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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Bayesian Search is recommended for 
general biogas prediction routine 
optimization.

• Simple optimization scenarios can be 
optimized with a 50-step optimization 
process.

• Complex scenarios including neural 
networks require more effective 
optimization.

• Meta-tuning has a positive influence on 
prediction results in complex scenarios.
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A B S T R A C T

This study evaluates the performance of several optimization algorithms for tuning a data preparation and 
hyperparameter optimization pipeline applied to machine and deep learning models predicting methane pro
duction. Bayesian ridge regression and recurrent neural networks were applied to steady-state and dynamic 
datasets. Results show that 50 optimization steps are sufficient for optimal performance in simpler cases (62.8 % 
model accuracy). For complex scenarios, such as recurrent neural networks on dynamic datasets, extended 
optimization processes improve accuracy. Among the tested algorithms, Bayesian Search performed well without 
meta-tuning. However, meta-tuned Genetic Algorithm performed better (94.4 % vs 99.2 % baseline). Meta- 
tuning improves tuning parameter selection and model precision. Differential Evolution and Particle Swarm 
Optimization with time-varying acceleration also performed well, particularly in steady-state. These findings 
highlight the need to match optimization to dataset and model complexity, with meta-tuning offering advantages 
in challenging cases. Improved accuracy can increase revenue in flexible biogas operations.
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1. Introduction

Renewable energy production from sources such as wind and solar 
suffers from high variability due to their dependence on current weather 
conditions. The application of the Anaerobic Digestion (AD) process for 
the production of biogas and its subsequent conversion to electrical 
energy, instead, is suitable for demand-side management, as it can 
potentially be operated in a flexible manner (Mauky et al., 2017). AD 
involves the processing of various types of organic waste, including 
agricultural waste and farm manure, and is performed by bacteria and 
archaea under strictly anaerobic conditions. To match real-time energy 
loads, the increasing demand for controllable energy sources can 
partially be satisfied by dynamically operated biogas plant concepts 
(Thrän et al., 2023). However, during demand-oriented operation, the 
microbial AD process needs to be monitored and suitable models are 
required for the prediction and control of dynamic methane production. 
Mechanistic models like the ADM1 and several adaptations of it 
(Batstone et al., 2002; Weinrich and Nelles, 2021) have been developed 
to describe various process conditions and plant concepts. However, due 
to the requirement for numerous parameters and expensive offline 
measurements, these models are usually not suitable for automated 
application at large-scale industrial biogas plants. Moreover, such 
models require manual refitting processes and can be sensitive to sensor 
faults.

As an alternative, machine and deep learning models can predict the 
methane yield, potentially using a limited number of measurements, 
being more robust and requiring only automatic refitting processes (Ling 
et al., 2024; Meola et al., 2023). While Machine Learning (ML) models 
can perform well when modelling the AD process, a fast and accurate 
choice for data preprocessing techniques and Hyperparameters (HPs) 
estimation is crucial for model application on industrial scale. Often, the 
choice of HPs, such as size and number of layers of a Neural Network 
(NN), is often set by manual adjustment with little justification (Seo 
et al., 2021; Lo Sciuto et al., 2016). Sometimes grid search is applied for 
optimal choice of individual parameters, but without detailed investi
gation of the applied search space (Capizzi et al., 2020). However, it has 
been demonstrated that HP optimization is important to achieve optimal 
results, especially when the search domain has a complex structure (Diaz 
et al., 2017).

Thus, several authors perform data preprocessing or model HPs 
optimization (Sun et al., 2023; Yildirim and Ozkaya, 2023), but the 
combination of both is often absent or left to generic Auto-ML pipelines – 
such as the Tree-Based Pipeline Optimization Tool (Le et al., 2020) – that 
might not yield optimal results, since they do not include domain 
knowledge (Wang et al., 2021, Deng et al., 2024). Furthermore, several 
authors applied metaheuristic algorithms for the optimization of several 
parameters of their predictive models (Gogna and Tayal, 2013). Unlike 
traditional optimizers, which rely on explicit mathematical formulations 
or derivatives, metaheuristics are inspired by natural or abstract con
cepts and mimic the behavior of biological or physical systems. Beltramo 
et al. (2019) used a NN optimized with a Genetic Algorithm (GA) to 
predict the biogas rate of an agricultural biogas plant. Furthermore, Abu 
Qdais et al. (2010), Jacob and Banerjee (2016) and Sathish and Vive
kanandan (2016) applied a GA for the optimization of NNs to predict 
biogas production. Also simpler prediction methods – such as the 
ensemble method combining k-nearest neighbours and random forest 
regressor developed by Li et al. (2022) – can be optimized by meta
heuristic algorithms, such as Particle Swarm Optimization (PSO). 
Moreover, Beltramo et al. (2016) trained a NN with Ant Colony Opti
mization (ACO) to predict the biogas production rate of simulated data, 
mimicking co-digestion of multiple substrates with the ADM1. For 
combined optimization of data pre-treatment and model HP estimation, 
a pipeline has been developed (Meola et al., 2023). Such combined 
optimization is required when datasets, such as biogas production 
datasets, present potentially a high number of missing values for several 
features or might have transitory faults in the installed sensors. 

However, a detailed analysis of suitable optimization algorithms (apart 
from the applied GA) has yet to be performed, especially considering the 
high duration of the optimization process (12–56 h).

The current study aims to find the best optimization algorithm for 
shortening the optimization process without sacrificing model perfor
mances. Furthermore, a meta-tuning strategy is introduced to identify 
the Tuning Parameters (TP) of the pipeline optimizer. To gain knowl
edge of the functionality and underlying dependencies, the numbers of 
iterations and optimizer starting points are analysed in detail.

2. Materials and methods

To investigate the complex behaviour of the AD process, two 
different datasets and two prediction models were tested within the 
applied optimization pipeline. Prediction models include Bayesian 
Ridge Regression (BRR) and Recurrent Neural Networks (RNNs) in the 
form of Long Short-Term Memory (LSTM) and Gated Recurrent Unit 
(GRU). Individual parameters of the data preparation pipeline (Meola 
et al., 2023) and the prediction models were optimized with nine 
different metaheuristic optimizers.

