform providers to take part of the advertising space auctions.
They receive a notification with information about each auction. If a DSP calculates (within
milliseconds) that an advertising space is worth buying for their customer, they will respond
with the amount of money they are willing to spend. If the DSP wins the bid, their client’s
advertisement will be shown.

The requests sent for an auction contain, among many other things, an ad exchange platform
specific user id, operating system, app name and if procurable even the exact position of the
phone. This allows DSPs to build user profiles over time and use them to make better decisions
while bidding. With the help of statistics and by cross-referencing external data, those profiles
can contain predictions of the phone owner’s home and work address, income range and
more.

Huge amounts of data are sent through RTB systems. Yellow Pages for instance collected
over a petabyte of raw, uncompressed bid requests in text format from several ad exchange
platforms in about 600 days. The requests answered during a single Papa John’s Pizza ad-
vertising campaign with 16746730 impressions take up to 15GB of disk space in raw text
format.

Yellow Pages is interested in visualizing this kind of big data. Campaign managers and
sales people could gain confidence about their advertising strategy and the data in general by
filtering and visually browsing through a heat map generated from a data set of interest. Not
only would this allow them to check, examine and verify a strategy, it would also help them
to plan a sophisticated strategy by, for example, analyzing the movement of (specific) people
over time to make user stories evident. Nobody else offers this kind of information.


http://www.yellowpages.com/

Considering the magnitude of data, it became apparent that a real-time visualization of
such big data would require computing power of the same order of magnitude. In other
words: A big server was needed. Fortunately, this kind of problem can be reduced to the point
that it can now be solved by a modern laptop. The award winning technology Nanocubes,
developed at the Information Visualization department at AT&T Labs Research, is designed
to serve real-time visualizations of such huge spatiotemporal’ data sets. The technology aims
to minimize memory consumption and maximize query speed. Furthermore, the interface
and the level of detail of the visualization is market leading, which is why Nanocubes was
chosen to visualize YP’s datasets.
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Figure 3.1: Nanocube web client visualization of 6.9 million data points. Comparing Denver
with Las Vegas in terms of age, income and many more categories.

3.2 Objective

The currently® official nanocube C++ implementation is hosted on GitHub’. A new unoffi-
cial implementation of nanocubes exists, which eliminates inconveniences that came with the
old template heavy C++ implementation. The official code needs to be compiled separately
for every nanocube variation of interest e.g. different numbers of categories. Moreover, the
new code implements an Optimal Nanocube Insert Algorithm, which fixes a redundance imper-
fection in the old build algorithm by inspecting the quadtree* insertion path more precisely
for nodes that can be shared or must be copied. Saving and loading of built nanocubes is now
also possible with the new code.

Nevertheless, the new C++ implementation had limitations that are tackled and solved in
this thesis:

!A spatiotemporal data point is composed of a position in space and a point in time
2September 9, 2016

3https:/ /github.com/laurolins/nanocube

*see chapter 4 Nanocubes
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The build time of a nanocube can be tedious.

Loading built nanocubes is protracted due to ASLR”.

Saving & loading built nanocubes does not support compression.

32-bit systems are not supported.

e Windows is not supported.

Solving the first two points does facilitate the everyday usage and increases the productivity
when working with nanocubes decisively. Solving them is the principal part of this document.
The first point is addressed in chapter 5 Multi-part Nanocubes, which describes how to split
up a nanocube, calculate the parts concurrently and merge their query results. The vast
speedup in build time is shown in section 5.3 Benchmarks. The second point is addressed in
chapter 6 Save and Load, in which coincidentally point four gets solved as well (see section 6.2
32-bit Support). Section 6.1 Compression tackles point three. Lastly, chapter 7 Nanocubes
on Windows addresses the remaining limitation on this list.

> “Address space layout randomization (ASLR) is a computer security technique involved in protection from
buffer overflow attacks.” - https://en.wikipedia.org/wiki/Address_space layout randomization
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4 Nanocubes

This chapter is an introduction to the nanocube technology. Nanocubes is based on a client-
server model. The server builds up the nanocube data-structure and performs queries from
the clients on it. Nanocubes comes with a web client written “in Javascript, HTMLS5, SVG,
WebGL, and D3”!, which is publicly available. Another nanocube client is bemg written in
C++ by Lauro Lins. It “uses OpenGL for efficient rendering”?, but is at this point in time’
not released to the public.

Frangois-Xavier Pineau wrote a YouTube comment*, in which he couched the idea of
nanocubes into one single sentence:

“Nanocubes is a data structure storing at various spatial resolutions precomputed
sets of dense cumulative histograms.”
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Figure 4.1: “An illustration of how to build a nanocube for five points [o1,...,05]” >
The above figure from the nanocubes paper helps to understand this summarization. It
illustrates how a nanocube gets built up by inserting point after point. The five points given
have a geological position and a mobile phone operating system, either Android or 108,

!'TLKS13] Lauro Lins, Jim Klosowski, and Carlos Scheidegger (2013): Nanocubes for Real-Time Exploration
of Spatiotemporal Datasets, IEEE InfoVis 2013, p. 6, sect. 5 Implementation

2¢f. fn.footnote 1
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°[LKS13] Lins, Klosowski, and Scheidegger (2013), fig. 2, p. 2
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associated to them (see the world map in the upper left corner). The nanocubes discussed in
this document have all a spatial dimension, which is represented in the form of a quadtree.
The two boxes on the left, labeled / and [, ;.1 show the basic idea of a quadtree in
this context. A world map gets divided into smaller and smaller squares with each level of
resolution. Squares resp. child nodes in the quadtree, which do not contain points, are left
out to save storage space. The white nodes in the graphic of the build process represent the
quadtree. The top node is called root node and represents a square holding the whole world
map. Each node can have up to four child nodes. With each step down the quadtree, the
position on the world map is more precisely circumscribed. Usually twenty-five levels are
used to reach a sensible resolution. Each node of the quadtree can be asked for its content. In
the visualization of the build process, a blue arrow points to the content of a quadtree node.
The content of a quadtree node is a root node of another tree structure, which represents the
categorical dimension. This second tree structure can be referred to as a flat tree, because it
always has a depth of one. It consists of a root node with as many child nodes as there are
points with different categories associated to the parent quadtree node. Flat tree nodes have
content, too. It is a time series of the points that match the position circumscribed by the
placed over quadtree node as well as the categorical classification defined by the parent flat tree
node. Nodes in both tree structures share content between them to avoid redundant copies
of the same content (see dotted arrows). Note that the content of a parent node is always the
summarization of the content of its child nodes. This enables very fast querying of the data
structure, because there are precomputed time series for every resolution in the spatial as well
as in the categorical dimension. The time series are stored as “a sparse variant of summed-area
tables”®, which minimizes the memory footprint and enables fast computation methods to
determine the number of points in a specific time span. Read section 4.3.3 Temporal Queries
of the nanocube paper’ for more details.

spatiall

4.1 Building a Nanocube from raw data

To build a nanocube data-structure, raw data points need to be converted into a particular
format first. The file format is called DMP (dump file) and is basically a pre-aggregation
of equivalent data points stored in a space efficient binary way. For example, a DMP file
generated from Chicago crime statistics can look like this:

name: crimebOk.csv

encoding: binary

metadata: location__origin degrees_mercator_quadtree2b
field: location nc_dim_quadtree_25

field: crime nc_dim_cat_1

valname: crime 7 CRIM_SEXUAL_ASSAULT

valname: crime 13 KIDNAPPING

6 [LKS13] Lins, Klosowski, and Scheidegger (2013): p. 6, sect. 4.3.3 Temporal Queries
“cf. fn. footnote 6
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valname: crime 11 INTERFERENCE_WITH_PUBLIC_OFFICER
valname: crime 17 NON-CRIMINAL

metadata: tbin 2013-12-01_00:00:00_3600s

field: time nc_dim_time_2

field: count nc_var_uint_4

AB 3B 83 00 98 B4 41 01 10 8A 00 01 00 00 00 A4 49 83 00 ... (binary data)

The first part of the file is separated from the second part by a blank line. It is a textual de-
scription of the data set including its name, record encoding type, nanocube field descriptions,
value names of the categories with a numeric mapping, and metadata e.g. the point in time to
which the encoded time differences of the data points refer to. In this example, the nanocube
has four fields: “location nc_dim_quadtree 25” a quadtree with twenty-five levels for the
spatial dimension, “crime nc_dim_cat_1” a categorical dimension with up to 256 categories
(one byte), “time nc_dim_time_2” a temporal dimension with two bytes to represent the time
difference between the timestamp from the metadata and the records, “count nc_var_uint_4”
four bytes to count the number of points of the same kind by this measure (position, category,
time).

The second part of the file holds the binary encoded records and has the following structure:
Firstly, the position in a square grid with 2”x2” cells® stored in four bytes for each of the two
coordinates. As mentioned above, one byte is used to determine the category to which a
record belongs, followed by two bytes for the time dimension and four bytes that hold the
number of points, that meet the same criteria. All cohesive bytes are stored in the little-endian
format. In this example every data packet has a length of fifteen bytes and can be illustrated
likethis: | x |y lclt | n |I.

A Python script called nanocube-binning-csv converts comma separated files (CSV) to DMP.
Instructions can be found on the official Nanocube GitHub webpage’. Note that the CSV
file needs to be in chronological order, if the file is read into multiple chunks (default chunk
size is 50000 rows but can be adjusted). Otherwise, the resulting DMP file will be rejected
while building up the nanocube structure, because the current implementation of the time
series does only support in-order insertion.

A DMP file can be read by the nanocube server program. There are two options, either
storing the resulting nanocube structure for later use or starting up a query server directly.
For example, if nanocube is the name of the nanocube server program and data.dmp is the
dataset of interest, the command lines would look like this:

nanocube -d data.dmp -o data.nc

nanocube -1 data.nc -q 29512

nanocube -d data.dmp -q 29512

The argument -o (output) defines where to store the nanocube, which then can be loaded
by using the -1 (load) option. The parameter -q defines the query port of the server. New data
points can be ingested into a loaded nanocube by streaming in a DMP file via standard input

(stdin).

8This describes the position on a world map, see quadtree idea in chapter 4 Nanocubes
*https://github.com/laurolins/nanocube
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nanocube -1 data.nc -o data.nc < newData.dmp

nanocube -1 data.nc -q 29512 < newData.dmp

Keep in mind that newData.dmp must only contain time-wise newer data points than the
ones already contained in the nanocube (data.nc), otherwise insertion will fail. Moreover, the
current implementation does not support guadtree partitioning'® when reading from stdin,
because this kind of stream does not support seeking to a defined position, which is necessary
to read in a random set of data points without reading in the whole DMP file upfront.

see section 5.1 Quadtree Partition
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5 Multi-part Nanocubes

The build time of a nanocube prolongs with every additional dimension. The time needed to
build a nanocube is proportional to its size. The size grows exponentially with the number
of dimensions, because it is proportional to the number of “product bins” a dataset hits. The
product bins can be seen as the Cartesian product of the dimension sets. “For example if a
“device” dimension has a “bin" called “iPhone”, and a dimension “language” has a “bin" called
“english”, then a record with “iPhone” and “english” values will hit the product bin “(iPhone,
english)”. This product bin will need to be represented in the data structure to account for
such record.”! Adding another categorical dimension does multiply the number of product
bins by the cardinality of the additional category set.

