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Abstract In order to avoid optical damage and non-linear
effects, high-power high-energy lasers of the petawatt class
like PHELIX (Petawatt High Energy Laser for Heavy-Ion
Experiments) use large aperture optics. Usually chromatic
aberration associated with these optical elements is neglected.
By means of numerical simulations we show how the chro-
matic aberration affects the focal intensity pattern. In particu-
lar, we make quantitative predictions on how chromatic aber-
ration decreases the focused peak intensity. Furthermore, we
prove the feasibility of a new interferometer that measures the
temporal pulse front distortions which arise from expansion
telescopes. We also propose a scheme that pre-compensates
these distortions.

PACS:42.65.Re, 42.60.Jf

1 Introduction

In the last decade, ultra-high peak intensity laser systems have
opened the path to exciting new experimental possibilities
like the acceleration of high-energy particle beams, x-ray gen-
eration, or the exploration of relativistic plasma physics [1–
4]. The realization of pulse peak powers in excess of 1 PW =
1015 Watt has been enabled by the invention of chirped pulse
amplification (CPA) [5,6]. Based on this scheme, several peta-
watt-class laser systems have been built or are currently under
construction [7]. The CPA technique consists in temporally
stretching a short pulse from an oscillator by a factor of 104

before amplifying it to the desired pulse energy. This way
the peak intensity in the laser system during amplification is
lowered, thus avoiding damage and pulse distortion due to
non-linear effects. Finally, the energetic pulse is compressed
to a pulse duration close to the original value.
A typical ultra-high peak power laser system includes a num-
ber of Keplerian telescopes to provide spatial filtering, re-
lay imaging of the non-Gaussian intensity distribution and

magnification of the beam. These telescopes require posi-
tive lenses of up to 0.5 meters in diameter. Unless achro-
matic lenses are employed, this leads to a gradually increas-
ing amount of chromatic aberration. It was first pointed out
by Bor [8] that chromatic aberration leads to a curved pulse
front in the near-field which causes an increase of the pulse
duration in the focus. Thus chromatic aberration can drasti-
cally affect the performance of ultra-high intensity laser sys-
tems by reducing the focal intensity achievable in absence
of chromatic aberrations[9,10]. To quantitatively predict the
impact, a full wave-optics solution of the short-pulse propa-
gation is required. Numerical solutions of the spatio-temporal
intensity distribution in the focus of a singlet lens in the pres-
ence of chromatic aberration have been shown by Kempe et
al. [11,12], while Fuchs et al. analyzed the temporal focusing
properties of different lenses for imaging systems [13].
In this paper, we present a more detailed study on the impact
of chromatic aberration on the intensity distribution in the
focal area including additional effects like spatial phase aber-
rations and non-Gaussian intensity shapes for typical beam
parameters found in ultra-high peak power lasers. For this
purpose, we have developed a numerical model that calcu-
lates the wave propagation of a coherent, broad-band laser
pulse, similar to the one employed in [13]. We propose to
pre-compensate the chromatic aberration in ultra-high peak
power laser chains at a small beam diameter and offer two
simple and yet powerful pre-compensation set-ups. Finally,
we demonstrate the use of a self-referencing shifted-field au-
tocorrelator to measure the pulse front distortion that due to
chromatic aberration.

2 Chromatic aberration in a high peak power laser

2.1 Chromatic aberration and pulse time delay

We define the chromatic aberration of a broad-band laser beam
by a wavelength-dependent wavefront radius-of-curvatureR (λ),
where the curvature ξ(λ) = 1/R (λ) varies in first-order ap-
proximation linearly with the wavelength λ around the center
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Fig. 1: Phase φ(r, λ) and radius of curvature R(λ) of a wavefront
with wavelength λ

wavelength λ0:

ξ(λ) = ξ0 +
dξ
dλ

∣∣∣∣
λ0

· (λ− λ0). (1)