2.1. Process data

For process simulation and validation of implemented optimization 
procedures, two datasets were evaluated (Meola and Weinrich, 2024). 
Both datasets were derived from mesophilic full-scale experiments in a 
single continuous stirred tank reactor with a total volume of 188 m3 at 
the Deutsches Biomasseforschungszentrum (DBFZ, German Biomass 
Research Center).

2.1.1. Dataset A
Dataset A consists of data from steady-state AD of rye whole crop 

silage (solid substrate) and cattle manure (liquid substrate) with a 
constant Organic Loading Rate (OLR) of approximately 4 kg Volatile 
Solid (VS) m− 3 d− 1 and a Hydraulic Retention Time (HRT) of 30 d. The 
reactor was fed on average with 1.4 t of solid substrate and 2.8 m3 of 
liquid substrate per day, with an average liquid-to-solid feed ratio of 1:3 
(based on mass of VS). The average methane production rate was 7.98 
m3 h− 1 with a standard deviation of 1.82 m3 h− 1, a maximum of 20.33 
m3 h− 1 and a minimum of 1.08 m3 h− 1. The dataset consists in a total of 
280,561 data points. Five months (149 days) of process data were used 
for model training (70 % of the available data), while validation and test 
data consisted of 34 and 17 days, respectively (20 % and 10 %).

2.1.2. Dataset B
In dataset B dynamic AD of corn silage (solid substrate) and cattle 

manure (liquid substrate) was investigated with variable OLR between 2 
and 12 kg VS m− 3 d− 1, with peaks of 16 kg VS m− 3 d− 1, for 165 days. The 
average HRT per week varied between 22 and 97 d, with a total mean of 
40 d. The reactor was fed on average with 1.5 t of solid substrate and 1 
m3 of liquid substrate per day, with a liquid-to-solid feed ratio varying 
from 1:0 to 1:18 with an average of 1:6 (based on mass of VS). The 
average methane production rate was 14.66 m3 h− 1, with a standard 
deviation of 5.11 m3 h− 1, a maximum of 38.45 m3 h− 1 and a minimum of 
1.35 m3 h− 1. The dataset consists in a total of 239,041 data points. Four 
months (116 days) of process data were used for model training (70 % of 
the available data), while validation and test data consisted of 32 and 16 
days, respectively (20 % and 10 %).

2.1.3. Prediction specifications
Methane production rate was selected as main output for model 

prediction, while all remaining features were used for input description. 
Furthermore, common process variables (such as OLR or HRT) as well as 
statistical features were added according to Meola et al. (2023). Both 
datasets were originally recorded at one minute resolution, and were 
resampled at one hour resolution for dataset A and at six hour resolution 
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for dataset B. Every prediction is based on historical input and output 
data. Thus, all available features of previous time steps are considered as 
input data. Furthermore, the Observation Distance (OD) is defined to 
characterize the time interval between historical data and the prediction 
of methane production. For prediction at time t, all measurements of 
available features t to t − OD are ignored, considering the historical 
input from t − OD backwards. Only (liquid and solid) feeding quantities 
are provided to the model until time t at each prediction since they are 
required as operational variables. Dataset A is simulated with an OD of 
twelve hours, while Dataset B is simulated with an OD of 24 h. Different 
OD were chosen for the two separate datasets for differentiating further 
the two scenarios and increasing prediction difficulty for dataset B.

2.2. Optimization pipeline

For optimization of data preparation procedures (including NaN 
handling and feature selection) as well as individual model HPs an 
existing data preparation and model optimization pipeline was applied 
(Meola et al., 2023). A simplified scheme of the main functional com
ponents of the pipeline is illustrated in Fig. 1. The applied optimization 
pipeline consists of multiple components. It includes a heuristic system 
for detecting physically impossible values and correcting feeding errors, 
an isolation forest algorithm for identifying measurement errors, and an 
autoencoder for generating additional input features. Additionally, a 
Minimum Redundancy Maximum Relevance (mRMR) algorithm is used 

for feature selection.

2.3. Prediction models

BRR and RNNs were chosen as prediction models, generally repre
senting less and more complex ML procedures. The number of unknown 
HPs of each method varies between 17 and 24. The composition of the 
final HP space is presented in the Supplementary material.

2.3.1. Bayesian ridge regression
BRR is a variant of linear regression that incorporates Bayesian 

inference (Gelman et al., 2013). For BRR, the prior distribution of the 
parameters is assumed to be Gaussian with a zero mean and a known 
variance. The goal is to estimate the posterior distribution of the pa
rameters given by the observed data. This method presents four HPs to 
be optimized. Specifically, α1 and α2 determine the mean and variance 
of the prior distribution, and λ1 and λ2 control the shape of the prior 
distribution and the noise level of the model, respectively.

2.3.2. Recurrent neural networks
A RNN, formed by LSTM or GRU cells, was also applied for process 

prediction (Hochreiter and Schmidhuber, 1997; Cho et al., 2014). RNNs 
are neural networks specially designed for processing sequential data, 
such as time series. Such NNs use a hidden state that is updated at each 
time step and that stores information about the previous inputs to the 

Fig. 1. Flowchart of meta-tuning for optimal results of the applied data preparation and model HP optimization pipeline.
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network. This allows the network to capture the temporal dependencies 
and patterns in the data. More precisely, LSTM and GRU use specialized 
gating mechanisms to better control the flow of information through the 
network and preserve the gradients during backpropagation, mitigating 
the vanishing gradient problem, typical of baseline RNNs. The applied 
RNN has eleven HPs, one of whose being the choice of LSTM or GRU 
cells. The HP space for both BRR and RNN (LSTM/GRU) is summarized 
in the Supplementary material.

