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ABSTRACT A numerical analysis of laser resonators with aber-
rations is presented. The analysis shows that aberrations lead
to large diffraction losses of laser resonators which are laid out
to produce diffraction-limited beam quality. Static or dynamic
compensation of the aberrations is possible and would yield
much higher output power.

PACS 42.15.Fr; 42.55.Ah; 42.55.Px, Rz

1 Introduction

The main obstacles in developing high-power
solid-state lasers with diffraction-limited beam quality are
thermo-optical aberrations of the active medium.

We performed a diffraction analysis of aberrated stable
laser resonators based on the Fox and Li algorithm, taking
into account the gain saturation of the beam within the active
medium. The goal is to understand the influence of aberra-
tions and to assess the potential of adaptive laser resonators in
which deformable intra-cavity mirrors are used to compensate
for the aberrations.

Several studies were performed to analyze the influence
of aberrations on solid-state lasers. Hodgson and Weber [1]
applied the Fox and Li algorithm [2] to analyze the influence
of spherical aberration on stable resonators. The numerical
results showed that the diffraction losses increase for stable
resonators operated near the limit of stability. Operating a sta-
ble resonator near the limit of stability is necessary in order to
obtain a large fundamental mode and diffraction-limited beam
quality. Bourderionnet et al. [3] also used the Fox and Li algo-
rithm in order to investigate the influence of spherical aberra-
tion and astigmatism on stable resonators. They showed that
for typical ratios of the laser beam diameter to the laser rod
diameter of 0.5, just 0.5 λ of spherical aberration will create
diffraction losses of more than 25%. This is in agreement with
our result for −0.5λ of spherical aberration which we will
present in Fig. 4. They also found no significant difference be-
tween resonator calculations that take gain and gain saturation
into account and calculations of empty resonators. Compar-
ing this finding with our calculations of resonators with gain
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is difficult because we do not know the gain, the saturation
intensity, and the output coupling they used. Kennedy [4, 5]
considered the problem of a stable resonator with spherical
aberration from a very interesting point of view that provided
deep physical insight. Resonator mirrors with spherical aber-
rations can sustain Gauss–Laguerre modes of high azimuthal
order. Such modes have an annular footprint on the resonator
mirrors. Each mode thus interacts only with an annular region
of the mirror and the mirror can be approximated by a spher-
ical surface across this region. Simulating gain competition
between such helicoidal modes produced a mode spectrum
which depends on the strength of the spherical aberration. He
calculated the beam quality by incoherent superposition of the
lowest-loss modes. One drawback of this approach is that pure
spherical aberration is the only type of aberration that can be
analyzed. Another drawback is that even for pure spherical
aberration, the eigenmodes of the empty resonator have to be
selected a priori and the true eigenmodes and their diffraction
losses can not be obtained.

2 Diffraction analysis

In the case of isotropic laser materials such as
Nd:YAG, thermally induced birefringence is the major source
of aberrations in cylindrical laser rods. However, it was
shown that thermal birefringence can be eliminated in a set-
up comprising two identical laser rods, a telescope, and
a 90◦-polarization rotator [6]. This scheme is now frequently
employed, and we therefore assume in our simulations that
the active medium is free of birefringence. The remaining
aberrations of the thermal lens are caused by unavoidable
inhomogeneities of the heat source density in the laser crys-
tal, by inhomogeneous cooling of the crystal due to stimu-
lated emission, by the temperature-dependence of the thermal
conductivity, and numerous other effects that lead to a non-
parabolic temperature profile in the laser rod.

When analyzing wavefront aberrations of a circular pupil,
Zernike polynomials [7, 8] are convenient to use because they
have some useful properties: they form a complete set, they
can be separated into radial and angular functions, and the in-
dividual polynomials are orthogonal and normalized over the
unit circle. The expansion of a wavefront W(�, θ) cross a cir-
cular aperture in terms of Zernike polynomials can be written
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FIGURE 1 Top: The resonator model that was used to calculate the eigen-
modes of resonators with aberrations by means of the Fox and Li algorithm.
The reflectivity of the output mirror was 86%. The limiting aperture is given
by the laser rod. Bottom: Aberration that was used in the numerical model,
measured in an arc-lamp pumped Nd:YAG laser [11]