YP was interested in building a nanocube with twelve categorical dimensions. Inserting
two hundred million data points would have taken approximately two weeks on a modern
high end server processor (CPU) with sixteen cores. With respect to the time required to
build the nanocube, it was perturbing to see that just one single CPU core was in use. The
desire arose to make use of the entire available computing power and thereby diminish the
build time to under two days. To satisfy this desire, a nanocube would need to be split up
into parts, which then can be built (preferably) independently in parallel. To get the exact
same query results that a single parted nanocube would return, the parts themselves or their
query results must be merged. Merging two nanocubes resp. parts implies traversing at least
one structure entirely, which would be an expensive operation on big datasets. Pseudo code
based on the original nanocube pseudo code? was developed to examine this approach. See
section 9.1 Pseudocode: Merging two Nanocubes in the appendix. Merging the query results
turned out to be easier to implement and the introduced overhead in query processing time is
negligible as shown in section 5.3 Benchmarks.

5.1 Quadtree Partition

In order to implement a multi-parted version of nanocubes, a sensible way to cut the structure
into parts needed to be found. As mentioned in chapter 4 Nanocubes, the nanocube structure
relies on quadtrees to efficiently represent the spatial dimension. Without partitioning the
quadtree structure, the size of a multi-parted nanocube would grow substantially with every
additional part’, because implementing the sharing of nodes between parts would be to
effortful. The opposite effect can be achieved by defining spatial partitions. It is more likely

"Lauro Lins: https://github.com/laurolins/nanocube /issues/30#issuecomment-106112543
2[LKS13] Lins, Klosowski, and Scheidegger (2013): fig. 3, p. 3
Jcompare memory usage in section 5.3 Benchmarks
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that nodes can be shared within a spatial focused dataset, which implies that fewer time series
need to be stored. Figure 5.1 illustrates this effect.

single nanocube two nanocubes
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Figure 5.1: Multi-part nanocubes can be more space efficient, when spatial partitions are
defined. Sharing is more likely to occur in a spatial focused portion of a dataset.

Since every dataset can have different spatial emphases, the split points of the quadtree need
to be computed individually to evenly balance the data points and therefore the computational
work over all parts/threads/cores. Precomputing the whole quadtree would be a tedious
process. Instead x (default is 10000) random samples of the dataset are inserted into a count
quadtree, whose nodes count the number of points passing through them during insertion.
After insertion, the split points can be determined by adding up the counts of the leaf nodes
from left to right until the limit of points for each group/thread/part is reached. For instance,
if eight parts are going to be created and 10000 randomly selected samples are inserted, each
part should cover about 1250 samples. The more samples taken, the more consummate the
split points will be to the actual dataset.

Figuring out the most sensible borders between the groups can be a tricky business. The
first case is easy: If adding the count of the leaf node in question does not exceed the threshold
of the current group, take it in. If the threshold would be exceeded but the group is empty,
take it in regardless. If the group already holds nodes, minimize the overlap by comparing
the distances to the threshold with and without the new count added. A smaller distance
determines if the count is taken in or added to the subsequent group.

14
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Figure 5.2: Count quadtree: To find three balanced partitions, add the counts from the leaf
nodes from left to right while trying to get as close as possible to 111 counts per
partition. The two most sensible split points in this example are the nodes reached
by taking the quad tree paths 0,2 and 2,2.
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This 1s the algorithm implemented in C++11. The function gets called with every leaf
node (Key) of the count quadtree from left to right. The split points are stored in a vector® of

quadtree addresses. The whole quadtree partitioning project is hosted as a separate project on
GitHub?.

Listing 5.1: A part of the quadtree partitioning C++11 implementation. The function calcu-
lates the most sensible borders for a given number of partitions.

template <typename Key>
void PartitionFunction<Key>::push (const Key& key, Count count) {
if (split_points.size () = (std::size_t)num parts—1)
return;
auto threshold = total count / num parts;
if (group.count + count < threshold) {
group.last_key = key;
++group . num_keys;
group.count += count;
}
else {
if (group.num keys — 0) {
split_points.push back (key);
}
else {
auto diff without = threshold — group.count;
auto diff with = group.count + count — threshold;
if (diff _without < diff with) {
group.count = count;
group.last_key = key;
group .num_keys = 1;
}
else {
split_points.push back (key);
group .count = 0;
group.last_key = key;
group .num_keys = 0;
}
}
}
}

*A vector in C++ is similar to an array in other programming languages. It is a sequence of objects of the
same type.
>https://github.com/Pyroluk/quadtree_partition
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5.2 C4++11 Implementation

Besides this document and a few comments in the program code, both C++11 implemen-
tations of Nanocubes are not documented. The Unified Modeling Language (UML) class
diagram in the appendix® helps to understand the program and which modifications where
made to implement multi-parted nanocubes.

Like every C++ program, the function called main is executed first. The two execution
paths inside this function are either loading a nanocube from file(s) or building a new one
based on a DMP’ file. Both paths end up calling a 747 function, which is declared and
implemented inside the main function. run creates a Kernel object, whose main purpose is
to store references to the actual nanocube object instance(s), the corresponding nanocube
schema® and the options entered by the user in the command line. Depending on the options,
a built or loaded nanocube is then saved to disc or a server is started to serve queries on the
nanocube. In both cases an object called Nanocubelngest is used to build a new nanocube or
add new data points to a loaded nanocube. The method run_async from Nanocubelngest starts
and returns a C++11 thread instance, which executes the method run from Nanocubelngest.
It reads in a DMP stream point by point either from standard input (stdin) or a file, parses the
binary data into an address object (quadtree path) and the variables, which are associated to
the point, into a vector object. The address and variables are then passed to the insert method
of the Nanocube object(s).

Nanocubelngest, Kernel, Options and the main function are the first program parts that
palpably come to mind as a starting point to upgrade the code to concurrently handle multiple
nanocube object instances.

5.2.1 Multi-part command line options

The command line options are extended with two new parameters: nanocube_parts: -pand
training_size: -x. The first option can be used to define how many’ parts the nanocube
should have and if the quadtree partition algorithm should be used. The second option can
be used to define how many'® random data point samples should be read in to build up the
count quadtree described in section 5.1 Quadtree Partition.

nanocube -d data.dmp -o data.nc -p 2

nanocube -d data.dmp -o data.nc -p auto

nanocube -d data.dmp -o data.nc -p auto8

nanocube -d data.dmp -o data.nc -p auto8 -x 100000

nanocube -d data.dmp -o data.nc -p qtpart(20133212103132,21023233231112)

The first command line builds a nanocube with two parts. The data points are assigned to
the parts alternating one after the other in the order they are stored in the DMP file, without
partitioning the quadtree in an elaborated way. The second command line builds a nanocube

bsection 9.2 UML class diagram

see section 4.1 Building a Nanocube from raw data
¥see the first part of a DMP file in section 4.1 Building a Nanocube from raw data
?default is 1
"default is 10000
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with as many parts as the CPU has cores and enables quadtree partitioning, too. The third line
is similar but concretely sets the number of parts to eight. In addition, the fourth command
sets the number of training points to 100000. The last line creates a nanocube with three
parts by stipulating two quadtree split points. The stated quadtree addresses are represented
as a sequence of child node labels and must have the same length as the nanocube quadtree
has levels. The main purpose of this option is the ability to add new data points via stdin to
a loaded, quadtree partitioned nanocube. Automatically calculated split points are written
to the console via standard out (stdout) and should be noted if new points are going to be
added later on. Note that every part is saved into its own separate file. The last command line
would result in the creation of three nanocube files: data.0.nc, data.1.nc and data.2.nc. Read
chapter 6 Save and Load for an explanation of this design decisions. Starting a server instead
of storing the structure to disc works alike. Just exchange -0 data.nc withe.g. -q 29512 to
define a server port.

5.2.2 Multithreading

The main function is adjusted to create a vector of Nanocube objects with as many instances as
defined by the newly introduced -p parameter. The function arguments and interfaces used
in the call hierarchy described above are adapted accordingly. Other minor parts needed to
be adjusted too, but they are not in the direct scope of implementing multi-part nanocubes.

Nanocubelngest’s range of functions is extended with new tasks. Instead of just inserting
point after point into a single nanocube object instance, the r#7z method now coordinates the
distribution of points to multiple threads, which are then inserting the assigned points into
their nanocube part.

If quadtree partitioning is activated, the new method getPartitionFunction creates and
returns a PartitionFunction object with either newly calculated or user-defined split points.
The partition function is then used to determine the part of the nanocube to which a given
data point belongs. As described in section 5.1 Quadtree Partition, x random data points
must be read to calculate sensible borders between the nanocube parts. Since the size of a
single record inside a DMP file is known, the exact position of every record inside a DMP file
stream can be calculated easily: starting position of binary data + record number * record
size. Given the positions in the stream, a large quantity of random samples can be read in
expeditiously by using the seek functionality of file streams'".

Each thread has a queue of data points to process. The queues get filled by the thread
that executes the r#n method of Nanocubelngest. Reading all points into the queues at once
would take up a considerably amount of memory when working with big datasets. Instead,
every queue gets filled up every thirty seconds to a dynamically calculated threshold of
initially 100000 points. This is done to maximize the insertion speed by minimizing context
switches and expensive mutex locks. After calculating the first measurement of how many
points per second are processed, the threshold automatically adjusts to the number of point
what will approximately be processed until the next refill, plus a butfer of 25%. Because the
complexity of inserting a point into a nanocube rises with its size, the number of points

"Standard input streams (stdin) do not support seeking, thus quadtree partitioning does not support stdin.
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inserted per second shrinks accordingly over time. Therefore, the queues should never empty
out before the next refill. Nevertheless, external influences e.g. other programs could cause
an unexpected speedup by releasing computational power, which even exceeds the buffer and
thus leads to empty queues and a temporary stopped insertion process. This uncommon case
is resolved by falling back to the initial threshold if zero points per second are inserted.

The C++11 Standard Library does not provide a ready to use thread-safe queue. Fortu-
nately, Juan from Juan’s C++ Blog published a post' in which he describes how to add
thread-safety to a normal C++11 queue by using a mutex and a condition variable. In a
nutshell, “The mutex prevents concurrent reads and writes, and the condition variable allows
consuming threads to wait for elements to be available in the queue without excessive mutex
contention and without using expensive and inefficient polling.”". To keep track of the
insertion progress, two variables are added to the provided wrapper class to count the pops
and pushes, which the method getObjectCount uses to calculate the remaining points in the
queue. Moreover, the class is extended with a hasElement method. It is a thread-safe wrapper
for the empty method of the underlying C++11 queue object.

The constructor of Nanocubelngest now creates, initiates and stores a thread and a queue
for every nanocube part.

Listing 5.2: Nanocubelngest constructor creates threads and queries for parallel data insertion

Nanocubelngest :: Nanocubelngest (Kernel& kernel,
std ::istream &input_stream)
kernel (kernel), input_stream (input_stream) {
for (auto i = 0; i < kernel.nanocubes.size (); ++i) {
queues.emplace back (new ThreadsafeQueue<AddressVariables >());
threads.push back (std:: thread(&Nanocubelngest:: threadInsert,
this, 1));

Note that ThreadsafeQuene has a C++11 mutex member variable, that cannot be copied
or moved, thus making the whole class not copy- nor movable. Because of that, creating
a vector of type ThreadsafeQuene is tricky. Vector elements must be at least movable by
definition. This is achieved by creating a vector of type unique pointers (unique_ptr) of type
ThreadsafeQuenes, which are movable:

Listing 5.3: Defining a set of ThreadsafeQueues
vector<std ::unique ptr<ThreadsafeQueue<AddressVariables>>> queues;

Usually push_back is used to insert elements into a vector, but the method creates and inserts
a copy of the passed variable and thus cannot be used. emplace_back does the trick by
constructing the object instance directly into the vector without a copy or move operation.
AddressVariables is a structure holding the quadtree address and the associated variables of a
data point.