2.4. Optimization procedure

Several optimization algorithms were evaluated for the definition of 
optimal data preparation and prediction model HPs within the defined 
HPs’ space. Before starting the data preparation pipeline, the chosen 
optimizer defines a combination of data preparation and model HPs, 
which are then used as settings for the pipeline. The methane yield 
prediction error is the evaluation metric. After the evaluation, the 
optimizer decides on a new parameter combination (or vector), 
expecting a lower error. The study evaluated a range of optimization 
algorithms, categorized into three main groups: local search methods 
(Hill Climbing (HC) and Downhill Simplex (DS)), global search tech
niques (Simulated Annealing (SA), Hill Climbing with Random Restart 
(RHC), and Bayesian Search (BS)), and population-based approaches 
(Particle Swarm Optimization (PSO), Hybrid PSO-TVAC (HPSO-TVAC), 
Differential Evolution (DE), and Genetic Algorithm (GA)). Other opti
mization techniques, such as gradient-based optimizers (Bengio, 2000) 
and Hyperband (Li et al., 2018) were not taken into consideration in this 
study, either for the requirement of the function to be optimized to be 
convex, or for too high computational requirements. On top of these 
nine base optimizers, a meta-tuning strategy was implemented. To 
differentiate between the prediction model hyperparameters and the 
optimizer parameters, the terms HPs (hyperparameters) and TPs (tuning 
parameters) were previously defined. HPs are parameters provided by 
the framework, representing data preparation pipeline parameters and 
the prediction models’ parameters. The HPs are optimized by the base 
optimizers. This operation is named optimization. TPs are parameters 
related to the base optimizers themselves, such as the number of 
neighbours in HC or the social weight for the PSO. These parameters are 
optimized by the meta-tuning algorithm. This operation is defined as 
tuning. The meta-tuning strategy is based on a PSO, instantiating a base 
optimizer with the given set of tuning parameters (see Section 2.7).

2.5. Benchmark optimizers

For effective comparison of obtained results, Random Search (RS) 
was chosen to compare the optimized methane predictions with choice 
randomness. RS takes random samples from the search space in each 
iteration. Each sample represents a possible solution for the optimiza
tion problem. It does not rely on the shape of the search space or the 
distribution of the optimal solution.

2.6. Base optimizers

The selected base optimizers are applied for the optimization of the 
data preparation and model HPs within the pipeline. All the base opti
mizers are programmed to find the best parameter combination 
depending on the resulting error in the prediction of biomethane pro
duction. Those optimizers are either used with standard TPs or are tuned 
through the meta-tuner presented in Section 2.7.

2.6.1. Hill climbing
The HC method explores the search space locally, by moving to po

sitions within its neighbourhood with a better solution. These neighbour 
points are sampled at random with a given distribution. In order to 
instantiate this algorithm, there are three TPs to specify: ε, representing 
the tolerance for improvement between steps, the number of neighbors 

representing how many potential solutions the algorithm evaluates at 
each step before choosing the best one, and distribution indicating the 
probability distribution used to generate neighbors (perturbations) 
around the current solution (Selman and Gomes, 2006).

2.6.2. Random restart hill climbing
The RHC method works like the above-introduced HC algorithm, but 

it performs a random restart at a new, random position in the space after 
a previously set count of iterations. This process should allow the 
avoidance of local minima that the traditional HC algorithm can suffer 
from (Russell and Norvig, 2016). The tuned HP within this model are the 
same as in the HC optimizer, plus the number of iterations before a new 
restart.

2.6.3. Random simulated annealing
The SA algorithm is based on HC and derived from the regular RS 

algorithm. Unlike HC, it may also move to points with a worse solution, 
with a probability that decreases over time, called temperature. This 
probabilistic movement allows the algorithm to search the space glob
ally and provides a technique to escape local minima (Kirkpatrick et al., 
1983). The four TPs of SA are ε, the number of neighbors, the neighbors 
distribution, the annealing rate, representing the rate at which the 
temperature decreases during the cooling process, and the start tem
perature of the system, which determines the likelihood of accepting 
worse solutions at the beginning of the optimization process.

2.6.4. Downhill simplex
The DS works by constructing a simplex, a geometrical shape with N 

+ 1 vertices in an N-dimensional search space (Powell, 1973). At each 
iteration, the simplex is transformed by reflecting, expanding, con
tracting or shrinking one of its vertices, depending on the function 
values. The new vertices are again evaluated to eventually find the local 
minimum. TPs belonging to the DS algorithm are α, the size of the 
reflection step when exploring a potentially better solution, β, repre
senting how much the simplex contracts towards the centroid when no 
improvement is observed, γ, how far the simplex expands beyond the 
reflected point and σ, representing how much the simplex shrinks to
wards its best vertex when the algorithm detects stagnation.

2.6.5. Bayesian search
BS is a probabilistic technique that selects new positions by calcu

lating the expected improvement of every position in the search space 
based on a Gaussian process that trains on already evaluated positions 
(Iida, 1992). The core idea is to maintain the probabilistic model of the 
objective function, which captures the uncertainty and tradeoffs be
tween different HPs. Two TPs are optimized: ξ, the parameter control
ling the balance between exploration and exploitation, and the number 
of iterations before restart.

2.6.6. Particle swarm optimization
The PSO is a population-based optimization algorithm inspired by 

the social behavior of bird flocks or fish schools (Kennedy and Eberhart, 
1995; Shi and Eberhart, 1998). In the PSO, a group of particles, forming 
a swarm, move through the space to find the optimal solution. Each 
particle represents a potential solution to the problem and has a position 
and velocity. At each iteration, the algorithm updates the position and 
velocity of each particle. The update considers the particle’s current 
position and velocity, the best position the particle itself has found 
(personal best), and the best position found by the entire swarm (global 
best). Four TP need to instantiate the implemented PSO optimizer: the 
inertia weight parameter, W, set as 0.5 to keep the optimization stable 
between local and global search, balancing exploration and exploitation. 
The cognitive and social weight parameters, c1 and c2, respectively, 
determine the influence of the personal best and the global best solution, 
and were set as two as proposed by Kennedy and Eberhart (1995). The 
number of particles parameter sets the size of the swarm. It was decided 
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for a small swarm size (here two) to make it comparable with the other 
base optimizers in terms of complexity.

2.6.7. Hierarchical particle swarm optimization with time varying 
acceleration

For effective control of the global search convergence and global best 
solution, Ratnaweera et al. (2004) proposed a PSO algorithm with lin
early Time-Varying Acceleration Coefficients (TVAC), where a larger c1 
and a smaller c2 were set at the beginning and were gradually reversed 
during the search. As proposed in the paper, cmin and cmax were 
respectively set to 0.5 and 2.5. Moreover, the authors combined the PSO- 
TVAC with a self-organised Hierarchical PSO (HPSO), where the mo
mentum for the particles to roam through the search space is maintained 
by reinitializing particles with random velocities whenever they stag
nate in the search space. This approach was implemented as HPSO- 
TVAC.