Here ξ0 is the wavefront curvature at λ0. Focusing a beam
with chromatic aberration as defined in Eq. (1) with a lens
of focal length f(λ) leads to a wavelength-dependent shift of
the focal position:

∆z(λ) ≈ f2
0

dξ
dλ

∣∣∣∣
λ0

· (λ− λ0). (2)

The phase of the curved wavefront at the radial distance r �
R(λ) from the optical axis is given by, see Fig. 1:

φ(r, λ) ≈ πξ(λ)
λ

· r2. (3)

In vacuum, this results in a radially varying group delay of

T (r) =
dφ
dω

=
−λ2

2πc
· dφ

dλ

∣∣∣∣
λ0

=
r2

2c

(
ξ0 − λ0

dξ
dλ

∣∣∣∣
λ0

)
,

(4)

which causes a distortion of the pulse front. Here c is the vac-
uum speed of light. Equation (4) yields a paraboloidal pulse
front with the curvature being the sum of the wavefront cur-
vature ξ0 of the center wavelength and an additional curvature
as a consequence of chromatic aberration dξ

dλ

∣∣∣
λ0

(see Fig. 2):

TCA(r) = −r
2

2c
· λ0

dξ
dλ

∣∣∣∣
λ0

. (5)

We define the pulse time delay TPTD as the delay of the beam
edge at radius rmax with respect to the central part of the
beam:

TPTD := TCA (rmax)− TCA (0) . (6)

We will show in the next sections that this quantity adequately
describes the impact of chromatic aberration in a high-power
laser system. Therefore, we will use this quantity throughout
the rest of this paper as an alternative definition for chromatic
aberration.
As a specific example, the chromatic aberration of a singlet
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Fig. 2: Wavelength dependent wavefront curvatures result in a radi-
ally varying delay T (r) of the pulse front, Eq. (4). Here ξ0 = 0.

lens of focal length f(λ) ≈ f0 + df
dλ

∣∣
λ0
· (λ − λ0) will

turn plane waves into spherical waves with a wavelength-
dependent radius of curvature 1/ξ(λ) = R(λ) = f(λ). With

df
dλ

= − 1
ξ2(λ)

· dξ
dλ

and
df
dλ

=
−f0

(n0 − 1)
dn
dλ
,

the pulse time delay of a singlet lens is

TPTD,lens =
−λ0

2cf0(n0 − 1)
dn
dλ

∣∣∣∣
λ0

· r2max, (7)

where n0 is the refractive index of the lens material at λ0.
This equation has first been derived by Bor [8] and was dis-
cussed in the context of short-pulse lasers in the ultra-violet
(λ0 = 249 nm, BK7: λ0

dn
dλ

∣∣
λ0

= −0.18), where dispersion
of common materials is about 10 times larger than in the near
infra-red (λ0 = 1054 nm, BK7: λ0

dn
dλ

∣∣
λ0

= −0.014).
Due to the quadratic dependence of TPTD on the beam size
rmax and due to the large aperture needed in ultra-high peak
power lasers, chromatic aberration significantly affects the
performance of these systems and hence cannot be neglected
for large beam diameters.

2.2 Pulse time delay in ultra-high peak power lasers

To date, pulse energy and peak power are mainly limited by
laser-induced damage of the optical components. The weak-
est element in a high-power CPA laser system is usually the
last grating of the pulse compressor. The fluence damage thres-
holdϕτ0 (fluence normal to the beam) of state-of-the-art multi-
layer dielectric (MLD) gratings is on the order of ϕτ0 ≈
0.6 J/cm2 at a pulse duration of τ0 = 500 fs. The subscript
τ0 indicates that the damage threshold varies with pulse dura-
tion. For MLD gratings ϕτ0 decreases monotonically with de-
creasing pulse duration. The maximum achievable pulse peak
power at a pulse duration τ0 for a top-hat intensity distribu-
tion is

Pmax =
π · r2max · ϕτ0

τ0
. (8)
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With Eq. (7) the ratio between the pulse time delay for a sin-
glet lens and the duration of the undistorted pulse τ0 is given
by