12 https:/ /juanchopanzacpp.wordpress.com /2013 /02 /26 /concurrent-queue-c11/
Bef. fn. footnote 12
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The threads created and started in the constructor execute the threadInsert method of
Nanocubelngest concurrently. Each thread pops and inserts the data points from its queue
until it is empty and the thread, that pushes the data into the queues, sets the member
variable done_inserting queunes to true. Otherwise, the threads will check every one hundred
milliseconds for new data in the queue. The pushing thread will wait until every data point is
inserted by joining every thread listed in the vector of threads.

Listing 5.4: Every insertion thread executes threadInsert concurrently. They pop data points
off their queue and insert them into their nanocube part

void Nanocubelngest:: threadInsert (int threadNumber) {
while (!done_inserting queues ||
queues|[threadNumber]—>hasElement ()) {
while (queues[threadNumber]—>hasElement ()) {
AddressVariables tmp = queues[threadNumber]—>pop ();
kernel.nanocubes[threadNumber]—>insert (tmp. address ,
tmp.variables);

}

std:: this _thread::sleep for(std::chrono:: milliseconds (100));

Besides the threads that insert data points, the vector of threads contains a thread that
prints out the current build progress on a terminal by executing the new method reportStatus.
It prints a progress bar, memory usage in megabytes, time past in seconds, points inserted,
points per second, and an estimation of the remaining time in seconds. The estimation does
not take into account the deceleration of insertion that occurs with the growth of the data
structure. It is simply calculated by dividing the number of remaining points by how many
points per second are currently inserted. If the flag -z is used in the command line, additional
progress bars are shown to indicate the filling level of the queues. The report frequency can
be adjusted by the second with the -f command line parameter.

58% [ ]
(stdin ) mem. res: 29MB. time(s): 5
(stdin ) points inserted: 5898/10000

(stdin ) points per second: 1179

(stdin ) est. remaining time(s): 3

Figure 5.4: Nanocube build progress report

A major difference between the new and the old, but still official, code is custom memory
allocation tailored for nanocubes. The two pure static classes PoolAllocator Wrapper and
SimpleAllocator Wrapper held an instance of PoolAllocator resp. SimpleAllocator. Every part
of the program, that allocates and frees memory within the nanocube structure, called
the method malloc and free of one of the two wrapper classes. The wrappers then just
passed the call to the encapsulated allocator instance. The two wrappers got replaced with
SlabAllocator Wrapper, due to the new allocator implementation described in chapter 6 Save

20



and Load. Unfortunately, all allocator implementations including the new one are not
thread-safe. Serializing the memory allocation with normal C++11 mutexes does retard the
build process immensely because allocation and deallocation of memory is a very frequent
operation during the build process and locking a mutex is time-consuming. The performance
impact can be significantly reduced by using a spinlock ', but the difference without using
locks at all is still substantial. For that reason, every nanocube part has its own allocator
instance. The static allocation wrapper(s) are deeply intertwined in the code. Amongst other
things, they are passed as template arguments in several classes of the program. Changing
this design decision would be a project on its own, especially without code documentation.
Therefore, the wrapper(s) now holds a vector of allocators, one for each nanocube part. In
order to use the correct allocator instance, every class instance using the wrapper(s) needs
to know to which part of the nanocube it belongs. The part number is assigned first in the
create method of the Nanocube class, which passes the number to the constructor of the class.
The number gets propagated through the whole structure by the methods allocateRootNode,
allocateInternalNode and allocateSummaryNode, which pass the number to the corresponding
constructor of the node class in question. The downside of this design is the additional
memory space needed to store the numbers".

5.2.3 Merging query results

The merging of the queue results of each nanocube part is implemented in the serveQuery
method of the NanocubeServer class. The method gets called from a handler of the nanocube
server with the name “count”, which gets initialized in the method initializeQueryServer of
the same class. A Request and a Program object are passed into the method. The Request object
holds a pointer to a mg_connection instance from the popular Mongoose Embedded Web
Server Library'® and is at the end of the procedure used to send back the response in text, json
or binary format. A request string e.g. count.r("timestamp",interval(648,649)).a("location",
dive(tile2d(154,320,9),7),"img") gets parsed by a Parser instance inside the handler into a
Program object, which is a singly linked list of Call objects. Inside the serveQuery method, the
request in form of a Program object gets parsed once again. This time into a Query object with
the method parse_program_into_guery from the NanocubeServer class. Each Nanocube object
instance creates its own Query instance by calling the guery method of the Nanocube class. The
query get executed by calling the execute method of the Query class. The resulting TreeStore
object is generated by a TSeriesCollector object instance, which gets passed in the execute
call. Since the Query objects are depending on the Nanocube object instance from which
they got created from, every nanocube part’s Query object must be filled separately with the

4 “In software engineering, a spinlock is a lock which causes a thread trying to acquire it to simply wait in
a loop ("spin") while repeatedly checking if the lock is available. Since the thread remains active but is
not performing a useful task, the use of such a lock is a kind of busy waiting. Once acquired, spinlocks
will usually be held until they are explicitly released, although in some implementations they may be
automatically released if the thread being waited on (that which holds the lock) blocks, or "goes to sleep".
Because they avoid overhead from operating system process rescheduling or context switching, spinlocks are
efficient if threads are likely to be blocked for only short periods.” - https://en.wikipedia.org/wiki/Spinlock

A few megabytes depending on the number of nodes.

"https://github.com/cesanta/mongoose
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“Program”. Generating and executing the queries for every nanocube part is implemented
by encapsulating the described calls into Future objects, which get created by the C++11
template function async. The launch behavior of the futures can be adjusted with a flag in
the async call. For now the execution of the futures and therefore of the queries is done
sequentially, because a dependency on another project called Polycover is not thread-safe yet.
If this problem is fixed, parallel execution of the queries can be enabled by simply replacing
std::launch::deferred with std::launch::async in the async call. The Futures are stored in a vector
of Futures and their results are pushed into a vector of TreeStores. The TreeStores are then
merged together into a single TreeStore to generate the final query result. For every query
type, the tree stored inside a TreeStore has always a depth of one. The child nodes of the root
are implemented as an unordered map, which makes merging the trees a straight forward
process. The first not empty tree in the vector is the starting point of the merge process. All
other trees are merged into it by either adding up the values of equivalent child nodes or
by copying over missing child nodes into the merged tree. If the trees only consist of the
root nodes, their values are summed up in the root of the merged tree. The unordered _map
should not be manipulated directly, because of a reasoned and coherent memory allocation
scheme behind the TreeStore structure. For instance, the method getOrCreateChild from
the InternalNode class must be used to create new child nodes. Moving'” entries between the
maps, results in a very hard to find memory error, because the destructor of the InternalNode
class will try to delete the already moved objects.

Listing 5.5: Executing queries and merging their results

std ::vector<std :: future<tree store :: TreeStore<config type>>>
treeStoreFutures;
for (int 1 = 0; i < num_nanocubes; ++i) {
treeStoreFutures.push back (std::async(std::launch:: deferred,
[&](int 1) {
auto query = kernel.nanocubes[i]—>query ();
parse_program_into_query (program, query);

if (queryMode =— query_type :: UNDEFINED)
queryMode = query .mode;

TSeriesCollector collector;
query .execute (collector);

const tree store:: TreeStore<config type> &result =
xcollector.tree.get ();

return result;

Jo 1));

7C++11 supports move semantics, which can be used to avoid unnecessary copy operations of objects.
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std :: vector<tree store :: TreeStore<config type>> treeStores;
for (auto& treeStore : treeStoreFutures)
treeStores.push back (treeStore.get ());

tree_store :: TreeStore<config type> mergedTree;

int 1 = 0;
do {
mergedTree = treeStores[1];
} while (mergedTree.root.get () = nullptr &&X

++1 < treeStores.size ());

if (mergedTree.root.get () != nullptr) {
if (mergedTree.root—>isInternalNode ()) {
auto& mergedChilds =
mergedTree.root—>asInternalNode()—>children;

bool isFirstTreeStore = true;
for (auto& treeStore : treeStores) {
if (treeStore.root.get() = nullptr)

continue;

if (isFirstTreeStore) {
isFirstTreeStore = false;
continue;

}

auto& childs =
treeStore .root—>asInternalNode()—>children;
for (auto& child : childs) {
bool isNew = false;
auto foundOrNewChild = mergedTree.root—>
asInternalNode ()—>
getOrCreateChild (child. first , true, isNew);

if (isNew)
foundOrNewChild—>asLeafNode()—>value =
child .second.node—>asLeafNode()—>value;
else
foundOrNewChild—>asLeafNode()—>value +=
child .second.node—>asLeafNode()—>value;

}
}
else //root is leafnode
{

bool isFirstTreeStore = true;
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for (auto& treeStore : treeStores) {

if (treeStore.root.get() =— nullptr)
continue;

if (isFirstTreeStore) {
isFirstTreeStore = false;
continue;

}

mergedTree.root—>asLeafNode()—>value 4=
treeStore .root—>asLeafNode()—>value;

}

5.3 Benchmarks

In order to test the performance and integrity of the implementation of Multi-part Nanocubes,
nanocubesBenchmark'® was written. It is a C++11 program, which measures the time
needed to build and query nanocubes. It optionally validates the query results, too. The
number of parts is increased with each iteration starting from one up to the number defined
with the -p parameter. The auto and qtpart' keywords are supported, too. If the nanocube
executable is in another folder then the benchmark executable, the file path must be specified
with the -n parameter. The -e flag can be used to set the process priority to high on windows
or respectively the nice value to -15 on linux and mac systems. This reduces the influence of
other processes on the benchmark results. All other nanocube parameters are supported too
and are forwarded to the nanocube program.

The code should compile and run on every platform that supports a C++11 compiler and
the Boost C++ libraries®. Boost.Asio is used to query the nanocubes over HTTP in JSON
mode.

The C++11 Standard Library does not support the creation of processes. Fortunately, Ole
Christian Eidheim published “A small platform independent library making it simple to create
and stop new processes in C++, as well as writing to stdin and reading from stdout and stderr
of a new process™'. The end of the insertion process is detected by comparing the strings
from the standard output of the nanocube program with the unique string “(stdin:done)”. To
prevent a truncation of this important string, the nanocube program is modified to flush the
standard out buffer accordingly.

The validation of query results can be enabled by specifying a file path with the -u command
line parameter to a file containing nanocube queries. This file can either be a plain textfile
with one query per line or a json file generated by the NetExport* extension for the popular

Bhttps://github.com/Pyroluk /nanocubesBenchmark
Ysee section 5.2 C++11 Implementation
Phttp://www.boost.org/
Zhteps://github.com/eidheim/tiny-process-library
Zhttp://www.softwareishard.com/blog/netexport/
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Mozilla Firefox Add-on Firebug®”. With the help of the extension, Firebug can be used to
capture every nanocube query sent by the web client. To gather large quantities of queries, the
net.logLimit setting of Firebug should be set so zero (disable limit) or an appropriate number
of entries (default is 500). The HT'TP tracing file contains both queries and results, but the
validation is currently based on the results of the first iteration of the benchmark process with
only one nanocube part. This behaviour can be changed by uncommenting the code in line
324 of the nanocubesBenchmark.cc source file. This enables validation based on the results
stored in the tracing file. The order of child nodes in a responded “tree structure” can be
different with every request, because there is no defined execution order of nanocube parts in
the merge process. Therefore, to validate a response, the children are read into unorderd maps
to check for mutations like different values and missing or unexpected nodes.

5.3.1 Procedure

The program first reads in the file containing the queries, then parses the command line
parameters and determines the filename of the new logfile (testlog0.txt, testlogl.txt, ...,
testlogX.txt). Depending on how many parts are going to be tested maximally, in a loop
from 1 to x parts, a command line with the current nanocube parameters gets generated,
printed out and passed to a newly started nanocube process. If requested, the process priority
is adjusted to privilege the nanocube program. A stopwatch is started directly before starting
the nanocube process. The standard output from the nanocube process is read and checked
for (stdin:done) to determine the end of the insertion process, after which the stopwatch is
stopped too. The last status the nanocube process printed is written to the terminal and into
the logfile, together with the measured time needed for the insertion procedure.