2.6.8. Differential evolution
In the DE algorithm (Storn and Price, 1997), a population of possible 

solution candidates – with every candidate consisting of a TPs vector – is 
initialized, and further candidates are generated by combining the 
existing solution vectors through a mutation and crossover process. The 
mutation operation consists of calculating the difference between two 
vectors, multiplying it by a scaling factor F and adding this to a third 
vector. The binomial crossover operation involves combining the new 
candidate solution generated by the mutation with an existing candidate 
solution in the population, with the probability of choosing one of them 
over the other cr. F and cr were set as 0.5 and 0.7, respectively (Virtanen 
et al., 2020). For direct comparison, same population size value was 
chosen as in other base optimizers.

2.6.9. Genetic algorithm
The GA is an evolutionary optimization technique inspired by nat

ural selection, which iteratively refines solutions through mechanisms 
such as selection, crossover, and mutation (Katoch et al., 2021). A 
population is defined – with each individual containing a combination of 
HPs – and parents that are chosen for mating originate new offspring, 
crossing genetic material and originating mutations. In the applied 
version of the GA, an adaptive mutation is used, consisting of having 
different mutation probabilities for good and bad performing genes. Six 
TPs are taken into consideration for the GA. The percentage of mating 
parents determines the proportion of the parent population selected for 
reproduction. The kept parents define the fraction of the parent popu
lation preserved unchanged in the next generation. The parents’ selec
tion algorithm governs how parents are chosen based on their fitness, 
influencing the algorithm’s ability to prioritize high-performing in
dividuals while maintaining diversity. Crossover type (like single-point, 
multi-point, or uniform crossover) dictates how genetic material is 
exchanged between parents to produce offspring. The lower mutation 
applies to low-performing genes, while the higher mutation applies to 
well-performing genes.

2.7. Meta-tuning

For optimal optimization results, individual TPs of the base opti
mizers need to be optimized. While this additional optimization (tuning) 
can be performed manually or with trivial and time-consuming opera
tions (such as grid search), more complex methods might be required to 
yield optimal results within complex search spaces. Thus, a PSO on top 
of the underlying base optimizers was applied, here defined as super- 
PSO. The role of the super-PSO is the tuning of the base optimizers’ 
TPs. The swarm belonging to the super-PSO is here called super-swarm, 
and each particle belonging to the super-swarm is defined as super- 
particle. A flowchart of the developed meta-tuning method is shown 
in Fig. 1. This tuning is applied to all tested base optimizers. Once the 
base optimizer is manually selected, its tuning parameter space is loaded 

within the super-PSO, and its super-swarm is randomly initialized with a 
fixed number of super-particles. Each of the super-particles evaluates its 
fitness according to its current random position in the parameter space. 
Thus, an instance of the base optimizer is created with the corresponding 
TPs and performs its optimization on the HPs space to find an optimal 
solution for the predicted methane yield. The applied base optimizer 
performs a search until the prediction error does not improve absolutely 
by 0.1 or relatively by 0.1 % within the last three iterations. The output 
of the optimizer, being the best-found prediction error, performs as the 
fitness value of the current particle of the super-swarm. After each super- 
particle is evaluated, the super-PSO operates as the original PSO, 
adjusting the position and velocity of each particle (as described in 
Section 2.6.7). The super-PSO runs until the error metric does not 
improve absolutely by 0.05 or relatively by 0.1 % within the last five 
generations, and it returns the best tuning parameters of the underlying 
base optimizer. These termination conditions were determined based on 
previous experiments. The TP of the super-PSO were set according to 
Kennedy and Eberhart (1995), with w = 0.5 and c1 = c2 = 2. The size of 
the swarm was fixed to n = 3 due to the smaller size of the TP space to be 
searched in comparison to the HP space. An example of a meta-tuning 
scenario consists of a meta-PSO adjusting the TPs of a genetic algo
rithm optimizing the data preparation and HP of an RNN for the pre
diction of biomethane production of Dataset B 24 h in advance.

2.8. Error metrics

Two separate error metrics were chosen for optimization of LSTM 
neural weights, BRR, and model optimization parameters (such as 
sequence length, autoencoder switch or weight initialization).

2.8.1. Root mean square error
For optimization of neuronal weights, Root Mean Square Error 

(RMSE) was chosen, since it penalizes large differences between pre
diction results and measurements more than other methods, such as the 
Mean Absolute Error (MAE). Penalization of large differences is required 
to enable accurate depiction of methane production peaks.

2.8.2. Root mean square scaled error
For optimization of characteristic model parameters, Root Mean 

Square Scaled Error (RMSSE) was applied, according to Eq. (4). 

RMSSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
T
∑T

i=1(Yt − Pt)
2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
T
∑T

i=1(Yt − Yt− 1)
2

√ (4) 

with T being the total number of time steps, Yt the measurement and Pt 
the prediction at the actual time step t, respectively. The RMSSE is a 
relative (scaleless) error metric. Thus, it allows to compare errors among 
different datasets and to evaluate model predictions against a naïve 
forecast (Hyndman and Koehler, 2006).

2.9. Implementation

All the simulations were executed on a high-performance cluster, 
with 64 Intel Xeon E5-2698 V3 CPUs, a maximum clock of 3.6 GHz and 
110 GB of RAM. The optimization pipeline was programmed in Python 
3.7.1, making use of several packages. Scikit-learn (Pedregosa et al., 
2011), Pandas (McKinney, 2010) and Numpy (Harris et al., 2020) were 
used for the data preparation process and the development of PSO, 
HPSO and DE, Tensorflow (Abadi et al., 2016) was applied for the 
autoencoder and for the prediction model, while the library Gradient 
Free Optimizers (Simon Blanke, 2020) was used for the development of 
the HC, Random SA, DS, and Bayes’ optimization.
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3. Results and discussion

For detailed evaluation of the error metrics, the best and worst 
optimizer results for each dataset and prediction model are shown in 
Fig. 2. The visual difference between RMSSE quantities of 167.6 and 
94.4 can be observed in Fig. 2 in RNNs prediction of Dataset B. The 
individual error of each prediction is summarized in Table 1. Generally, 
more complex models (such as RNNs) tend to perform worse than 
simpler models (such as BRR) at this number of iterations. This can be 
explained by the complex structure and optimization process of the 
RNNs, which requires a higher number of HPs to be optimized, many of 
them with high sensitivity (Gorgolis et al., 2019; Meola and Weinrich, 
2024).