TPTD

τ0
=
Pmax

ϕτ0

· −λ0

2πcf0(n0 − 1)
dn
dλ

∣∣∣∣
λ0

. (9)

This ratio provides a good estimate when the pulse time delay
and therefore chromatic aberration start to affect the achiev-
able peak intensity in the focus significantly. As an example,
for a fused-silica lens with a focal length of f0 at the center
wavelength of λ0 = 1.054 µm and λ0

dn
dλ = −0.014, we

obtain
TPTD

τ0
≈ 2.5 · 10−15 m

W
P

f0
. (10)

It should be noted that this includes only one lens for a beam
radius of rmax. Equation 10 shows that for petawatt class
laser systems, P ≥ 1015W , the ratio TPTD/τ0 can easily ex-
ceed unity [9,18]. For the petawatt laser PHELIX [14], the
beam is magnified with telescopes to a radius of rmax =
150 mm for the last amplification stage. The pulse is then
guided with an additional transport telescope to the experi-
mental area. Therefore, in PHELIX a total of five large aper-
ture lenses are used. The sum of the pulse time delays from
all lenses in the laser chain is TPTD = 600 fs. With the final
pulse duration of τ0 = 500 fs, the ratio TPTD/τ0 = 1.2 indi-
cates that the influence on the pulse spatio-temporal structure
cannot be neglected.

3 Numerical wave optics propagation model

In the focal spot region, the spatial and temporal pulse form
can not be described by geometrical optics. Hence, it is nec-
essary to solve the diffraction integral. To calculate the propa-
gation of ultra-short, broadband laser pulses with an arbitrary
initial intensity distribution and arbitrary spatial phase aber-
rations, we have developed a numerical model based on the
commercial wave optics propagation code GLAD. In the first
step, we calculate the propagation of the initial field distribu-
tion E(ωn, x1, y1, z0) at z0 to z for a set of monochromatic
waves with frequencies ωn with GLAD:

E(ωn, x2, y2, z) = P [E(ωn, x1, y1, z0)] . (11)

Here P is a placeholder for the propagation calculation with
GLAD. Spatial and chromatic aberrations and group veloc-
ity dispersion are included as frequency and space dependent
phase shifts and can be separately switched on or off. The
resulting complex fields are multiplied with the spectral am-
plitude ψ(∆ω) of the laser, with∆ω = ωn−ω0 and ω0 being
the center frequency. To obtain the E-field in the time domain,
the Fourier-transformation

E(t, x2, y2, z) = FFT{ψ(∆ω) · E(ω, x2, y2, z)}. (12)

is performed. With our diffraction model, it is now possible
to calculate the relative intensity change inside the focal re-
gion due to the pulse time delay. In the wave optics prop-
agation code, we start with a flat pulse front perpendicular
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Fig. 3: Pulse front curvature resulting from a singlet lens with chro-
matic aberration in a τ0 = 500 fs beam, as predicted by a the ge-
ometrical optics model of Bor and b-e our wave optics short-pulse
propagation model at four different z-positions after the lens. Param-
eters for the calculation are given in the text. zr is the Raleigh length
of the beam waist. b In the geometric-optical regime before reaching
the focal region. c Five Rayleigh ranges before the focal region. d At
focal position; the solid line indicates the half maximum contour of
an undistorted pulse, the dashed line the half maximum contour of
the distorted pulse. e At this z-position behind the focus, the group
delay is T (r) = 0; the group delay caused by chromatic aberra-
tion dξ

dλ

˛̨
λ0

compensates the curvature of the center wavelength, see
Eq.4.

to the propagation direction and employ one Keplarian tele-
scope to obtain a chromatic aberration equivalent to that of
the actual laser chain. Finally, the pulse is focused with an
ideal (i.e. achromatic) parabolic mirror. The following calcu-
lations are performed for typical PHELIX beam parameters
if no other values are given: The spatial intensity profile is
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super-Gaussian of order sg = 8 according to:

I(r) = I0 · exp

[
− ln(2)

(
r

rmax

)2sg
]
, (13)

with a half-width half-maximum radius of rmax = 150 mm
and the center wavelength of λ0 = 1054 nm. The spectral
amplitude is assumed to have a Gaussian shape:

ψ(∆ω) ∝ exp

[
− (τ0∆ω)2

8 ln(2)

]
, (14)

with the pulse duration τ0 = 500 fs (FWHM). The chromatic
aberration for the entire system corresponds to a pulse time
delay of TPTD = 600 fs. For the calculations an f/# = 3
focusing was used. However, the results are independent of
the f-number f/# of the final focusing mirror.
Figure 3 shows a comparison of results for the example of
a singlet lens with chromatic aberration, as predicted by the
geometrical optics model of Bor [8] in Fig. 3a and our wave
optics short-pulse propagation model in Fig. 3b-e. The pic-
tures show snapshots of the intensity pattern at various dis-
tances z after the lens. Far away from the focal region, the
geometric optics treatment is accurate and the pulse front is
the sum of the group delay caused by the phase curvature ξ0
and the pulse time delay, Eq. (4), see Fig. 3b. The shortest
pulse duration occurs at the z-position where T (r) = 0. Here
the group delay caused by chromatic aberration (dξ/dλ)|λ0

compensates with the group delay caused by the curvature of
the center wavelength, i.e. ξ0 = λ0

dξ
dλ

∣∣∣
λ0

, see Fig. 3e. At

these locations far from the focal region, geometrical optics
and wave optics are in good agreement. Figure 3.c shows the
pulse close to the geometrical focus. The pulse time delay is
much larger than the delay due to the phase curvature and
dominates the pulse form. Figure 3d shows the intensity dis-
tribution at the focus. In geometrical optics, the marginal rays
have already passed the focus when the center rays reach it.
This predicts a strongly distorted pattern. However, with the
given pulse time delay of TPTD = 600 fs and the pulse du-
ration of τ0 = 500 fs, wave optics predicts a nearly Gaussian
profile in time with decreased intensity.

Figure 4 shows how the pulse time delay affects the peak
intensity in the focal spot for pulse durations of τ0 = 200 fs,
τ0 = 500 fs, and τ0 = 900 fs. As expected, the achievable fo-
cal intensity starts to get significantly reduced for TPTD & τ0.
For PHELIX, the intensity decrease is around 35%. The com-
parison of the curves shows that at equal ratios TPTD/τ0 the
impact is slightly higher for longer pulses than for shorter
ones.
Usually, a super-Gaussian spatial intensity distribution as de-
scribed by Eq. (13) is used in a high-power laser chain. A
super-Gaussian shape represents a reasonable compromise be-
tween the requirements for good energy extraction from the
amplifiers and low propagation diffraction. The impact of chro-
matic aberration on the focused intensity depends on the spa-
tial intensity distribution of the beam.
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Fig. 5: Peak intensity I in the focal spot normalized to that in ab-
sence of chromatic aberration I0, versus the super-Gaussian coeffi-
cient sg for τ0 = 500 fs pulse and the pulse time delay TPTD =
600 fs.