A second stopwatch is started to measure the query test procedure. For each query, a
HTTP request string is generated and sent to the nanocube process via a TCP connection.
The complete response is read after parsing the content length, if the correct HTTP status
code (200, OK) is returned. If enabled, the responded query result is checked for validity
against the result responded in the first benchmark iteration with only one nanocube part as
described above. The JSON string gets parsed with the help of the library JsonCpp**. The
number of successful queries is counted and printed out together with the time needed to
complete all queries.

Lastly, the nanocube process gets killed programmatically. After waiting two seconds, the
next benchmark iteration starts or the benchmark process ends, if no further iterations are

left.

5.3.2 Results

The performance was tested on several CPUs ranging from a high end Intel Core i7 CPU
with Hyper-Threading, over an AMD Accelerated Processing Unit (APU) down to systems
on a chip (SoC) found on single-board computers like the Raspberry Pi and Banana Pi resp.

Bhttp://getfirebug.com/
*https://github.com/open-source-parsers/jsoncpp
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all sorts of mobile devices like smartphones and tablets. All processing units are running a
64-bit version of Windows, except the SoCs, which run 32-bit versions of Raspbian®.
Test subjects ordered by computing power, fastest first:

e Intel Core 17-4710HQ), 4x 2.5 GHz, 3.5 GHz Turbo, 8 Threads, 64-bit, Windows 8.1
e AMD Phenom II X4 955 Black Edition, 4x 3.4 GHz, 4 Threads, 64-bit, Windows 10
e AMD Phenom X4 9550, 4x 2.2 GHz, 4 Threads, 64-bit, Windows 7

AMD Athlon 5350 APU, 4x 2.05 GHz, 4 Threads, 64-bit, Windows 7

Intel Pentium Dualcore E2140, 2x 3 GHz, 2 Threads, 64-bit, Windows 7

Allwinner A20 SoC ARMv7-A, Banana Pro, 2x 1 GHz, 2 Threads, 32-bit, Raspbian
Jessie

e Broadcom BCM2835 SoC ARMv6, Raspberry Pi B rev. 2, 1x 950 MHz, 1 Thread,
32-bit, Raspbian Jessie

Each processor ran four benchmarks in total®®, comparing the performance with and
without quadtree partitioning® as well as with TCMalloc”® and without. The maximum
number of parts was set to modestly oversubscribe the CPU with one or two more threads
than physically present. When using quadtree partitioning, oversubscription often boosted
the insertion speed even further, because spatial focused datasets are faster to process into the
nanocube data structure.

The measurement series are based on a real world dataset with eleven categorical dimensions
generated by YP from data gathered from RTB systems®. The quadtree(s) have the common
depth of twenty-five levels. Only the first 100000 data points of the 6.9 million spanning
dataset were inserted to keep the build times in reasonable boundaries while benchmarking.
To determine the query speed, the time needed to process 3057 queries was measured. The
queries originate from browsing through the dataset with the web client, while using the
whole range of functions in a realistic fashion. Note that the measured query times include
JSON conversions of the query results.

Splitting up a problem into parts in such a way that they can be solved independently (on
separate processor cores) naturally results in a linear speedup, often minus a small overhead.
This effect can be observed when quadtree partitioning is not used. The speedup is limited to
the number of physical CPU cores. Oversubscription only results in more memory usage,
slower query times and often even slower insertion speeds. In contrast, when using quadtree
partition, oversubscription lowers the memory usage and speeds up the insertion even further

ZRaspbian is based on Debian GNU/Linux

26The Raspberry Pi was only subject in the second benchmark run with TCMalloc due to the incredibly slow
performance

see section 5.1 Quadtree Partition

Bread section 5.3.3 Profiling: Even more Speed with TCMalloc for details

P read section 3.1 Motivation
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with every additional thread/part. Surprisingly, not even the query speed is influenced
noticeably. Only when using over thirty threads to calculate the nanocube, the query speed
slows down by 10 %°. Partitioning the quadtree results in a more than linear speedup on every
tested CPU. To a certain degree, it even makes sense to highly oversubscribe the CPU cores.
As fig. 5.6 Intel Core 17-4710HQ): up to 100 Threads, Insertion Speed shows, the insertion
speed keeps rising, but the memory consumption starts to climb again, if (too) many threads
are used’'. The query speed is another factor to consider, because it nearly linearly decreases
with every additional thread®. Table 5.27 TCMalloc Intel Core i7-4710HQ with Quadtree
Partition: up to 100 Threads holds the whole measurement series of the oversubscription test.

The “linear” and “TCMalloc linear” lines in the following graphs illustrate the theoretical
linear growth in insertion speed. They are both based on the speed measured in the first
benchmark iteration with only one thread/part. The insertion speed is measured in points
per second similar to the query speed, which is measured in queries per second.

1000.00

800.00

600.00

400.00

Points per Second

200.00
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1 2 3 4 5 6 7 8 9 10

Threads / Parts

partitioned TCMalloc partitioned

not partitioned

TCMalloc not partitioned

......... linear TCMalloc linear

Figure 5.5: Intel Core 17-4710HQ

Osee fig. 5.8 Intel Core i7-4710HQ: up to 100 Threads, Query Speed and table 5.27 TCMalloc Intel Core
17-4710HQ with Quadtree Partition: up to 100 Threads

lsee fig. 5.7 Intel Core 17-4710HQ: up to 100 Threads, Memory Consumption

32see fig. 5.8 Intel Core 17-4710HQ: up to 100 Threads, Query Speed
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The “relative difference columns” in the tables relate to the column in front of it. All
percentages relate to the measurement from a single parted nanocube (first row). For example,
in table 5.1 Intel Core 17-4710HQ with Quadtree Partition the insertion speed is about 700 %
faster when using ten threads/parts instead of just one. T. stands for number of threads/parts.

Table 5.1: Intel Core 17-4710HQ with Quadtree Partition

T. Speed Time Speedup Memory rel. Querytime Query speed rel.
1 102.99p/s 971s - 312MB - 3711s 823.77q/s -
2 21930p/s 456s 212.94% 282MB 90% 3582s 853.43q/s 104 %
3 347.22p/s 288s 337.15% 265MB 85% 3635s 840.99q/s 102%
4 460.83p/s 217s 447.47% 270MB 87% 3665s 834.11q/s 101%
5 52632p/s 190s 511.05% 249MB 80% 3651s 837.30q/s 102%
6 555.56p/s 180s 539.44% 251MB 80% 369s  827.11q/s 100%
7 65359p/s 153s 634.64% 241MB 77% 3717 s 822.44q/s 100%
8 684.93p/s 146s 665.07% 246 MB 79% 3741s 817.16q/s 99%
9  694.44p/s 144s 67431% 233MB 75% 3699 826.44q/s 100%
10 72993p/s 137s 708.76% 235MB 75% 3748s 815.64q/s 99%
Table 5.2: Intel Core i7-4710HQ without Quadtree Partition
T. Speed Time Speedup Memory rel. Querytime Query speed rel.
1 93.98p/s 1064s - 308 MB - 3623 s 843.78q/s -
2 194.17p/s 515s 206.60% 602MB 195% 38525 793.61q/s 94 %
3 27473p/s 364s 29231% 732MB 238% 4082 748.90q/s 89 %
4 361.01p/s 277s 384.12% 868 MB 282% 4339 704.54q/s 83 %
5 35336p/s 283s 375.97% 992MB 322% 4541s 673.20q/s 80%
6 367.65p/s 272s 391.18% 1187MB 385% 4768 s 641.15q/s 76%
7 37037p/s 270s 394.07% 1382MB 449 % 4984 s 613.36q/s 73 %
8 383.14p/s 261s 407.66% 1466 MB 476% 5130s 595.91q/s 71%
9 387.60p/s 258s 412.40% 1449MB 470% 5351s 571.30q/s 68%
10 386.10p/s 259s 410.81% 1585MB 515% 5439 562.05q/s 67 %
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Table 5.3: AMD Phenom II X4 955 Black Edition with Quadtree Partition

T. Speed Time Speedup Memory rel. Querytime Query speed rel.

1 62.70p/s 1595s - 316 MB - 5327s 573.87q/s -

2 13459p/s 743s 214.67% 284MB 90% 5271s 579.97q/s 101%

3 233.10p/s 429s 371.79% 270MB 85% 5094 s 600.12q/s 105 %

4  31056p/s 322s 49534% 273MB 86% 5161s 592.33q/s 103 %

5 358.42p/s 279s 571.68% 260MB 82% 5455s 560.40q/s  98%

6 380.23p/s 263s 606.46% 249MB 79% 5244 s 582.95q/s 102 %
Table 5.4: AMD Phenom II X4 955 Black Edition without Quadtree Partition

T. Speed Time Speedup Memory rel. Querytime Query speed rel.

1 59.77p/s 1673s - 312MB - 5182s 589.93q/s -

2 121.95p/s 820s 204.02% 605MB 194 % 5542s 551.61q/s 94 %

3 185.19p/s 540s 309.81% 736 MB 236% 59755 511.63q/s 87 %

4 250.63p/s 399s 419.30% 871MB 279% 6424 s 475.87q/s 81%

5 24570p/s 407s 411.06% 994MB 319% 6657 s 459.22q/s 78%

6 24691p/s 405s 413.09% 1185MB 380% 7182s 425.65q/s 72%

Table 5.5: AMD Phenom X4 9550 with Quadtree Partition

T. Speed Time Speedup Memory rel. Querytime Query speed rel.

1 4137p/s 2417s - 319MB - 8203 s 372.67q/s -

2 95.42p/s 1048s 230.63% 281MB 88% 8000 382.13q/s 103 %

3 155.04p/s 645s 37473% 270MB 85% 7843 s 389.77q/s 105%

4 200.00p/s 500s 483.40% 269MB 84 % 8062 s 379.19q/s 102 %

5 160.77p/s 622s 388.59% 251MB 79% 8171s 374.13q/s 100%

6 20534p/s 487s 49630% 263MB  82% 8312s  367.78q/s 9%

Table 5.6: AMD Phenom X4 9550 without Quadtree Partition

T. Speed Time Speedup Memory rel. Querytime Query speed rel.

1 41.44p/s 2413s - 313MB - 8187s 373.40q/s -

2 82.64p/s 1210s 199.42% 606 MB 194 % 9000s 339.67q/s 91%

3 12225p/s 818s 294.99% 738MB 236 % 9765 313.06q/s 84 %

4  13495p/s 741s 325.64% 869MB 278% 10484 s 291.59q/s 78%

5 123.61p/s 809s 29827% 995MB 318% 110155  277.53q/s 74%

6 13245p/s 755s 319.60% 1189MB 380% 11609 s 263.33q/s 71%
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Table 5.7: AMD Athlon 5350 with Quadtree Partition