3.1. Evaluation of base optimizers

For analysis of optimization performances, the applied base opti
mizers and RS were initially run for 5, 10, 20 and 50 iterations. Due to 
the stochastic nature of metaheuristic algorithms, each optimizer per
formance is run three times, and the results are then averaged. Results 

show that while the results at 5, 10 and 20 iterations show high standard 
deviations, at 50 iterations the standard deviation is, in general, 
reduced. This fact indicates that at 50 iterations the algorithms behave 
more similarly regardless from the starting point of each optimization 
run (see Supplementary material). Thus, the evaluation of optimizer 
performances is carried out for 50 iterations only. To analyze the un
certainty caused by different starting points, individual optimization 
scenarios were repeated five times (Section 3.1.3). For comparison with 
longer simulation times, selected optimization scenarios were run for 
2,000 steps (Section 3.1.4). This limit was chosen because previous 
studies have shown that models do not significantly improve beyond this 
number of optimization steps (Meola et al., 2023; Putra et al., 2025).

3.1.1. Dataset A
Table 1 shows the individual performance of different prediction 

models for optimal pipeline settings of each optimization algorithm 
(base and benchmark optimization). For each optimizer, the average 
time per evaluation is included. For the population-based optimizers, 
one iteration refers to one generation with five individuals. The evalu
ation times for both BRR and RNNs show high differences among the 

Fig. 2. Results of best and worst optimization results of datasets A and B.

A. Meola et al.                                                                                                                                                                                                                                  Bioresource Technology 432 (2025) 132654 

6 



different algorithms, with BRR average iteration speed of the GA being 
one-fifth of the speed of RS, HC and SA. RNN iterations speed differ 
slightly less, probably due to the high influence of the NN training time. 
Results evince that algorithms with the fastest and slowest convergence 
(e. g., GA and SA for BRR and SA and RS for RNN, respectively) are never 
in the top three best performing algorithms. This indicates that fast 
convergence leads towards too simple pipeline architectures. Long 
convergence results in too complex structures. The only exception is 
represented by the RS, whose results are not controlled by any optimi
zation mechanism and can at times represent complex architectures, and 
at other times very simple ones. Best performing algorithms for BRR are 
HPSO (RMSSE = 62.8 %), DE (RMSSE = 65.1 %) and DS (RMSSE = 65.9 
%). However, most optimizers (except HC and GA) reach similar per
formance levels between 66.1 and 67.6 % RMSSE. Individual results 
from RNNs optimization differ more, with a variation between the best 
(GA) and the worst (PSO) performer between 77.8 and 111.0 %. A group 
represented by GA, BS, RS, HPSO and RHC offer performances below 85 
% RMSSE, while all the other optimizers do not fall below this threshold. 
Regarding the steady-state operating conditions within dataset A, the 
only optimizer that does not seem fit for the purpose is HC. Depending 
on optimization complexity, several algorithms might be used, with 

HPSO working well for BRR and RNNs. In general, ML algorithms (such 
as BRR) are easier to optimize than RNN algorithms within the applied 
pipeline, as expected, with the best RNN result being worse than the 
worst ML result. This suggests already that a low number of optimization 
iterations might not be suitable for more complex models but suffices for 
simpler models. Optimization trajectories of BRR and RNNs are illus
trated in Fig. 3a and b. While most of the algorithms applied to BRR have 
already found an optimal solution between step 20 and step 30, they 
require on average more time when optimizing RNNs. Thus, several 
optimizers still keep experiencing error improvements between step 30 
and step 40, while only the worst-performing algorithm (PSO) improves 
past 40 optimization steps. Nevertheless, half of the optimizers applied 
to RNNs are able to find a solution below 100 % RMSSE, while when 
applied to BRR models, optimizers find solutions under 100 % RMSSE 
after ten iterations. Moreover, the optimizers stagnate at different levels, 
indicating that the optimizer. Fig. 3c and d summarize the mean errors 
for all test runs performed on dataset A for BRR and RNN models, 
respectively. The error bars indicate the standard deviation across the 
runs. Interestingly, the mean error rankings don’t quite match the 
rankings based on the absolute best results from Table 1, even though it 
is closely resembled. When optimizing BRR, optimization algorithms 

Table 1 
Performance evaluation of individual benchmark and base optimizers.

Bayesian Ridge Regression Recurrent Neural Networks

Applied optimizer Average time per 
evaluationa [min]

Best test 
RMSSEb

[%]

Average 
iterations 
before best 
result

Average time 
before best 
result [min]

Average time per 
evaluationa [min]

Best test 
RMSSEb

[%]

Iterations before 
reaching best test 
result

Average time 
before best 
result [min]

Dataset 
A

Random 3.1 66.5 17.5 ±
15.7

54.3 6.0 82.1 30.2 ± 9.1 181.2

Hill Climbing 3.1 71.8 18 ± 7.8 55.8 3.9 94.2 6.0 ± 7.5 23.4
Random Hill 
Climbing

1.7 67.6 31.2 ±
15.3

53.0 2.0 84.6 13.0 ± 14.0 26.0

Bayesian 1.7 67.0 31.8 ± 8.9 54.1 3.2 77.8 14.6 ± 8.1 46.7
Downhill Simplex 2.4 65.9 21.3 ±