as follows:
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The Zernike polynomials represent a rapidly converging basis
set for the low spatial frequency thermo-optic aberrations and
surface figure errors typically encountered in laser crystals.
If only the six lowest-order Zernike polynomials (piston, tip,
tilt, defocus, 0◦-astigmatism, 45◦-astigmatism) are present in
a resonator without gain, the eigenmodes of this resonator are
the familiar Gauss–Hermite or Gauss–Laguerre modes. Only
the size and thus the diffraction losses of these modes are af-
fected by the six lowest Zernike polynomials. We, therefore,

do not consider these polynomials as representing aberrations.
However, higher-order Zernike polynomials will result in as-
pherical resonators which have to be described by entirely
different sets of eigenmodes.

Zernike polynomials were developed to describe uni-
formly illuminated circular pupils of finite radius and this
radius is used as the normalization radius r0. In our simula-
tions the obvious choice for the normalization radius is the
radius of the aperture of the laser rod, even though it is not
homogeneously illuminated if a Gaussian beam is oscillating.
Defining the proper normalization radius is a more serious
problem if Zernike aberrations are applied to a beam propa-
gating outside of a laser resonator [9].

Figure 1 shows a schematic diagram of the symmetrical
resonator model and of the wavefront aberrations that were
used in our numerical calculations. The Fox and Li algorithm
for solving the diffraction integral was implemented using
the GLAD code (General Laser Analysis and Design) from
Applied Optics Research [10]. Gain saturation is taken into
account by applying Beer’s law with a spatially non-uniform
saturation of the laser mode:

Ii,t (x, y) = I(i−1),t (x, y)

× exp

⎡
⎢⎣ g0

1 + Ii,(t−2)(x,y)+I(nstep−i),(t−1)
(x,y)

2IS

∆z

⎤
⎥⎦ ,

(4)

∆z = l/nstep,

i = 1 . . . nstep,

t = 1 . . . (2 ×maximum round trips) ,

where g0 is the unsaturated small-signal gain coefficient and
I(x, y) is the optical power per unit area. The area is di-
vided into 1024 ×1024 elements in order to have sufficient
spatial resolution and limit the computational load. The gain
medium we wanted to simulate is a high-power Nd:YAG
laser rod of l = 180 mm length which cannot be approxi-
mated by a single gain sheet if nonlinear gain saturation is to
be taken into account. Therefore, the gain medium was split
into nstep = 100 sheets and the propagation distance ∆z be-
tween the gain sheets is thus ∆z = l/nstep. The small-signal
gain coefficient in our model had a value of g0 = 0.05 cm−1,
resulting in a small signal gain of g0 l = 0.90 for a single
pass through the 180 mm long laser rod. IS is the satura-
tion fluence (we used IS = 1 kW/cm2) and Ii,t(x, y) is the
intensity in the i-th slice and the t-th trip through the gain
medium. The output coupling mirror has a reflectivity of
Refl = 86% and the wavelength is 1.064 µm. Wavefront aber-
rations were included in the center of the gain medium. The
aberrations which we used in our simulations have actually
been measured at a birefringence-compensated industrial arc-
lamp pumped Nd:YAG laser using a Shack–Hartmann wave-
front sensor [11]. For the numerical analysis, the Zernike
polynomials piston, tip, tilt, and defocus were subtracted from
the measured wavefront in order to investigate the sole in-
fluence of higher-order aberrations. The Zernike polynomials
and corresponding coefficients of the aberrations are listed
in Table 1. The total peak-to-valley wavefront distortion was
1.4 µm.
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Zernike polynomiala common name Zernike coefficientb

Z−2
2 = ρ2 sin (2θ) astigmatism 0◦ 0.200

Z2
2 = ρ2 cos (2θ) astigmatism 45◦ −0.500

Z−1
3 = (

3�2 −2�
)

sin (θ) coma x 0.050

Z1
3 = (

3�2 −2�
)

cos (θ) coma y −0.135

Z0
4 = 6�4 −6�2 +1 spherical aberration �4 −0.130

Z0
6 = 20�6 −30�4 spherical aberration �6 −0.020

+12�2 −1

a The definition are those given by Born and Wolf [7] and the ordering is
given by Wyant [8]

b Zernike polynomials normalized over a diameter of 4.4 mm. Aberration
of a lamp-pumped Nd:YAG laser rod, pumped with 4.9 kW electrical
power and, measured with a Shack–Hartmann sensor [11]