T. Speed Time Speedup Memory rel. Querytime Query speed rel.
1 34.40p/s 2907s - 314MB - 9578 s 319.17q/s -
2 77.16p/s 1296s 22431% 287MB  91% 9401s 325.18q/s 102%
3 12837pfs  779s 373.17% 271MB  86% 9391s  325.52q/s 102%
4 175.13p/s 571s 509.11% 261MB 83 % 9603 s 318.34q/s 100%
5 151.98p/s 658s 441.79% 255MB  81% 9676s 315.94q/s 99 %
6 170.07p/s 588s 49439% 245MB  78% 9685 315.64q/s 99 %
Table 5.8: AMD Athlon 5350 without Quadtree Partition
T. Speed Time Speedup Memory rel. Querytime Query speed rel.
1 35.42p/s 2823s - 317MB - 9600s 318.44q/s -
2 68.82p/s 1453s 194.29% 611MB 193% 10101 s 302.64q/s 95%
3 96.34pfs 1038s 271.97% 742MB 234%  10971s  278.64q/s $8%
4 13441p/s 744s 379.44% 878MB 277 % 11519s 265.39q/s 83 %
5 110.74p/s 903s 312.62% 996 MB 314% 12129 252.04q/s 79%
6 118.20p/s 846s 333.69% 1194MB 377 % 12699 s 240.73q/s 76%
Table 5.9: Intel Pentium Dualcore E2140 with Quadtree Partition
T. Speed Time Speedup Memory rel. Querytime Query speed rel.
1 56.34p/s 1775s - 314MB - 5772s 529.63q/s -
2 106.95p/s 935s 189.84% 279MB 89% 5631s 542.89q/s 103 %
3 122.25pfs  818s 21699% 266MB 85% 5709s  535.47q/s 101%
4 150.60p/s  664s 267.32% 264MB 84% 5787 s 528.25q/s 100%
Table 5.10: Intel Pentium Dualcore E2140 without Quadtree Partition
T. Speed Time Speedup Memory rel. Querytime Query speed rel.
1 5621p/s 1779s - 311MB - 57255 533.97q/s -
2 95.60p/s 1046s 170.08% 601MB 193 % 6099 s 501.23q/s 94 %
3 95.24p/s 1050s 169.43% 730MB 235% 6614 s 462.20q/s 87 %
4 107.99p/s 926s 192.12% 864 MB 278% 7456 410.01q/s 77 %
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Table 5.11: Allwinner A20 SoC ARMv7-A, Banana Pro with Quadtree Partition

T. Speed Time  Speedup Memory rel. Querytime Query speed rel.

1 9.49p/s 10539s - 61MB - 22453 s 136.15q/s -

2 19.60p/s 5102s 206.57 % 50MB 82% 23727 s 128.84q/s 95%
3 2148p/s 4655s 226.40% 54MB 89 % 23960 s 127.59q/s 94 %
4 23.07p/s 4335s 243.11% 46 MB 75% 24043 s 127.15q/s 93 %

Table 5.12: Allwinner A20 SoC ARMv7-A, Banana Pro without Quadtree Partition

T. Speed Time  Speedup Memory rel. Querytime Query speed rel.

1 9.52p/s 10500s - 73MB - 22499 s 135.87q/s -

2 19.14p/s 5226s 200.92% 89MB 122% 25767 s 118.64q/s 87 %
3 1935p/s 5167s 203.21% 101MB 138% 28917 s 105.72q/s 78 %
4 19.79p/s 5052s 207.84% 126 MB 173 % 31831s 96.04q/s 71%
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5.3.3 Profiling: Even more Speed with TCMalloc

Even though the multithreading performance is already better than expected, the greed for
speed can be satisfied even more. Profiling code is often almost obligatory to eliminate hidden
bottlenecks. The sample profiler’® from Microsoft Visual Studio Enterprise 2015 revealed
that over 55 % of the execution time was spent in system calls to malloc (33,85 %) and free
(21,86 %). Many vector objects are filled and resized during the insertion process, which is
the main reason why malloc and free are called this frequently. As a consequence, using a
faster malloc/free implementation does have a big impact on the insertion speed. There are
many malloc implementations which claim to be faster than the standard allocators operating
systems provide. Thread-Caching Malloc (TCMalloc) from Google™ is a popular one and it
is also used with the old nanocube implementation®. In order to use TCMalloc, a program
just needs to be linked with the library. The linker will “wire up” malloc and free calls into
TCMalloc instead of the standard allocation library. Instructions can be found on the official
GitHub Page™.

The insertion speedup measured is on average 23,15 % (15- 37 %). The queries got processed
on average 13,47 % (10 - 19 %) faster. The memory consumption went up by an average of
2%. Interestingly, the “additional” virtual (logical) cores of the Intel Core i7 CPU with
Hyper-Threading are now used more efficiently, too. The kink in the line graph of the
insertion speed (see fig. 5.5 Intel Core 17-4710HQ) shifted from seven to eight threads.

Table 5.13: TCMalloc Intel Core 17-4710HQ with Quadtree Partition

T. Speed Time Speedup Memory rel. Querytime Query speed rel.

1 12453p/s 803s - 313MB - 3229 s 946.73q/s -

2 284.09p/s 352s 228.13% 285MB 91% 3208s 952.93q/s 101 %
3  456.62p/s 219s 366.67% 273MB 87 % 32355 944.98q/s 100 %
4  54945p/s 182s 441.21% 275MB 88% 3257 s 938.59q/s 99 %
5 512.82p/s 195s 411.79% 264MB 84% 34185 894.38q/s  94%
6 64935p/s 154s 521.43% 263MB 84% 3287s 930.03q/s 98%
7 746.27p/s 134s 599.25% 250MB 80% 3341s 915.00q/s 97 %
8 877.19p/s 114s 70439% 249MB 80% 3384s 903.37q/s  95%
9 91743p/s 109s 736.70% 242MB 77% 33425 914.72q/s 97 %
10 96154p/s 104s 772.12% 246MB 79% 33225 92023q/s  97%

33“The sampling profiling method interrupts the computer processor at set intervals and collects the function call
stack. Exclusive sample counts are incremented for the function that is executing and inclusive counts are in-
cremented for all of the calling functions on the call stack. Sampling reports present the totals of these counts
for the profiled module, function, source code line, and instruction.” - https://msdn.microsoft.com/en-
us/library/dd264994.aspx

*http://goog-perftools.sourceforge.net/doc/tcmalloc.html

*https://github.com/laurolins /nanocube#thread-caching-malloc-tcmalloc

3https://github.com/gperftools/gperftools
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Table 5.14: TCMalloc Intel Core 17-4710HQ without Quadtree Partition

T. Speed Time Speedup Memory rel. Querytime Query speed rel.
1 127.23p/s 786s - 311 MB - 32335 945.56q/s -

2 253.16p/s 395s 198.99% 604MB 194% 3441s 888.40q/s 94 %
3 364.96p/s 274s 286.86% 735MB 236% 36365 840.76q/s 89 %
4 469.48p/s 213s 369.01% 875MB 281% 3831s  797.96q/s $4%
5 476.19p/s 210s 374.29% 1000MB 322% 3981s 767.90q/s 81%
6 478.47p/s 209s 376.08% 1195MB 384 % 4145 737.52q/s 78%
7  467.29p/s 214s 367.29% 1390MB 447 % 4343 s 703.89q/s 74 %
8 500.00p/s 200s 393.00% 1478 MB 475% 4489 s 681.00q/s 72%
9 49751p/s 201s 391.04% 1463MB 470% 4635 659.55q/s 70%
10 505.05p/s 198s 396.97% 1598 MB 514 % 4767 s 641.28q/s 68%

Table 5.15: TCMalloc AMD Phenom II X4 955 Black Edition without Quadtree Partition

T. Speed Time Speedup Memory rel. Querytime Query speed rel.
1 8734p/s 1145s - 309MB - 4302 s 710.60q/s -

2 194.17p/s 515s 22233% 279MB 90% 4370s 699.54q/s 98%
3 32258p/s 310s 369.35% 270MB 87% 4376s 698.58q/s 98 %
4  44843p/s 223s 513.45% 264MB 85% 4358 s 701.47q/s 99 %
5 51020p/s 196s 584.18% 257MB  83% 44385 688.82q/s 97%
6 55249p/s 181s 632.60% 258MB 83% 4416s 692.26q/s 97 %

Table 5.16: TCMalloc AMD Phenom II X4 955 Black Edition without Quadtree Partition

T. Speed Time Speedup Memory rel. Querytime Query speed rel.
1 85.84p/s 11655 - 303MB - 4351s  702.60q/s -

2 17241p/s 580s 200.86% 604MB 199 % 4808 s 635.82q/s 90%
3 256.41p/s 390s 298.72% 736 MB 243 % 4998 s 611.64q/s 87 %
4 336.70p/s 297s 392.26% 873MB 288% 5294 s 577.45q/s 82%
5 340.14p/s 294s 396.26% 998 MB 329% 5568 s 549.03q/s 78%
6 348.43p/s 287s 40592% 1194MB 394 % 58365 523.82q/s 75%
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Table 5.17: TCMalloc AMD Phenom X4 9550 with Quadtree Partition

T. Speed Time Speedup Memory rel. Querytime Query speed rel.
1 48.22p/s 2074s - 315MB - 7328 417.17q/s -
2 11442p/s 874s 131.01% 285MB 92% 7265 420.78q/s 101%
3 19231p/s 520s 220.19% 272MB 88% 7406s 412.77q/s  99%
4 263.85p/s 379s 302.11% 275MB 89% 7609 s 401.76 q/s 96 %
5 27322p/s 366s 312.84% 264MB 85% 7625s 400.92q/s 96%
6 31546p/s 317s 361.20% 259MB 84% 7453 s 410.17q/s 98%
Table 5.18: TCMalloc AMD Phenom X4 9550 without Quadtree Partition
T. Speed Time Speedup Memory rel. Querytime Query speed rel.
1 49.07p/s 2038s - 309MB - 7359s 415.41q/s -
2 101.11p/s 989s 117.80% 604MB 199 % 7953s 384.38q/s 93 %
3 149.70p/s 668s 174.40% 739MB 244% 8781s 348.14q/s 84 %
4 198.41p/s 504s 231.15% 861MB 284% 9656 s 316.59q/s 76%
5 17331p/s 577s 201.91% 1008 MB 333 % 10343 s 295.56q/s 71%
6 208.77p/s 479s 243.22% 1204MB 397 % 11328 269.86q/s 65%
Table 5.19: TCMalloc AMD Athlon 5350 with Quadtree Partition
T. Speed Time Speedup Memory rel. Querytime Query speed rel.
1 4144p/s 2413s - 315MB - 8163's 37449q/s -
2 93.90p/s 1065s 226.57% 285MB  90% 82335 371.31q/s 99%
3 151.98p/s 658s 366.72% 271MB  86% 8330s 366.99q/s 98 %
4 204.92p/s 488s 494.47% 280MB  89% 8493 s 359.94q/s 96 %
5 210.08p/s 476s 506.93% 264MB  84% 8393 s 364.23q/s 97 %
6 248.76p/s 402s 600.25% 269MB  85% 8417s  363.19q/s 97%
Table 5.20: TCMalloc AMD Athlon 5350 without Quadtree Partition
T. Speed Time Speedup Memory rel. Querytime Query speed rel.
1  4l6lp/s 2403s - 311MB - 8257s 370.23q/s -
2 82.17p/s 1217s 231.96% 606 MB 191% 8951s 341.53q/s 107 %
3 12422p/s 805s 350.68% 738 MB 233% 9473 s 322.71q/s 101 %
4 163.13p/s 613s 460.52% 874MB 276 % 10062 s 303.82q/s 95%
5 138.12p/s 724s 389.92% 1004MB 317 % 10576 s 289.05q/s 91%
6 153.85p/s 650s 43431% 1203MB 379% 11238 s 272.02q/s 85%
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Table 5.21: TCMalloc Intel Pentium Dualcore E2140 with Quadtree Partition

T. Speed Time Speedup Memory rel. Querytime Query speed rel.

1 76.39p/s 1309s - 313MB - 4914 s 622.10q/s -

2 170.65p/s 586s 22338% 285MB 91% 4976s 614.35q/s 99 %

3 188.32p/s 531s 246.52% 276 MB 88% 4976 614.35q/s 99 %

4 207.04p/s 483s 271.01% 263MB 84% 4992 612.38q/s 98%
Table 5.22: TCMalloc Intel Pentium Dualcore E2140 without Quadtree Partition