13.3
51.1 2.1 90.8 20.5 ± 3.6 43.1

Simulated 
Annealing

3.2 66.1 24.7 ±
3.77

79.0 1.8 94.1 12.0 ± 16.8 21.6

Particle Swarm 
Optimization

1.6 66.7 15.3 ± 2.0 24.5 1.9 111.0 42.0 ± 6.0 79.8

Hierarchical 
Particle Swarm 
Optimization

1.5 62.8 29.33 ±
11.9

44.0 2.0 83.5 33.5 ± 10.3 67.0

Differential 
evolution

1.8 65.1 13.67 ±
12.47

24.6 3.0 94.2 20.3 ± 18.9 60.9

Genetic Algorithm 0.6 69.4 20.33 ±
4.0

12.2 2.3 77.8 34.7 ± 12.0 79.81

Dataset 
B

Random 0.8 98.5 21.3 ± 9.7 17.0 1.0 116.4 23.3 ± 14.5 23.3
Hill Climbing 0.7 97.4 3.7 ± 3.6 2.59 1.2 132.3 9.2 ± 11.3 11.0
Random Hill 
Climbing

0.6 99.9 21.0 ±
14.0

12.6 0.8 115.9 19.5 ± 14.4 15.6

Bayesian 0.4 97.7 14.2 ±
12.4

5.7 1.0 99.5 32.5 ± 10.0 32.5

Downhill Simplex 0.5 99.0 38.2 ± 4.4 19.1 1.0 112.6 22.4 ± 9.1 22.4
Simulated 
Annealing

0.7 104.8 24.5 ±
22.5

17.1 1.2 135.0 1.33 ± 1.25 1.6

Particle Swarm 
Optimization

0.7 97.6 2.0 ± 0 1.4 1.0 99.6 35.0 ± 11.0 35.0

Hierarchical 
Particle Swarm 
Optimization

0.6 112.6 5.8 ± 3.5 3.5 1.0 117.0 24.8 ± 20.0 24.8

Differential 
evolution

0.6 102.3 13.0 ±
11.7

7.8 1.0 101.3 14.5 ± 1.5 14.5

Genetic Algorithm 0.4 110.1 25.67 ±
6.8

10.3 0.8 99.2 32.0 ± 15.5 25.6

a Bold and underlined evaluations times indicate best times for the relative dataset. Underlined evaluation times indicate best times for relative dataset and applied 
prediction method.

b Bold and underlined errors indicate best error values for the relative dataset. Underlined errors indicate best error values for relative dataset and applied prediction 
method.
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can be divided into two groups regarding to their standard deviation, 
with the group with a higher standard deviation being represented by 
DS, DE and HC (3.23, 4.81 and 3.59 %, respectively), and the rest having 
considerably lower standard deviation (between 1.21 and 3.06 %). The 
distribution of the standard deviation within the errors on RNNs is 
broader, with DS and PSO having a low standard deviation (1.96 and 
5.59 %, respectively), HC and HPSO having very high standard de
viations (24.90 and 15.80 %, respectively). Considering all the obser
vations regarding the best performances and the standard deviation of 
the different runs, BS, RS and RHC are best suitable for prediction of 
steady-state methane production at full-scale using BRR and RNNs.

3.1.2. Dataset B
The performance of the applied benchmark and base optimizers for 

accurate prediction of methane production rate in dataset B by BRR and 
RNNs is also included in Table 1. While optimizing BRR, the models 
having RMSSE lower than 100 % are RS, HC, RHC, BS, DS and PSO, with 
PSO being the best performing optimizer. When optimizing the RNNs, 
only three optimizers (BS, PSO and GA) are able to score lower than 100 
% RMSSE. In general, results and execution times are less widely spread 
in comparison to dataset A, with execution time varying between 0.4 
and 1.2 % among the optimization of both BRR and RNNs. Furthermore, 

the lowest error reached by the optimizer on RNNs is close to the optimal 
error reached by the best-performing BRR model. This behaviour might 
be explained by the higher variation in methane production rate and 
substrate amount within dataset B compared to dataset A, which makes 
the prediction in general more difficult. Thus, the complexity of RNNs 
helps reaching optimal results, even though they do not match the 
performances of BRR (probably because of the low number of itera
tions). In Fig. 4a and b the error progression of the optimizers for both 
BRR and RNNs is illustrated. In general, it can be noticed that models 
tend to reach optimal results later than within dataset A, demonstrating 
again a difficulty in finding optimal HPs for simulating dataset B. 
Nevertheless, the optimization of BRR applied to dataset B seems to 
stagnate around 100 % RMSSE, suggesting the presence of a global 
minimum. While for dataset A the optimized RNNs converged between 
75 % and 95 % RMSSE, optimized RNNs applied on dataset B converged 
in a larger range between 95 % and 135 % RMSSE. This fact indicates 
that the importance of HPs choice when optimizing complex models on 
highly dynamic datasets. Fig. 4c and d show the average results among 
the three runs of the applied optimizers on dataset B. HC, HPSO and DE 
show a high standard deviation (69.03, 46.30 and 32.78 %, respectively) 
compared to the other models (from 0 to 5.01 %) when optimizing BRR, 
with HC having a high standard deviation also when optimizing RNNs 

Fig. 3. Comparison of mean errors, standard deviations and number of iterations for dataset A (BRR and RNNs).
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(93.46 %). GA, PSO and DE also show high standard deviations (126.15, 
35.97 and 31.94, respectively), while the other models show lower 
levels of standard deviation, with RHC showing very low levels of un
certainty (6.17 %). Nevertheless, the average among the three runs of all 
the applied optimizers lies above 100 % RMSSE, showing that 50 iter
ations do not suffice for complex models and complex datasets. Among 
the top three performing optimizers when applied to RNNs, the one 
showing the lowest standard deviation is BS (9.98 %). In conclusion, BS 
seems to be the most robust optimizer at 50 iterations, consistently 
performing well and with low standard deviation among the four ana
lysed scenarios (based on two datasets and prediction algorithms, 
respectively).