TABLE 1 The Zernike polynomials used in the numerical calculation

A resonator with g-parameters g1 and g2 that contains
a medium with a thermal lens can be treated as a resonator
without a thermal lens but different, so-called “equivalent g-
parameters” g∗

1 and g∗
2. The equivalent g-parameters are [12]:

g∗
j = gj − Ddk

(
1 − dj

Rj

)
j, k = 1, 2 j �= k,

gj = 1 − (d1+d2)

Rj
,

(5)

where dj is the distance between mirror j and the closest prin-
cipal plane of the thermal lens, Rj is the radius of curvature
of mirror j , and D the refractive power of the thermal lens.
We analyzed symmetrical stable resonators with g-parameters
g∗ = g∗

1 = g∗
2. Unstable resonators with

∣∣g∗
1g∗

2

∣∣ > 1 were not
investigated.

The beam quality factor M2, the diffraction losses per
round trip, and the output power were calculated for a large
number of stable resonators with g-parameters ranging from
g∗ = −1 to g∗ = 1. In a real laser with flat resonator mirrors,
these g-parameters could be obtained by varying the pump
power and thus changing the power of the thermal lens in
the active medium or by varying the resonator length. How-
ever, in our simulations the pump power and thus the gain
were fixed while the power of the thermal lens was varied in
order to study the sole influence of aberrations for different
g-parameters at constant small-signal gain.

After about 2500 round trips, the mode inside the res-
onator usually had reached a steady-state. However, even after
2500 round trips, the eigenvalue Λ of some resonators was
oscillating between two values which differed by up to 10%.
Since these oscillations appeared to be undamped, calculat-
ing more round trips would not have eliminated the oscilla-
tions. This is a well-known problem of the Fox and Li algo-
rithm. The eigenvalue Λ represents the fraction of the total
power that is not lost in each round trip due to output coup-
ling and clipping at the laser rod aperture of 4 mm diameter.
L = Λ/Refl is thus the power transmission per round trip of
the laser rod aperture. The value ∆L = 1− L is usually called
the diffraction loss or clipping loss of the resonator per round
trip.

The output power of a laser strongly depends on the
diffraction losses because the gain saturation depends on the
intra-cavity power. The errors in our calculated values of the

laser output power can therefore be larger than 10%. Great
care was taken to avoid aliasing due to the Fast-Fourier-
Transform algorithm of the GLAD code and to avoid insuffi-
cient spatial resolution of the numerical fields. The first round
trips of each resonator calculation were monitored in order
to ensure that these effects were not present and a different
field size or a different propagation algorithm was selected
if necessary. Some physical approximations are inherent to
the Fox and Li algorithm. For example, spatial hole burning,
relaxation oscillations, and superposition of incoherent trans-
verse modes are not represented. Nevertheless, the algorithm
is known to produce meaningful results for the diffraction
losses, the output power, and the beam quality of real laser
resonators.

FIGURE 2 Beam quality factor M2, diffraction losses, and output power
with and without aberrations for g-parameters ranging from g∗ = −1 to 1
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The calculated beam quality factors M2 are prone to nu-
merical errors. M2 is based on the second moments of the
near- and far-field intensity distributions, and it is well-known
that the second moments are prone to errors because the inten-
sities are weighed by the square of the distance of the center of
gravity. The most important results of our calculations are the
diffraction losses of the different resonators.

In Fig. 2, the M2 values, the diffraction losses ∆L, and the
laser output power of all resonators are shown as a function of
the g-parameter. If aberrations and gain saturation were neg-
lected, the Laguerre–Gaussian modes were the eigenmodes

FIGURE 3 Beam quality factor M2, diffraction losses, and output power of
three resonators with different g-parameters g∗ as a function of the relative
aberration strength

and the beam quality could be estimated by the ratio between
the square of the laser rod radius and the radius of the funda-
mental Laguerre–Gaussian mode in the laser rod. The result-
ing beam quality factors M2 are shown for comparison.