T. Speed Time Speedup Memory rel. Querytime Query speed rel.

1 76.63p/s 1305s - 309MB - 4898 s 624.13q/s -

2 14771pfs 677s 19276% 603 MB  195% 5319s  574.73q/s 92%

3 13736p/s 728s 179.26% 743MB 240% 56165 544.34q/s 87 %

4 15198p/s 658s 198.33% 873MB 283 % 5974 s 511.72q/s 82%

Table 5.23: TCMalloc Allwinner A20 SoC ARMv7-A, Banana Pro with Quadtree Partition

T. Speed Time Speedup Memory rel.  Querytime Query speed rel.

1 11.47p/s 8721s - 74MB - 19323 s 158.21q/s -

2 24.78p/s 4035s 216.13% 57MB 77 % 19891 s 153.69q/s 97 %
3 27.23p/s 3672s 237.50% 60MB 81% 19571s 156.20q/s 99 %
4 2851p/s 3508s 248.60% 53MB 72% 20332s 150.35q/s 95%

Table 5.24: TCMalloc Allwinner A20 SoC ARMv7-A, Banana Pro without Quadtree Parti-

tion
T. Speed Time Speedup Memory rel.  Querytime Query speed rel.
1 11.41p/s 8764s - 75MB - 19452 s 157.16q/s -
2 23.02p/s 4344s 201.75% 86 MB 115% 224855 135.96q/s 87 %
3 2326p/s 4300s 203.81% 104MB 139% 24938 s 122.58q/s 78 %
4 2342p/s 4269s 205.29% 128 MB 171% 27565 110.90q/s 71%
Table 5.25: TCMalloc Broadcom BCM2835 SoC ARMvé6, Raspberry Pi B rev. 2 with
Quadstree Partition
T. Speed  Time  Speedup Memory rel.  Querytime Query speed rel.
1 622p/s 16089s - 74MB - 38606 s 79.18q/s -
2 5.67p/s 17645s 91.18% 57MB 77 % 45169 s 67.68q/s 85%
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Table 5.26: TCMalloc Broadcom BCM2835 SoC ARMvé6, Raspberry Pi B rev. 2 without
Quadstree Partition

T. Speed  Time  Speedup Memory rel.  Querytime Query speed rel.
1 632p/s 15828s - 78 MB - 35653s 85.74q/s -
2 591p/s 16909s 93.61% 98MB 126 % 44195 69.17q/s 81%

Table 5.27: TCMalloc Intel Core 17-4710HQ with Quadtree Partition: up to 100 Threads

T. Speed Time Speedup Memory rel. Querytime Query speed rel.

1 131.75p/s  759s - 315MB - 3253s 939.75q/s -

2 281.69p/s 355s 213.80% 287MB 91% 3261s 937.44q/s 100 %
3 446.43p/s 224s 338.84% 273MB 87% 3221s 949.08q/s 101 %
4 57471pfs 174s 43621% 286MB 91%  3211s  952.04q/s 101%
5 671.14p/s 149s 509.40% 258 MB 82% 3251s 940.33q/s 100 %
6 775.19p/s 129s 588.37% 265MB 84 % 3271s 934.58q/s  99%
7 833.33p/s 120s 632.50% 255MB 81% 3273 934.01q/s 99%
8 900.90p/s 111s 683.78% 250MB 79% 3269s 935.15q/s 100 %
9 934.58p/s 107s 709.35% 242MB 77 % 3290s 929.18q/s 99 %
0 1010.10p/s 995 766.67% 252MB 80%  3330s  918.02q/s 98%
11 1041.67p/s 96s 790.63% 239MB 76%  3301s  926.08q/s 99%
12 1111.11p/s  90s 843.33% 240MB 76% 3369 907.39q/s 97 %
13 1136.36p/s  88s 862.50% 230MB 73% 3341s 915.00q/s 97 %
14 1176.47p/s  85s 892.94% 237MB 75% 3362s 909.28q/s 97 %
15 1234.57p/s 8ls 937.04% 239MB 76%  3390s  901.77q/s 96%
16 1234.57p/s 8ls 937.04% 242MB 77 % 3415s 895.17q/s 95%
17 1315.79p/s 76s 998.68%  234MB 74% 3382s 903.90q/s 96 %
18 1369.86p/s 73s 1039.73% 231MB 73% 3431s 890.99q/s 95%
19 1408.45p/s 71s 1069.01% 234MB 74% 3453 s 885.32q/s 94%
20 142857p/s 70s 1084.29% 232MB 74%  3444s  887.63q/s 94%
21 1470.59p/s  68s 1116.18% 238MB 76% 3443 s 887.89q/s 94%
22 1587.30p/s 63s 1204.76% 227MB 72% 3456 884.55q/s 94%
23 1562.50p/s  64s 1185.94% 234MB 74% 3462s 883.02q/s 94%
24 1612.90p/s  62s 1224.19% 227MB 72% 3481s 878.20q/s 93%
25 1612.90p/s  62s 1224.19% 232MB 74% 3530s 866.01q/s 92%
26 178571p/s 565 135536% 226MB 72%  3521s  868.22q/s 92%
27 1754.39p/s 57s 1331.58% 229MB 73 % 3554 s 860.16q/s 92%
28 1818.18p/s  55s 1380.00% 229MB 73 % 3552s 860.64q/s 92%
29 1818.18p/s  55s 1380.00% 229MB 73 % 3552s 860.64q/s 92%
30 1886.79p/s 53s 1432.08% 228MB 72%  3564s  857.74q/s 91%
31 1923.08p/s 525 1459.62% 227MB 72% 35655  857.50q/s 91%
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T. Speed Time Speedup Memory rel. Querytime Query speed rel.

32 1960.78p/s  5ls 1488.24% 228MB 72% 35835 853.20q/s 91%
33 2000.00p/s  50s 1518.00% 223MB 71% 3613s 846.11q/s 90%
34 2000.00p/s 50s 1518.00% 225MB 71% 3589s 851.77q/s 91%
35 2083.33p/s  48s 1581.25% 226 MB 72% 36405 839.84q/s 89 %
36 2083.33p/s  48s 1581.25% 224MB 71% 3667 s 833.65q/s 89 %
37 2127.66p/s  47s 1614.89% 225MB  71% 36635 83456q/s 89%
38 2222.22p/s  45s 1686.67% 219MB 70% 3642 839.37q/s 89%
39 2272.73p/s 44s 1725.00% 225MB 71% 3680s 830.71q/s 88%
40 2272.73p/s  44s 1725.00% 219MB 70% 36905 828.46q/s 88%
41 232558p/s 43s 1765.12% 219MB 70% 3662s 834.79q/s 89 %
42 2380.95p/s 42s 1807.14% 221MB 70% 3713s 823.32q/s 88%
43 2380.95p/s 42s 1807.14% 221MB 70% 3720s  821.77q/s 87 %
44 2439.02p/s  41s 1851.22% 225MB 71% 3739s  817.60q/s 87%
45 2500.00p/s 40s 1897.50% 220MB 70% 3738s 817.82q/s 87 %
46 2500.00p/s  40s 1897.50% 216 MB 69 % 37665 811.74q/s 86 %
47 2564.10p/s  39s 1946.15% 223MB 71% 3807 s 802.99q/s 85%
48 2564.10p/s  39s 1946.15% 219MB 70% 3771s  810.66q/s 86%
49 2631.58p/s  38s 1997.37% 220MB 70% 3844s 795.27q/s 85%
50 2702.70p/s 37s 2051.35% 220MB 70% 3812s 801.94q/s 85%
51 2631.58p/s  38s 1997.37% 221MB 70% 3979 768.28q/s 82%
52 2702.70p/s  37s 2051.35% 224MB 71% 39055 782.84q/s 83 %
53 2777.78p/s  36s 2108.33% 220MB 70% 3863s 791.35q/s 84 %
54 2777.78p/s  36s 2108.33% 221MB 70% 38925 785.46q/s 84 %
55 2941.18p/s 34s 2232.35% 217MB 69% 3906s 782.64q/s 83 %
56 2777.78p/s  36s 2108.33% 219MB 70% 3937s 776.48q/s 83 %
57 2857.14p/s  35s 2168.57% 222MB 70% 3891s 785.66q/s 84 %
58 2941.18p/s  34s 223235% 224MB 71% 3941s  775.69q/s 83%
59 3125.00p/s  32s 2371.88% 215MB 68 % 3941s 775.69q/s 83 %
60 3030.30p/s  33s 2300.00% 220MB 70% 3947 s 77451q/s 82%
61 3030.30p/s  33s 2300.00% 221MB 70% 3964 s 771.19q/s 82%
62 3125.00p/s  32s 2371.88% 221MB 70% 3966 770.80q/s 82%
63 3125.00p/s 32s 2371.88% 219MB 70% 3966s  770.80q/s 82%
64 322581p/s 31s 244839% 223MB 71% 39955 765.21q/s 81%
65 322581p/s 31s 2448.39% 222MB 70% 4006 s 763.11q/s 81%
66 3225.81p/s 31s 2448.39% 226 MB 72% 4003 s 763.68q/s 81%
67 3333.33p/s  30s 2530.00% 223MB 71% 4016 761.21q/s 81%
68 3333.33p/s  30s 2530.00% 225MB 71% 4077 s 749.82q/s 80%
69 3333.33p/s  30s 2530.00% 219MB 70% 4080 749.26q/s 80%
70 3448.28p/s  29s 2617.24% 221MB 70% 4071s 750.92q/s 80%
71 3333.33p/s 30s 2530.00% 225MB 71% 4091s 747.25q/s 80%
72 3448.28p/s  29s 2617.24% 219MB 70% 4056s 753.70q/s 80%
73 3448.28p/s  29s 2617.24% 220MB 70% 4121s 741.81q/s 79%
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T.  Speed Time Speedup Memory rel. Querytime Query speed rel.

74 344828p/s 295 2617.24% 227MB 72% 41385 738.76q/s 79%
75 3571.43p/s 28s 2710.71% 221 MB 70% 4122 741.63q/s 79%
76  3703.70p/s 27s 2811.11% 223MB 71% 4129 740.37q/s 79 %
77  3571.43p/s  28s 2710.71% 225MB 71% 4151s 736.45q/s 78 %
78 3703.70p/s  27s 2811.11% 227MB 72% 4167 s 733.62q/s 78%
79 3703.70p/s  27s 2811.11% 228MB 72% 41975 72838q/s 78%
80 3703.70p/s 27s 2811.11% 227MB 72% 4158 s 735.21q/s 78%
81 3703.70p/s 27s 2811.11% 228MB 72 % 4196s 728.55q/s 78 %
82 3846.15p/s  26s 2919.23% 227MB 72% 4178 s 731.69q/s 78%
83 3846.15p/s  26s 2919.23% 228MB 72% 4224 723.72q/s 77 %
84 3846.15p/s  26s 2919.23% 227MB 72% 4268 s 716.26q/s 76 %
85 4000.00p/s  25s 3036.00% 227MB 72% 4277 s 714.75q/s 76 %
86 4000.00p/s  25s 3036.00% 231MB 73% 4243 s 720.48q/s 77 %
87  3846.15p/s 26s 2919.23% 233MB 74% 4270s 715.93q/s 76%
88  4000.00p/s  25s 3036.00% 231MB 73% 4275 715.09q/s 76%
89  4166.67p/s  24s 3162.50% 233MB 74% 4363 s 700.66q/s 75%
90 4000.00p/s  25s 3036.00% 236MB 75% 4321s 707.48q/s 75%
91 3846.15p/s 26s 2919.23% 234MB 74% 4323s 707.15q/s 75%
92 4166.67 p/s 24s 316250% 236 MB 75% 4337 s 704.87q/s 75%
93  4166.67p/s  24s 3162.50% 237MB 75% 4347 s 703.24q/s 75%
94  4166.67p/s  24s 3162.50% 239MB 76% 4346 703.41q/s 75%
95  4166.67 p/s 24s 316250% 234MB 74% 4360 701.15q/s 75%
96  4166.67 p/s 24s 316250% 237MB 75% 4401s 694.61q/s 74 %
97  4166.67 p/s 24s 316250% 236 MB 75% 4387 s 696.83q/s 74 %
98 4166.67p/s  24s 3162.50% 240MB 76% 4412 692.88q/s 74 %
99  454545p/s  22s 3450.00% 239MB 76% 44205 691.63q/s 74 %
100 4347.83p/s  23s 3300.00% 238MB 76% 4437 s 688.98q/s 73 %
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6 Save and Load

This chapter describes how the in-memory data structure Nanocubes is saved to disk and
loaded back into memory.