In Fig. 5 the influence of different super-Gaussian or-
ders on the focused peak intensity is investigated for pulses
with a duration of τ0 = 500fs and a pulse time delay of
TPTD = 600fs. For the Gaussian beam with sg = 1, the
intensity drops to 30 % compared to an aberration-free beam.
For a beam of higher super-Gaussian order, the impact of
the pulse time delay is weaker and the relative intensity con-
verges to approximately 70 % for sg & 6. The model shows
that a super-Gaussian intensity distribution is more robust
against chromatic aberration than a Gaussian intensity dis-
tribution.
Spatial aberrations also have an influence on the intensity
achievable in the focus. In Fig. 6 the relative intensities for
astigmatism, coma, and spherical aberration are shown. C is
the Zernike coefficient in waves. The influence of the pulse
time delay on the achievable intensity is lower in the pres-
ence of spatial aberrations. The calculation shows that the
peak intensity of a pulse with chromatic and spatial aberra-
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Ia is the peak intensity in absence of chromatic aberration but in
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tions can be higher than the intensity of a pulse with spatial
aberration only, see also [12]. However, in this case the abso-
lute achievable intensity is still much lower than in the case
free of any aberration. In the presence of strong spatial phase
aberrations, the chromatic aberration can be neglected and the
correction of the spatial aberrations with adaptive optics has a
larger benefit [16,17]. The correction of chromatic aberration
can significantly increase the focused intensity if the spatial
beam quality is nearly diffraction limited.
For illustration, Fig. 7 shows some calculated examples of the
spatio-temporal intensity distribution at the focal spot for var-
ious beam profiles, pulse time delays, and spatial aberrations.

4 Pre-compensation of pulse time delay

Chromatic aberration can be avoided by using achromats for
all large-sized lenses. Even if such large achromats could be

r0 0.9 r0

l =+ l +Dl/20

R(l )+

l0

Lrelay plane

Fig. 8: Due to chromatic aberration, the beam diameter is a func-
tion of the wavelength after propagating the distance L. R(λ+) =
1/ξ(λ+) is the radius of curvature of the wavefront at the wave-
length λ+.

fabricated, this approach would be cost prohibitive. While
compensation at large beam diameters seems a feasible op-
tion [18], a more cost-effective and easily implementable so-
lution is the pre-compensation of the chromatic aberration of
the telescope lenses at a position upstream in the beam path
where the beam diameter is smaller. Pre-compensating the
chromatic aberration imposes some restrictions on the subse-
quent laser chain. First, the laser beam in the amplifier sec-
tions will no longer be perfectly collimated and this could
cause clipping at the rims of the laser disks and rods or reduce
energy extraction because the beam does not fill the rods and
disks completely. Second, the focal spot in the spatial filters
will become larger and some wavelength may be clipped at
the pinhole. We will discuss these two effects next.

4.1 Near field propagation

Optical elements like amplifier rods are placed in between
the magnifying telescopes which relay-image the laser beam.
The lengthLwhere an optical element should be placed around
the relay-imaged plane is limited by the requirement on the
Fresnel number:

F =
r2

λL
� 1. (15)
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As a simple criterion limiting the propagation length in the
presence of chromatic aberration we require the beam radius
not to change significantly (e.g. not more than 10%) for all
wavelengths within the spectrum of the short pulse (e.g. the
FWHM spectral bandwidth ∆λ), see Fig. 8:

L ≤ 0.1R (λ)

for λ0 −
∆λ

2
≤ λ ≤ λ0 +

∆λ

2
.

(16)

With the time-bandwidth product τ0∆ω = 4 ln(2) and Eq. (5)
(with ξ0 = 0, i.e. a collimated beam), we obtain

0.1 · 2π
4 ln(2)

τ0
TPTD

· F ≥ 1. (17)

This new criterion for the allowed free-propagation distances
requires to carefully review the optical layout of the laser
chain. In the PHELIX laser, F & 100 holds true for beam
radii of ≥ 1 cm. This allows pre-compensation of pulse time
delays of several τ0.