3.1.3. Uncertainty analysis
As described in Section 3.1., a high difference in optimizer perfor

mances can be expected, since the direction of the optimization strongly 
depends on the starting point and individual tuning parameters required 
by the applied base optimizer. During the optimization of models for 
real-time prediction of methane production, it is imperative to obtain 
optimal results in the shortest time possible to predict process distur
bances or interruptions, without the need for repeating long optimiza
tion processes. Furthermore, continuous re-training with newly 

obtained data be needed to gain high prediction accuracies. Therefore, 
selected optimization algorithms (DE, DS and HPSO) were applied on 
two different optimization scenarios to evaluate the uncertainty in re
sults when started from different initial points and set with different 
random seeds. The optimization scenarios were applied five times each. 
The tested scenarios included the optimization of BRR applied on 
dataset A for simulating a simpler scenario, and the application of RNNs 
to dataset B for simulating a more complex scenario. The first scenario in 
Fig. 5a returns similar uncertainties for all the tested optimization pro
cedures. While DE shows a higher variation in the first 10 iterations, DS 
and HPSO return comparable uncertainty results from iteration 10. 
Thus, other algorithms are expected to perform similarly when opti
mizing methane prediction by BRR for steady-state process conditions. 
The second scenario in Fig. 5b pictures higher differences between the 
applied optimizers. The DE has a high variation during the entire opti
mization process, probably due to its sensitivity to initial values. HPSO 
shows initially lower variance, even if at a higher cumulative error 
compared to the other two optimizers. But from step 20, its variance 
increases to values similar to the DE variance. Instead, DS shows a low 
variance throughout the entire optimization run, also achieving the best 
average result by the end of the iteration process.

Fig. 4. Comparison of mean errors, standard deviations and number of iterations for dataset B (BRR and RNNs).
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Fig. 5. Error progression with uncertainty for different optimization scenarios and methane prediction algorithms.

Table 2 
Comparison of selected optimization scenarios for 50 and 2,000 optimizaion steps.

Optimization Model Dataset A and Bayesian Ridge Regression Dataset B and Recurrent Neuronal Networks

50-steps 2,000-stepsa Relative improvement 50-steps 2,000-stepsa Relative improvement

Downhill Simplex 65.9 63.6 3.5 % 112.6 102.3 9.1 %
Random Hill Climbing 67.6 64.7 4.3 % 115.9 112.8 2.6 %
Genetic Algorithm 69.4 61.2 11.8 % 99.2 99.2 0.1 %
Random search 66.5 65.1 2.1 % 116.4 101.0 13.2 %

a Bold and underlined errors indicate best error values for the relative optimization instance.

Table 3 
Performance evaluation of meta-tuning of individual base optimizers.

Bayesian Ridge Regression Recurrent Neural Networks

Applied optimizer Average time per 
evaluationa [h]

Best test 
RMSSEb

[%]

Super-generations before 
reaching best test result

Average time per 
evaluationa [h]

Best test 
RMSSEb

[%]

Iterations before 
reaching best test result

Dataset 
A

Hill Climbing 2.7 63.6 5 2.9 90.7 1
Random Hill Climbing 2.8 63.6 8 3.3 88.2 2
Bayesian 5.5 68.9 5 7.8 86.3 6
Downhill Simplex 2.5 70.3 1 4.2 83.8 1
Simulated Annealing 2.3 63.6 5 3.5 93.2 2
PSO 24.8 63.9 3 35.7 81.8 1
HPSO 12.5 64.0 2 37.4 89.1 3
Differential evolution 32.5 67.0 1 36.6 81.7 2
Genetic Algorithm 8.7 64.9 2 20.6 75.0 2

Dataset 
B

Hill Climbing 1.5 109.6 1 2.3 122.9 3
Random Hill Climbing 1.4 115.2 1 2.3 167.6 1
Bayesian Search 1.6 102.6 1 2.0 124.7 1
Downhill Simplex 1.5 115.7 1 2.6 146.1 1
Simulated Annealing 1.3 108.1 1 2.5 136.8 3
Particle swarm 
optimization

9.4 106.9 1 15.2 121.4 1

Hierarchical particle 
swarm optimization

5.4 98.4 3 37.4 99.7 1

Differential evolution 7.2 99.2 1 16.6 98.4 1
Genetic Algorithm 5.8 98.3 3 10.9 94.4 2

a Bold and underlined evaluations times indicate best times for the relative dataset. Underlined evaluation times indicate best times for relative dataset and applied 
prediction method.

b Bold and underlined errors indicate best error values for the relative dataset. Underlined errors indicate best error values for relative dataset and applied prediction 
method.
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3.1.4. Number of iterations
For analysis of possible optimization improvements, best performing 

base optimizers (DS, RHC and GA) and the benchmark optimizer (RS) 
were evaluated and compared for 2,000 iterations steps (Table 2). While 
more significant improvements can be noticed in the second scenario 
(dataset B and RNNs), the difference between running the algorithms for 
50 versus 2,000 optimization steps generally does not show absolute 
improvements higher than 5 %. Exceptions include the GA in the first 
scenario and RS and DS in the second, which show relative improve
ments close to 10 %. These findings suggest that increasing the number 
of iterations may be beneficial in such cases. Moreover, the GA dem
onstrates to be still the best performing among the considered algo
rithms, and the RS also proves effective in finding HPs combinations 
leading to optimal results.

3.2. Evaluation of meta-tuning

The meta-tuning includes applying a PSO (the meta-PSO) for the 
optimization of the optimizers’ TPs. The meta-PSO is programmed to 
find the best TPs combination depending on the best error found by the 
tuned optimizer.

3.2.1. Dataset A
Individual results of the identification of TP of all the applied opti

mizers and datasets are summarized in Table 4. In comparison to non- 
tuned results of DS, only five out of nine optimizers (HC, RHC, SA, 
PSO and GA) demonstrated improvements for TP optimization of BRR. 

However, all optimizers are able to reach a RMSSE lower than 70 %. In 
general, the models that perform best also show a higher number of 
super-generations required for reaching optimal results. Slight im
provements can also be observed for meta-tuning of RNNs on dataset A, 
while the best-performing RNN is still outperformed by the worst per
forming BRR model. Furthermore, results indicate that population-based 
optimizers require substantially longer computation times for parameter 
tuning compared to the other methods.

3.2.2. Dataset B
While most of the models did not benefit from the meta-tuning when 

applied to dataset B, the population-based optimizers all improved 
(except for PSO). In particular, the GA is the best performing optimizer 
on both the optimization of BRR and RNNs, considerably improving its 
previous performances. In general, the best-performing model applied 
on dataset B is now the meta-tuned GA, demonstrating that complex 
optimizers tuning complex models in the prediction of non-steady-state 
datasets require meta-tuning for optimal performances.