The data structure mostly consists of intertwined 64-bit pointers in RAM. Normal pointers
store absolute addresses in the virtual address space of a program. When loading back a
nanocube from disk into memory, the objects the pointers pointed to are located at random
addresses on potentially every program start. This is due to the Address Space Layout
Randomization (ASLR), which practically every modern PC operating system performs.
Storing absolute addresses does imply the need to traverse the whole data structure to make
up for the random address offset the operating system applied to the nanocube process. This
tedious procedure can be circumvented by storing relative addresses. Offset pointers store the
distance from their own his pointer to the object they point to. As a consequence, calculating
the conversion from and to absolute addresses is an overhead of subtracting resp. adding two
64-bit integers. “Dereferencing” an offset pointer yields the correct absolute address even
if the offset pointer and the referenced object are stored at addresses with a random offset
applied from ASLR, because the stored distance is still the same inside the nanocube memory
block.

Before the change to offset pointers, tagged pointers where used in several places like the
container classes small raw wvector and small_vector as well as in the Node and Link classes.
Tagged pointers are pointers in which additional information is stored besides the actual
address. In the case of Nanocubes, the most significant sixteen bits of the sixty-four bit pointers
where used to store information like shared node flag, node type or last index number inserted
into container. The offset in the offset pointers is stored in a sixty-four bit signed integer,
which is why they cannot be tagged. It would mess up the two’s complement, which is used to
efficiently represent negative numbers in computers. Therefore, every information previously
stored in tagged pointers is now stored in separate variables, resulting in a moderately higher
memory usage.

The previous memory allocation strategy was composed of a pool and a Kernighan-Ritchie
allocator, but was not effective. A slab allocator implementation from Lauro Lins, which
uses offset pointers, is now in use. “With slab allocation, memory chunks suitable to fit data
objects of certain type or size are preallocated. The slab allocator keeps track of these chunks,
known as caches, so that when a request to allocate memory for a data object of a certain type
is received, it can instantly satisfy the request with an already allocated slot. Destruction of
the object does not free up the memory, but only opens a slot which is put in the list of free
slots by the slab allocator. The next call to allocate memory of the same size will return the
now unused memory slot. This process eliminates the need to search for suitable memory
space and greatly alleviates memory fragmentation. In this context, a slab is one or more
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contiguous pages in the memory containing pre-allocated memory chunks.”!

The slab allocator itself operates on a memory-mapped file. On Linux and Mac operating
systems, the system call mmap is used to create such objects. On windows operating systems,
the mmap wrapper mman-win32* is used to map the mmap function calls to the windows
memory-map functions CreateFileMapping and Map ViewOfFile. Read chapter 7 Nanocubes
on Windows for more details on the differences between the operating systems regarding
memory-mapped files.

A MemoryBlock object functions as an interface to the memory-mapped file, which the slab
allocator uses to allocate memory itself in a sequential manner. In order to save a nanocube
to disk, the memory block the nanocube is created on just needs to be written to a file. All
necessary objects to reload a nanocube are located inside the MemoryBlock. Therefore, loading
a nanocube is just a matter of linearly reading in the saved file back into a MemoryBlock. The
allocator object instance can be “recovered” by simply assigning (casting) the start address
(base pointer) of the MemoryBlock to an Allocator pointer, because the allocator stores itself as
the first object in the MemoryBlock. This is similar to the Nanocube object(s), whose offset
pointers are saved in the _root variable of an allocator object.

Due to the memory-mapping, nanocubes can be built, saved and loaded even if they exceed
the size of physically available RAM. Classic hard disk drives are not suitable to compensate
an insufficient amount of RAM, because the data structure nanocubes is not of a linear nature
and therefore requires storage devices that are capable of performing fast random read and
write operations. Solid-state drives (SSD), especially models with NVM Express (NVMe)
interface, fulfill this requirement and could be used in production systems to work with very
big nanocubes, that do not fit into RAM.

Every nanocube part has its own allocator object instance, because this enables the option
to load different nanocubes (parts), that have the same nanocube scheme, as one nanocube.
For the same reason, every nanocube part is saved into a separate file. This can be handy
when working with historic data. For instance, nanocubes from last week can be loaded
together with nanocubes from the current week to get a nanocube that visualizes both weeks’
data.

6.1 Compression

A raw nanocube file is highly compressible. For example, the dataset mentioned in sec-
tion 5.3 Benchmarks takes up over 17.2 GB as an eight parted nanocube. By using the bzip2
compression algorithm in standard mode, the files can be shrunk down to 1.93 GB (ca. 11 %).
To avoid additional steps when working with compressed nanocubes, direct gzip and bzip2
support is added. When loading nanocubes, bzip2 and gzip files are recognized by the file
extensions .bz2 and . gz. Enabling compression when storing nanocubes works alike.
Since the Boost C++ libraries’ were already in use, Boost.Jostreams* was chosen to add

Thttps://en.wikipedia.org/wiki/Slab_allocation#Basis
Zhttps://github.com/witwall/mman-win32

Shttp:/ /www.boost.org/
*http://www.boost.org/doc/libs/1_61_0/libs/iostreams/doc/index.html
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compression capabilities to the program. On windows operating systems gzip and bzip2
support is disabled by default. The library needs to be compiled with a command line
supplying either file paths to the locations of the headers and binaries of the compression
algorithms, if using pre-built binaries, or to the locations of the source files, if building from
the source’. For example:

b2.exe link=static threading=multi address-model=64

-sBZIP2_SOURCE="E:\bzip2-1.0.6" -sZLIB_SOURCE="E:\zlib-1.2.8"

--build-type=complete stage

This will build Boost on windows as a static 64-bit multi-threading library with gzip and
bzip2 support. The stated directories contain the source codes of the compression algorithms.
This step might be necessary on other operating systems too, if pre-built libraries are in use®.

To minimize the additional time spent when working with compression, nanocube parts
get compressed and decompressed in parallel. The concurrent processing is implemented
similar to the Future and async construct in the merging code described in section 5.2 C++11
Implementation.

A filtering stream buffer (filtering _streambuf) of type input from the boost iostreams library
is used to decompress either gzip or bzip2 files on the fly into memory. A basic array sink of
type char wraps the MemoryBlock a nanocube part is reloaded into. In order to use the copy
method of the library, the basic array sink needs to be wrapped one more time into a stream
object. copy reads from the filtering stream buffer, which performs the decompression, and
writes it into the main memory resp. the chain of stream, sink and MemoryBlock.

Saving the data structure works very similar. A filtering stream buffer of the same type as
above performs the compression on the fly while reading from a array_source, which wraps
the MemoryBlock.

The nanocube schema’ gets stored as a string with the name annotation in every Nanocube
object (part). The annotation of the nanocube part, which got load first, is used to “recon-
struct” the schema object. Given the vector of loaded nanocube objects and the schema, the
run method inside the main function is called similarly to the procedure when building a new
nanocube®.

Listing 6.1: C++11 implementation for loading nanocubes back into memory

std :: vector<std :: string> fileNames;
boost:: split (fileNames, options.load.getValue(),
boost::is_any of (","));

//read in every mnanocube

std :: vector<nanocube typex> nanocubes;

std :: mutex nanocubesMutex;

std :: vector<std :: future<nanocube_types>> nanocubeFutures;
for (std::string fileName : fileNames) {

>http:/ /www.boost.org/doc/libs/1_61_0/libs/iostreams/doc/installation.html

*Homebrew — The missing package manager for OS X, did install Boost without gzip and bzip2 support
“see section 4.1 Building a Nanocube from raw data

8read section 5.2 C++11 Implementation for more information
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nanocubeFutures. push _back (std ::async(std::launch::async,

[&fileNames, &options, &nanocubes, &nanocubesMutex ]
(std::string fileName) {
if ('fileExists (fileName)) {
std :: cout << "Can not load input file: " << fileName
<< std::endl;
std :: flush (std :: cout);
throw std::runtime _error ("Can not load input file");
}
else {
//get filesize
std::ifstream ifstream (fileName, std::ios::ate
std::i0s:: binary);
auto fileSize = ifstream.tellg ();
ifstream .seekg (0, std::io0s::beg);

std ::uint64 t arena_size =
options.max_nanocube size.isSet () ?
((uint64 _t)options.max nanocube size.getValue ()) =
1024 « 1024 % 1024
ARENA SIZE;

arena_size /= (std::uint64 t)fileNames.size ();

#ifdef WIN32

std :: wstring convert<std :: codecvt_utf8 utfl6<wchar t>>
converter;
alloc ::util ::MMapx mmap = new alloc:: util :: MMap(
arena_size , options.temp_ path.isSet () ?
&converter.from_bytes (options.temp_ path.getValue ())
nullptr);

#else

alloc::util ::MMapx mmap = new alloc :: util ::MMap(
arena_size);

#endif

//read file into mmap
auto mbBase = static_cast <charx>(
mmap—>memory_block (). base ());
if (!boost::ends with (fileName, ".gz") &%
!boost :: ends with (fileName, ".bz2"))
ifstream.read (mbBase, fileSize);
else {
boost::1ostreams:: filtering streambuf<
boost::1ostreams ::input> in;
if (boost::ends with (fileName, ".gz"))
in.push (boost::iostreams :: gzip _decompressor ());
else
in.push (boost::iostreams :: bzip2 decompressor ());
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in.push (ifstream);
boost::1ostreams :: basic_array_sink<char>
mbBaseArraySink (mbBase, arena size);
boost::1ostreams :: stream<
boost::iostreams :: basic_array_ sink <char>>
sMbBaseArraySink (mbBaseArraySink);
boost::iostreams ::copy (in, sMbBaseArraySink);

}

//get SlabAllocator back from read in memoryblock

Allocator* slab_allocator =
reinterpret_cast<Allocator*>(mbBase);

SlabAllocatorWrapper ::add(slab_allocator);

//get manocubes back from read in memory block
return reinterpret_cast<nanocube types>(
slab_allocator—=root ());

}
}, fileName));

//wait for threads to complete, store nanocube in vector
for (auto& nanocubeFuture : nanocubeFutures)
nanocubes.push back (nanocubeFuture. get ());

auto firstNanocube = nanocubes.front ();

// load header

std :: cout << "Annotation:

<< firstNanocube—>getAnnotation ()
<< std::endl;

std :: stringstream (firstNanocube—>getAnnotation ()) >> header;
std :: cout << "Loaded nanocube from file" << std::endl;

Schema schema (header);

run(std ::cin, nanocubes, schema);

Listing 6.2: C4++11 implementation for storing nanocubes to disk

static void save(std::string fileName) {
std::string fileEnding;
std::string fileNameWithoutEnding;
if (boost::ends with (fileName, ".gz")) {
fileEnding = ".nc.gz";
fileNameWithoutEnding = fileName.substr (0, fileName.length ()
— 2);

else if (boost::ends with (fileName, ".bz2")) {
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fileEnding = ".nc.bz2";
fileNameWithoutEnding = fileName.substr (0, fileName.length ()