4.2 Limits to spatial filtering

Spatial filtering along a high-power laser chain is of crucial
importance in order to ensure that high spatial frequency mod-
ulations of the beam profile are filtered before they undergo
further amplification and non-linear self-focusing. Chromatic
aberration results in a longitudinal shift of the focal position
for the different wavelengths of the amplified pulse. To pre-
vent spectral filtering by the pinhole (which we assume to
be positioned at the waist of the center wavelength), th the
pinhole diameter dp has to be enlarged as compared to the
aberration free case. To ensure that the transmission exceeds
99% over the pulse spectrum ∆λ, we require for the pinhole
diameter dp of a Gaussian beam [19]

dp ≥ 3w, (18)

where the 1/e2-intensity beam radius is given by

w(z) = w0

√
1 +

(
∆zλ0

πw2
0

)2

. (19)

With the waist size w0 = λ0
π

f
wlens

and the distance from the
waist ∆z as in Eq.(2), it follows that

dp ≥ 3w0

√
1 +

(
2 ln(2)

TPTD

τ0

)2

. (20)

Comparing Eq. (20) and Eq. (18) shows that with a non-zero
pulse time delay the pinhole diameter has to be increased in
order to prevent spectral narrowing. This requirement is usu-
ally met in high-power lasers because the pinhole diameters
are chosen at least five times larger than the diffration limit in
order to allow for shot-to-shot fluctuation of the beam point-
ing.

4.3 Pre-compensation set-up

One obvious solution to pre-compensate chromatic aberra-
tion of large aperture positive lenses is the use of a negative
lens in combination with a spherical mirror. In the compen-
sation set-up proposed in Fig. 9a, a double pass through two
negative lenses is realized by quarter-wave plates and a po-
larizing beam-splitter. Besides doubling the amount of chro-
matic aberration, the set-up has the advantage that it can sim-
ply be inserted into the laser chain without changing beam
size or direction. However, due to the rather small chromatic
aberration of common optical glasses the achievable pulse
time delay is limited by the available f-number. Low f-num-
bers are required to compensate chromatic aberration at small
beam diameters. Spatial aberrations of such a low f/# lens,
namely spherical aberration, can be quite severe and must
also be taken into account.
A better approach to create large amounts of chromatic aber-
ration is to use a diffractive lens instead of a refractive lens.
A diffractive Fresnel zone lens is realized with a circular am-
plitude or phase modulation. The radius of theNth zone ring
is given by ρN =

√
f0 · λ ·N . For a given Fresnel zone lens

with the focal length f0 = ρ2
N/(Nλ) the chromatic aberra-

tion is:
df
dλ

=
−f0
λ
. (21)

With Eq. (6) and Eq. (21) the pulse time delay for a Fresnel
zone lens follows

TPTD,Fresnel = −r
2
max

2cf0
. (22)

As can be seen from Eqs. (7, 22), the pulse time delay pro-
duced by both refractive and diffractive lenses scales inversely
proportional to the lens f/#. For a given f/# and radius, the
value of the pulse time delay created by a diffractive lens is(

λ0

(n− 1)
dn
dλ

)−1

≈ 30 (23)

times larger than that of a refractive lens. Thus using a diffrac-
tive lens instead of a refractive lens, correction of a certain
amount of pulse time delay at a small beam diameter can
be realized with significantly larger f/#s. Also, remaining
spatial aberrations can easily be corrected by the zone lens
itself. Calculations done with the program GSOLVER show
that a blazed structure with eight discrete values has an effi-
ciency better than 90%. The influence of the polarization on
the diffraction efficiency can be neglected if the bandwidth is
not larger than a few nm. A Galilean telescope with f/# = 25
lenses and approximately unity magnification can correct a
pulse time delay of 600 fs for a beam of 2 cm radius. Fig-
ure 9b shows a possible correction set-up that combines a
negative refractive lens with a positive Fresnel zone lens. By
etching the Fresnel zone lens directly on the flat side of a
plano-concave lens, a single correction element can be real-
ized.
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one half of the beam interferes with the other half. Interference oc-
curs only where the pulses overlap.

