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Research Focus
Semiconductor and Bus Lab

1. Embedded/ SoC Design – Autonomous 
Wireless Sensor Networks (WSN) 

2. Energy Harvesting/ Scavenging

3. Resilient Computing – Consideration of 
device degradation effects at the design 
level
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Trends: A new class of computing 
(Moore’s Law)
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Examples of upcoming sensor network 
applications
 Environmental monitoring

 Habitat monitoring

 Precision agriculture

 Heating Ventilation Air-Conditioning
(HVAC) systems

 Security, surveillance

 Structure and equipment monitoring

 Structural dynamics

 Condition-based maintenance

 Emergency response

 Supply chain monitoring

 Manufacturing flows, asset tracking

 Context aware computing

 Information beacons

Firefighting
and rescue

Process monitoring
and control

Structure and
earthquake monitoring

Agriculture

Home automation
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Consumption:

Current Research Topic:

Power-Optimization of autonomous 
WSN Cypress

Radio
CPU 
ATM-168

LM75 
Temp.

LDR Regulator 
LP2989-3.3

LED

 Active             91%         <1%         2%          4%           1%             <1%    

 Sleep               <1%          0%         0%          7%          90% 3% 

Autonomous Power Supply 
Requires Optimization
Of Sleep Mode!
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Version A

 Active 58/ 69mA    600µA  1.4mA    3.5mA        1mA           250µA
91%         <1%      2%        4%          1%            <1%

 Sleep 0.24µA 0µA       0µA        8µA     110µA               4µA
<1%            0%        0%        7%      90% 3%

Power Consumption: Version A vs. B

Cypress
Radio

CPU 
ATM-168

LM75 
Temp.

LDR Regulator 
LP2989-3.3

LED Σ
75.8mA

122µA

 Active         58/ 69mA    600µA   1.4mA    3.5mA        5µA           250µA 
91%          <1%         2%         4%           1%             <1%

 Sleep           0.24µA         0µA       0µA        8µA         0.5µA            4µA
2%             0%         0%         64%          4% 32%

74.8mA

12.7µA

Cypress
Radio

CPU 
ATM-168

LM75 
Temp.

LDR Regulator 
TPS780

LED Σ

 

Version B
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Power Consumption: Version A vs. B

Version A                   Version B              Reduction

Active         75.8mA                        74.8mA                    - 1.3 %

Sleep            122µA                         12.7µA                  - 89.6 %
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Power Demand Version B

Duty
Cycle

10 trans/ s 1 trans/ s 0.3 trans/ s 0.1 trans/ s 2 trans/ min 1 trans/ min

AVG
Current 

Active
Sleep
Sum

4.29mA
12.7µA
4.3mA

429µA
12.7µA
442µA

129µA
12.7µA
142µA

43µA
12.7µA
56µA

14µA
12.7µA
27µA

7µA
12.7µA
20µA

AVG
Power 
Ver. AB

14.2mW
-3%

1.5mW
-17%

469µW
-43%

185µW
-66%

89µW
-80%

66µW
-85%

 3ms @ 4.5mA Exit from Sleep = 13.5µAs

 3ms @ 4.5mA Radio wake up = 13.5µAs

 4ms @  59mA Receive/ Wait for Packet =  236µAs 

 200µs + 128µs/byte @ 70mA Transmit mode

 11-byte packets = 113µAs

 17-byte packets = 166µAs

  Average charge per communication (17-byte packet): 
13.5µAs + 13.5µAs + 236µAs + 166µAs = 429µAs 
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Power Sources for 
Wireless Sensor 

Networks
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Power Trace for a Wireless Sensor 
Node
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Batteries
Example:

 Low-power node (sleep 80µW)

 Cycle of five to ten times an hour 
(overall average 100µW)

 Requires 876mWh during 1 year

 Lithium cell (open-circuit potential 3V) 
and capacity of 300mAh meets this goal 
(discounting self-discharge and the poor 
high-current pulse response) 

 Battery weighs under 5 g, is roughly 
5mm3

Besides costs:
1. Lifetime
2. Size
3. Environment
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Battery Degradation

Difficult to generalize:

 Lifetime and size usually balanced 
about the energy density of cell in 
short term (1–18 months)

Beyond two years self-discharge of 
cell becomes complicating factor

Environmental concerns are 
superimposed on top of calculation. 
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Energy Harvesting
 Industrial installations: 

 harsh environments 

 lifetime expectancies exceed 10 years

 Biomedical devices: 

 defibrillators and pacemakers that 
require routine invasive surgeries

 simply to replace power source could be 
run “indefinitely” from a device that 
converted small fraction of the body’s 
120W

 Environmental sensors for regulatory 
purposes:

 the use of smart dust in forests

 prevent forest fires and pollution 
d t ti

Firefighting
and rescue

Process monitoring
and control
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Energy Conversion

Light Chemical Mechanical Thermal Electric

Photovoltaic

Induction

Piezoelectric

Seebeck Effect

Accumulator

Full cell
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Energy Harvesting vs. 
Energy Scavenging

Energy scavenging refers to 
environments where the ambient 
sources are unknown or highly 
irregular,

Energy harvesting refers to 
situations where the ambient energy 
sources are well characterized and 
regular.
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Photonic Methods

Condition Power 
incident 
(mW/cm2)

Mid-day, no clouds 100

Outdoors, overcast 5

1m from an incandescent bulb 10

1m from a low-energy light-bulb 
(compact fluorescent lamp 
(CFL))

1

Power available for a variety of lighting conditions 
(Roundy et al. 2003)
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Photonic Methods

Technology Best reported 
efficiency (%)

a-Si 11

p-Si 18

SC-Si (single crystalline silicon) 25

Dye-sensitized (thin-film solar cell) 11

Organic 5

CdTe (Cadmium telluride) 15

CIGS (copper indium gallium 
selenide) 

19

Multi-gap 35

Photovoltaic technologies and reported 
maximum conversion efficiencies (Green et 
al. 2005)
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Vibrational Methods

 Piezoelectric materials: mechanical strains 
across  material layer generate surface 
charge, when oscillating load is placed on 
structure an AC power source results

 Inductive systems: magnet moving through 
wound coil induces current through coil

 Capacitive systems: charge on a capacitor 
is “pumped” by varying distance between 
plates of the capacitor, harvester always 
requires voltage source from which to pump
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Vibrational Methods
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Piezoelectric Power Harvester

Midé Technology:
Volture Piezo Energy Harvester - v20w
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Piezoelectric Power Harvester

Technology Power Conditions Size Source

PZT 0.375mW 9.1g, 2.25m/s2, 
85 Hz

1cm3 Roundy 
(2005)

Electromagnet
ic

3mW 50g, 0.5m/s2, 
50Hz

41.3cm3 Beeby et 
al. (2007)

Capacitive 3.7µW 1.2mg, 10m/s2, 
800Hz

0.75cm3 Mitcheson 
et al. 
(2003)

Comparison of various vibrational-harvesting technologies
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Power management – from scavenger to 
storage

Rectifier
DC/DC-

converter

Power Management Circuit

Controller

m Energy
storage

scavenger
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Thermal Methods

Performance of various thermoelectric systems

System Power 
(mW)

Conditions Source

Bismuth 
telluride 
(Bi2Te3)

60 20°C above RT, 
16cm2

Schneider 
et al. 
(2006)

Bismuth 
telluride 
(Bi2Te3)

0.67 5°C above RT, 
1mm2

Bottner et 
al. (2004)

Bismuth 
telluride 
(Bi2Te3)

45 5°C above RT, 
287mm2

Stordeur 
and Stark 
(1997)
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Thin Film Thermogenerator

Micropelt: TE-Power-One
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Thin Film Thermogenerator

Dept. of Electrical Engineering and Computer Science                                                                         Prof. Dr.-Ing. Peter Glösekötter

31

Video
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Field Programmable Gate Array
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Variability-Aware Design

close structured circuit far structured circuit
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Variability-Aware Design
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How much Variability exist in FPGAs?
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Variability-Aware Design

Next Steps:

• Variability studies using ring oscillator

• Impact of device aging (ring osc & comb. 
logic)

• How to deal with aging and variability? 
(reconfigurability ?, late binding?) 