— 3);
}
else {
fileEnding = ".nc";
fileNameWithoutEnding = fileName.substr (0, fileName.length ()
— 2);

}

int fileNumber = 0;
std :: vector<std :: future<void>> storFutures;
for (Allocator* allocator : slab_allocators) {
storFutures.push_back (std ::async(std::launch::async,
[&](Allocatorx allocator, int fileNumber) {
std::string tmpFileName = fileNameWithoutEnding;
std :: ofstream ofstr (tmpFileName. append (
std::to_string (fileNumber).append(fileEnding)),
std::i0s:: binary);
auto mb = allocator—memory_block ();

if (fileEnding = ".nc"
ofstr.write (static_cast <const charx>(mb. base ()),
mb. size ());
else {
boost::iostreams:: filtering streambuf<
boost::1ostreams ::input> in;

if (fileEnding =— ".nc.gz")
in.push (boost::iostreams :: gzip _compressor ());
else //. bz2

in.push (boost::iostreams :: bzip2 compressor ());
in.push (boost::iostreams ::array_source (
static_cast<const chars>(mb.base ()), mb.size ()));
boost::iostreams ::copy(in, ofstr);

}

}, allocator, fileNumber));

fileNumber++;
}

//wait for threads to finish
for (auto& storFuture : storFutures)
storFuture. get ();
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6.2 32-bit Support

The nanocube implementation was intended to run only on 64-bit systems. The switch
from tagged pointers to offset pointers has the fortunate side effect of making the program
compatible to outdated but still used 32-bit computer systems. Even though the offset inside
the offset pointers is stored as a 64-bit integer, dereferencing them on 32-bit systems works
too, because truncating the first thirty-two most significant bits of a 64-bit pointer will never
cause complications in this context; 32-bit operating systems return by definition only 32-bit
memory addresses. Truncating tagged pointers would “cut off” the additional information
stored inside the pointer, which would have caused problems.

The memory usage is significantly lower when using 32-bit binaries. For example, the same
dataset used up about 40 % less RAM on the same computer when using a 32-bit compilation.
This effect is probably due to the fact that 32-bit pointers are half the size of 64-bit pointers. I
assume that modern C++ compilers are able to optimize out the obsolete part of the 64-bit
(offset) pointers for 32-bit compilations. I can not think of another reason why a 32-bit
nanocube would be about half the size of a 64-bit version. A noteworthy difference in build
time was not encountered. Therefore, it does make sense to use 32-bit binaries even on 64-bit
systems, if the build nanocube does not exceed the 32-bit memory boundary of 4 GB.

This boundary is also the reason why the maximum nanocube size must always be limited
to at most 4 GB when using 32-bit binaries with the -g command line parameter in gigabytes.
The default maximum nanocube size of 32 GB on windows and 1 TB on Linux and Mac
cannot be addressed with a 32-bit process.
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7 Nanocubes on Windows

This chapter describes the changes that were made to make the Nanocube project compatible
with Microsoft Windows operating systems.

Nanocubes was primarily developed on Apple Mac OS with the integrated development
environment (IDE) Xcode. Because C++11 is a very powerful and complex programming
language, Xcode is up to this date' incapable of performing everyday refactoring task like
renaming a variable or method. For that reason, I chose to continue programming with
Microsoft Visual Studio 2015, which does support C++11 with proper refactoring.

Visual Studio resp. Windows operating systems do not use nor provide the #nistd.h header
file, which provides access to the POSIX operating system API on Unix-like systems®. On
Windows, the header file 70.h can be used instead. For that reason, every source file which
includes unistd.h now uses a preprocessor condition to automatically include the correct
header file depending on which operating system it is compiled on:

Listing 7.1: Precompiler directives to include header files depending on the operating system

#ifdef WIN32
#include <io.h>
#else

#include <unistd.h>
#endif

The memory mapping implementations on windows and Linux/Mac behave differently.
Linux and Mac use anonymous file mappings with a size of 1 TB, which are not backed by
any file, accept the swap file if necessary. Creating them on Windows operating systems does
require a contiguous memory block the size of the mapping. Due to the limited size and a
possible fragmentation of the RAM and the swap file, a large enough contiguous memory
blocks can be impossible to find. For that reason, the windows version of Nanocubes uses
file-backed mappings instead. Temporary files are created, one for each nanocube part, with a
total default size of 32 GB. The size can be adjusted with the -g command line parameter in
gigabytes. Standardly, the files are located in the systems default temporary folder, but this
can be changed with the -w command line parameter. This command line parameter is not
present on compilations for Linux or Mac. The temporary files are deleted automatically by
the operating system once all handles are closed, which 1s usually the case after exiting the
nanocube program.

File streams and the standard input stream (stdin) operate in binary mode by default on
Linux and Mac operation systems. Windows’ default is text mode, which is why the read

ISeptember 9, 2016
Zhttps://en.wikipedia.org/wiki/Unistd.h
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function in several places stopped reading at the first 0xOA byte, which is the ASCII code for
line feed indicating a newline. For that reason, every file stream constructor is now specifically
parameterized to open the stream in binary mode. Moreover, on Windows the _setmode
function is used to change the mode from standard input (stdin) to binary.

Visual Studio found programming errors which Xcode ignored like missing includes,
variables which were out of scope and wrong typenames in template definitions. Visual
Studio had a few smaller bugs too, which needed workarounds. In general, using both IDEs
during the development of Multi-part Nanocubes was helpful, because often the same problem
generated different error messages in the IDEs with a different degree of usefulness.

DMP files generated on windows use carriage return and line feed as line endings, instead
of just a line feed. The nanocube code is adapted accordingly to support both types of line
endings.

The third party libraries the nanocube program uses do all feature windows support.
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8 Future

Further development of the Nanocube project is done by the Information Visualization
department at AT&T Labs Research situated in New York City. Since the project is open
source, others might participate, too. Currently', a compressed version of Nanocubes is in
the works, which could greatly reduce the memory consumption by a factor of more than
ten times. Faster queries will be possible, too. Moreover, faster insertion and the multi-part
work described in this document will also apply naturally’.

The quadtree partition resp. the split points of a nanocube part should be stored inside the
nanocube file, too. This would remove the need to manually store the addresses, if adding
new points later on is planned.

The prediction of the remaining build time could be improved by basing it on a conceived
mathematical model that takes the rising insertion complexity into account.

!September 9, 2016
2Email from Lauro Lins to Lukas Scharlau, April 4, 2016
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9 Appendix

9.1 Pseudocode: Merging two Nanocubes

The following pseudocode is based on the original nanocube pseudocode’. The function Corm-
bine recursively merges nanocube A into nanocube B. The resulting nanocube is equivalent
to a nanocube built by the original pseudocode. Similarly to the nanocube paper?, the code is
designed for nanocubes with a temporal dimension as the last dimension.

Nanocube A is fully traversed in a depth-first search manner from left to right and compared
against nanocube B to find and if necessary add missing data into it. The first function call is
parameterized with the two root nodes of the nanocubes in question and the number of the
first dimension level.

The code first recursively builds up a call stack down to the last node of the current
dimension tree while creating missing nodes in nanocube B. Missing content nodes are
created and shared nodes are copied to insert new additional content without corrupting the
dataset. If the last dimension is reached all content from nanocube A’s node is copied to the
corresponding node in nanocube B. The copy function needs to only copy new data, that is
not already present in nanocube B. When working the paths back from bottom to the top of
the dimension trees, shared connections are made.

Notice that the original pseudo code in the nanocube paper has a bug that I found while
working with it to develop this pseudo code:

“ShallowCopy as written in the pseudo-code only works for internal nodes, not for time
series. Line 14 should be something like:”

SetProperContent (node, d=dim(S) °?
CopySummedTableTimeSeries (Content (node))
ShallowCopy (Content (node)))

Listing 9.1: Pseudocode for merging two nanocubes

Combine (Node A, Node B, int dimension) {
foreach (Childnode CA in A.childs) {
Childnode CB = B.childs[CA. Lable J;

if (CB = null) {
CB = new Node(CA. Lable);
B.childs.add (CB);

ITLKS13] Lins, Klosowski, and Scheidegger (2013): fig. 3, p. 3
2cf. fn. footnote 1
3Lauro Lins: https://github.com/laurolins/nanocube /issues/31
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}
//only in Flattree?
else if (CB.isSharedChild) {
CB = shallowCopy (CB);
B.childs[CA.Lable] = CB;
}
Combine (CA, CB, dimension);
}
//Add Content from Node A to Node B
bool isLastDimension = dimension — dim(S);
if (B.childs.count =— 1) {
setSharedContent (B. Content, B.childs[0]. Content);
return; //nothing more to do for this node
}
else if (B.Content.isSharedContent)
B.Content = isLastDimension ? copySummedTableTimeSeries (B.Content)
: shallowCopy (B. Content );
else if (B.Content — null)
B.Content = isLastDimension ? new SummedTableTimeSeries ()
: new Node ();
if (isLastDimension) //Copy TableTimeSeries from Node A to Node B
foreach (Object o in A.Content)
B.Content.add (o); //Problem: Add only new objects!
else //Combine the Content from Node A into Node B
Combine (A. Content, B.Content, dimension + 1);
}

9.2 UML class diagram

The UML class diagram on the next page contains all classes and their relations mentioned in
chapter 5 Multi-part Nanocubes. The diagram should help to get an overview of the program
parts in question and the changes I made to implement Multi-part Nanocubes. The diagram
does not include all classes nor all class relations of the nanocube program.
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cd Mulitpart Nanocubes )

A Nanocubes A Nanocube Server
A NanocubeServer A Request
A Nanocube A DimensionSpec A SlabAllocatorWrapper <<uses>>
© Atributes © Awbutes o boo__s & Uterals
= Attributes dimension_spec_| = Atrbutes it vies + done : bool + notes : sd:istring JSON_OBJECT=0
+ annotation : offset_ptr<char> r] + levels_per_dimension : int* + & stds <) > + finish : bool + request_string : const std::string
+ nanocubeNumber : int has -+ no_dimensions : int & Operations + MaskCache : mask_cache + response_size :int
51 Operations = Operations + words :std: vector <std::string> - conn : mg_connection *
+ allocatelntemalNode() : InternalNode<Summary> + init(no_dimensions : int, levels_per_dimension : int*) : void =l Operations = Operations
+ deregister_alias() : bool + Request(conn : mg_connection *, request_string : const std::string&)
ootiode() : RootNodk + intialzeQueryServer() : void + respondlson(msq_content : sta:string) : void
+ allocateSummaryNode() : SummarvNWe<5um"\il’v> + NanocubeServer(keme! : Kemel &) + respondOctetStream(ptr : const void *, size : std::size_t) : void
+ create(siab_allocator : Allocator, dim_no_level : const ummary_spec_ type : const summary_spec_type - const int) : Nanocube* P progra o cr(eagam : corst BngiProgram &, ey : e e & + respondText(msq_content : sta:string) : void
+ getAnnotation() : const sd:istring + register_alias()
:  ofset_p A Spec +run() : void
+ insert(addr : const AddressS, variables : const Summery::Record8) : void + run_async(): sd:thread
+ Nanocube(nanocubeNumber : int, slab_allocator : Allocator*) summary_spec | = Attributes + serveQuery(request : Request &, program : lang::Program &) : void A Parser
+ query() : Query<Summary> + no_variables : int + serveSchema(request : Request &) : void
+ setAnnotation(annotation : std::string) : void has 1 + storage_size : int + serveShowMemorylsage(request : Request &) : void = Attributes
'ﬁ:‘(node : vffmsjﬁ,?v<NodeF;ummaw>>)  void I + variable_storage_offsets : offset_ptr<int> + serveTiming(request : Request &) : void +call: qizrule< Rerator_type >
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