By looking at the top of Fig. 2, it seems that the aberra-
tions apparently have little influence on beam quality. Only
in the case of a near-planar resonator (g∗ ≈ 1) and an almost
concentric resonator (g∗ ≈ −1) beam quality is deteriorating
due to the aberrations. The intensity distribution on the output
coupling mirror shows side lobes if aberrations occur.

FIGURE 4 Beam quality factor M2, diffraction losses, and output power of
a resonator with g-parameter of g∗ = −0.999 as a function of Zernike coeffi-
cient for different Zernike polynomials. The resonator without aberrations is
located at a Zernike coefficient of zero and marked with the dashed line
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The most important result of our calculations is that in the
regions of fairly good beam quality near the resonator stabil-
ity limits at g∗ = ±1, the diffraction losses are very high and
the output power drops to low values. We can conclude that
aberrations only have a significant influence if the resonator
is operated near the geometrical stability limits. Here, aberra-
tions result in strongly increased diffraction losses and prevent
efficient laser operation. On the other hand, good beam quality
can only be achieved near the stability limits, where the funda-
mental mode diameter is large. Thus it is not possible to obtain
high output power and good beam quality simultaneously in
the presence of severe aberrations.

Since we want to correct the aberrations with a deformable
mirror, it is important to know the necessary precision of
the surface figure of a deformable mirror. We, therefore, per-
formed another set of calculations in which the aberration
strengths were varied for three resonators with g-parameters
of g∗ = −0.999, g∗ = 0.999, and g∗ = −0.9. The measured
aberration shown in the lower part of Fig. 1 was simply multi-
plied by a factor (termed “relative aberration strength”) rang-
ing from 0 to 1.2. The results of these calculations are shown
in Fig. 3. Diffraction losses start to increase when the rela-
tive aberration strength becomes larger than about 0.1 for
nearly diffraction limited laser beams with g∗ = −0.999 and
g∗ = 0.999. In contrast, at g∗ = −0.9 the resonator already op-
erates in transverse multimode and the aberrations have little
influence. Remembering that the peak-to-valley variation of
our original aberration is 1.4 µm (see Fig. 1), this result means
that we need to compensate the wavefront distortions to an
accuracy of roughly 0.14 µm.

The last part of the simulations comprised a resonator with
g-parameter of g∗ = −0.999 onto which different Zernike
aberrations are acting. The results for pure and mixed Zernike
polynomial aberrations are shown in Fig. 4. It can be seen
that aberrations like tilt, coma and trifoil have almost no ef-
fect on beam quality and diffraction losses for the investi-
gated resonator with the g-parameter g∗ = −0.999. In con-
trast, other Zernike polynomial aberrations such as astigma-
tism and spherical aberration �4 have a strong influence. They
lead to increased diffraction losses and degradation of beam
quality.

In some parts of the diagram, aberrations even have the
ability to decrease diffraction losses. This effect is observed
for spherical aberration �6 in the range of Zernike coefficients
between 0 to 0.5 and for spherical aberration �4 in the range of
Zernike coefficients between −0.5 to 0.

The simulations were done for pure Zernike polynomi-
als as well as for superpositions of different Zernike poly-

nomials. Figure 4 shows that the combined influence of dif-
ferent Zernike polynomials is not just the sum of the influ-
ences of the individual Zernike polynomials. This is to be
expected because a laser resonator is a nonlinear system.
For example, a combination of Zernike coefficients of 0.1 for
astigmatism, spherical aberrations �4 and spherical aberra-
tions �6, leads to a weak reduction of the diffraction losses and
an improvement of beam quality, while 0.1 waves of astigma-
tism or spherical aberrations �4 lead to a strong increase of the
diffraction losses.

3 Summary

In summary, the numerical calculations show that
aberrations have a significant influence if the resonator is op-
erated near the stability limits. In these cases, the aberrations
result in strongly increased diffraction losses and prevent ef-
ficient laser operation. It is important to note that a resonator
has to be operated near the stability limits if good beam qual-
ity is required. Some aberrations like tilt, coma or trifoil have
almost no effect on diffraction losses and beam quality, while
astigmatism and spherical aberration �4 have a strong influ-
ence and lead to increased diffraction losses. Adaptive optics
has the ability to compensate the aberrations. A deformable
mirror with an accuracy of roughly 0.1 µm, equivalent to
∼ λ/10, is necessary.
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