3.2.3. Evaluation of tuning parameters
The best performing TP for each optimization scenario are shown in 

Table 4. The optimizers that showed higher advantages when tuned with 
the meta-PSO are the GA and the DE. Moreover, other four optimizers 
(HC, SA, PSO and GA) benefitted two times out of four of the meta- 
tuning, and the rest of the optimizers benefitted only one-fourth of the 
times. No optimizer was able to perform in all four optimization sce
narios better with the standard parameters rather than with the tuned 

Table 4 
Tuned parameters for applied optimization algorithms.

Tuneda

Applied Optimizer Default value Dataset A Dataset B

BRRb RNNc BRRb RNNc

Hill climbing
ε 0.03 0.1 0.3 – –
Number neighbors 3 14 15 – –
Distribution Normal Gumble Logistic – –

Random Hill 
Climbing

ε 0.03 0.0 – – –
Number neighbors 3 8 – – –
Distribution normal Gumble – – –
Number restart iter. 10 20 – – –

Simulated 
Annealing

ε 0.03 0.0 0 – –
Number neighbors 3 4 9 – –
Distribution Normal Normal Gumbel – –
Annealing rate 0.97 0.95 0.9 – –
Starting temperature 1 1.2 2.4 – –

Downhill 
Simplex

α 1 – 1.7 – –
β 0.5 – 0.5 – –
γ 2 – 2.5 – –
σ 0.5 – 0.8 – –

Bayesian 
Search

ξ 0.3 – – – –
Number restart iter. 0 – – – –

Particle Swarm Optimization

Number particles 5 6 5 – –
W 0.5 0.8 0.1 – –
c1 2 0 2.2 – –
c2 2 0.3 1.5 – –

Hybrid Particle Swarm Optimization
Number particles 5 – – 5 10
W 0.5 – – 0.9 0.2

Differential 
Evolution

Population size 5 – 12 12 19
F 0.5 – 2.2 1.5 2.9
cr 0.7 – 0.4 0.9 0.4

Genetic Algorithm

Mating parents % 50 47 41 86 33
Kept parents % 60 64 38 26 97
Parents selection Steady state Steady state Rank Random Random
Crossover Single Uniform Single Uniform Single
Lower mutation 0.08 0.1 0.01 0.01 0.01
Higher mutation 0.2 0.11 0.35 0.11 0.2

a Several optimization instances do not show improvement with tuned parameters. Thus, default values were used for optimal results. These cases are marked by the 
sign “–“.

b Bayesian Ridge Regression.
c Recurrent Neural Network.
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parameters. Individual patterns can be concluded from the optimized 
TP. DE shows in general improved performances with a higher F value. 
This indicates the importance of a wide exploration of the search space, 
favoring a larger step size to jump over local minima instead of making 
small incremental changes to the HPs (Price et al., 2005). The HC shows 
a tendency to perform better on Dataset A with a higher amount of 
neighbours, indicating the presence of several local optima that the al
gorithm is able to better evaluate going towards different directions 
(Aarts and Lenstra, 2003). The other optimizers do not show general
izable patterns but exhibit several performance improvements for each 
case.

3.2.4. Discussion
Results show that, in general, the prediction of steady-state methane 

production through BRR and RNN models does not require extensive HP 
optimizations within the applied pipeline. Repeating the optimization 
process of 50 iterations three times (resulting in a total of 150 iterations) 
is generally sufficient to reach optimal results depending on the chosen 
algorithm. Nevertheless, the application of several optimizers for the 
tuning of BRR on dataset A for 2,000 steps demonstrated that longer 
optimization times could improve the prediction further, over
performing any meta-tuned and non-meta-tuned algorithm at 50 itera
tions (see Table 2 and Table 3). The non-steady-state dataset B instead 
benefitted from meta-tuning, probably due to the higher complexity of 
the dataset, which requires specific HP combinations to be properly 
modelled. While the BRR reached already high performances without 
meta-tuning, meta-tuning of RNNs resulted in an absolute performance 
increase of 4.8 % RMSSE, with the meta-tuned GA outperforming any 
other non-meta-tuned optimizer. Moreover, the meta-tuned GA over
performed even the 2,000 iterations tested models, demonstrating that 
complex prediction algorithms applied to complex datasets benefit from 
additional meta-tuning. In general, BS performs well in any optimization 
instance, even without meta-tuning, and is therefore the suggested 
optimizer for general purposes when the complexity of the model or of 
the dataset is unknown. For optimal optimization performances in any 
context, a 50 iteration meta-tuning might be applied and subsequently 
use the tuned parameters for a 2,000 iteration optimization process. 
Since the computational effort of meta-tuning followed by a 2,000-step 
optimization can be high depending on the application, operators may 
need to weigh the trade-offs. In cases where slightly lower prediction 
accuracy is acceptable, simpler approaches– such as only performing 
meta-tuning or only running a 2,000-step optimization – may be suffi
cient. Further improvement of the results might be obtained with spe
cific algorithm initialization strategies (Cheng et al., 2018).

4. Conclusions

This study demonstrates that the choice of optimization strategies 
significantly impacts performances of ML and DL models predicting 
methane production from AD. For steady-state datasets, 50 iterations 
repeated three times typically suffice for optimal results, with HPSO 
being the best performer (62.8 % RMSSE). Moreover, a GA optimized for 
2000 iterations overperforms it (61.2 % RMSSE). However, dynamic 
datasets and complex models, such as RNNs, benefit from extended 
optimization or meta-tuning, with DE and GA showing improved results 
in such cases (94.4 % and 98.4 % RMSSE, respectively). BS was proven 
to be a robust general-purpose optimizer, performing consistently well 
without meta-tuning. The tested strategies can be used for tuning ML 
models when applied to stochastic MPC for industrial plant control. The 
utilization of training datasets from several reactors might be further 
tested for improved prediction accuracy and model robustness.
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learning in python. J. Mach. Learn. Res. 12, 2825–2830.

Powell, M.J.D., 1973. On search directions for minimization algorithms. Math. Program. 
4, 193–201. https://doi.org/10.1007/BF01584660.

Price, K., Storn, R., Lampinen, J., 2005. Differential evolution-a practical approach to 
global optimization. Natural Computing – NC. https://doi.org/10.1007/3-540- 
31306-0.
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