5 Measurement set-up for pulse time delay

In order to validate the performance of a correction set-up
for chromatic aberration, an accurate measurement of the re-
maining pulse time delay of the laser system is required. A
measurement of the total pulse duration in the far-field is not
appropriate as the pulse lengthening due to pulse time de-
lay can not be distinguished from other effects. However, a
curved pulse front can be detected by overlapping the pulse
with an undistorted reference pulse. The pulse front distor-
tion is revealed by an interference pattern which is spatially
confined as a consequence of the limited longitudinal extent
of the short pulse. Alternatively, the spatially varying delay
between the pulse to be characterized and the reference pulse
can be measured by space-resolved spectral interference or
space-resolved intensity autocorrelation [20–22].
Working with a reference pulse is no longer feasible if the
pulse time delay of a laser chain around 100 m long has to be
determined. Therefore, we developed a measurement device
that is self-referencing and can hence be used at any posi-
tion within the laser chain. This device is a modification of
the "inverted field autocorrelator" setup reported by Pretzler
et al. [23]. In the Michelson interferometer shown in Fig. 10,

the beam in one of the interferometer arms is laterally shifted
by the distance ∆x. This way, one half of the beam interferes
with the other half ("shifted-field autocorrelation"). While an
undistorted pulse yields an interference contrast which is con-
stant over the whole overlapping region, a beam with a curved
pulse front will show interference fringes only in the region
given by the intersection of the two pulses. This is also true
for a chirped pulse. By varying the optical path length in one
of the interferometer arms, the form of the pulse front can be
inferred. However, as the pulse is used as its own reference,
symmetry about the axis perpendicular to the lateral shift has
to be assumed. This is usually the case. For first-order chro-
matic aberration, the intersection of two paraboloidal pulse
fronts described by

z1(x, y) = −a · (x2 + y2) +∆z, (24)
z2(x, y) = −a · ((x−∆x)2 + y2), (25)

is a line perpendicular to the direction of the lateral shift.
Varying the delay ∆z, the line shifts according to

x =
∆x

2
+

∆z

2a∆x
. (26)

The pulse front curvature a can be derived from the slope
m = dx/d∆z = 1/(2a∆x) of Eq. (26). Finally, the pulse
time delay

TPTD =
a · r2max

c
(27)

can be determined.
Figure 11 shows two sample interferograms from a test of

the shifted-field autocorrelator. In this measurement, a pulse
of an initial duration of τ0 = 100 fs from a Coherent MIRA
fs-laser was used. The pulse time delay of 1.2 ps was intro-
duced by a magnifying telescope which expands the beam
diameter from 10 mm to 300 mm. Then the beam is reflected
back through the telescope and the pulse time delay is mea-
sured with the shifted-field autocorrelator at a beam diameter
of 10 mm, see Fig. 12. The shift of the maximum interfer-
ence contrast as a function of the temporal delay is plotted
in Fig. 13. The theoretical line fits very well to the measured
positions of maximum contrast.
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a) b)

Dz

Dx

x = 0 x

x

y y

x

Fig. 11: Interference for two different delays. Fringes are only vis-
ible within the region of spatial and temporal overlap of the two
pulses. a The pulses are not delayed, b one pulse is delayed with
respect to the other by ∆z/c.
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Fig. 12: Setup to introduce the pulse time delay of 1.2 ps on the
fs-laser pulse. The beam passes the large lens of diameter D =
300 mm in the spatial magnifying telescope twice.
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Fig. 13: Measured intersection of two pulses in the shifted-field au-
tocorrelator. Pulse time delay for the measured set-up is 1.2 ps,
pulse duration of the probe laser is 100 fs.

6 Summary

We have demonstrated that in petawatt lasers chromatic aber-
ration is a non-negligible effect that significantly reduces the
focal intensity. In consideration of the limitations discussed
in section 4, a correction of chromatic aberration of an en-
tire laser chain can be achieved by pre-compensation before
the laser beam is expanded to fit the large amplifiers. We pro-
pose two compensation schemes. While the first uses stan-
dard components in a complex set-up, the second uses a diffrac-
tive element in a simpler setup. We have introduced and demon-
strated a new method to measure the curved pulse front with a
shifted-field autocorrelator. This set-up is self referencing and
allows the measurement of the pulse time delay of chirped
and unchirped beams.
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