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H I G H L I G H T S

• Random Forest and LSTM Neural Networks are recommended for AD process prediction.
• Linear models show high performance difference between validation and test datasets.
• Only few measurements are highly influential for prediction of methane production.
• Data preparation parameters are highly influential in model performances.
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A B S T R A C T

Machine learning algorithms have been proven to be effective in predicting characteristic process variables of the 
anaerobic digestion process. However, industrial application has rarely been investigated, and the most effective 
algorithms for typical operating conditions have not been defined. Thus, 13 machine learning, deep learning and 
statistical algorithms were applied to three full-scale datasets at intra-day resolution. A systematic procedure was 
applied for reliable data preparation and hyperparameter optimization. Methane yield was predicted one step, 
12 h and 24 h in advance. Results indicate that random forest and long short-term memory neural networks are 
the most robust algorithms, while further linear models can be advantageous in specific situations. Previous step 
methane yield and fed volatile solids are, in general, the most relevant parameters, while further laboratory 
measurements can be advantageous at high feed quantities. Data preparation is crucial to allow less complex 
models (such as linear models) to perform well. This study defines appropriate machine learning algorithms and 
essential measurements for characteristic process conditions at different data resolutions, when predicting dy-
namic intra-day methane production of industrial-scale anaerobic digestion processes, as a reliable basis for 
model-based process monitoring and control.

1. Introduction

Anaerobic Digestion (AD) is a biochemical process that transforms 
organic matter, including municipal waste, livestock manure, and en-
ergy crops, into biogas and nutrient-rich digestate. In the context of 
wastewater and agricultural engineering, there is a necessity to develop 
and assess future-oriented operational concepts for AD plants [1]. The 
application of AD processes to offer demand-driven power presents a 
potential solution to address the intermittent nature of renewable en-
ergy conversion [2], but robust monitoring and control systems are 

required to ensure stable and efficient operating conditions at all times. 
Due to the non-linearity of the AD process, model-based monitoring and 
control systems are required for optimal plant performance [3]. Among 
the available models, the semi-mechanistic Anaerobic Digestion Model 
No. 1 (ADM1), presented by Batstone et al. [4] is frequently applied for 
AD process modelling. However, owing to the restricted availability of 
available measurements for model application, various simplifications 
of the original ADM1 have been suggested [5,6,7]. Independently from 
model complexity, several phenomena observed in the AD process (such 
as mixing and micro‑oxygenation) have not been modelled yet due to 
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their microbiological complexity and highly non-linear nature. Thus, 
there is a growing interest in employing phenomenological or empirical 
modelling techniques, such as Machine Learning (ML), for non-linear 
prediction of characteristic variables in AD processes [8,9]. An over-
view of selected studies is presented in Table 1. To utilize various 
measurements available at industrial biogas plants and ensure compa-
rability of the applied procedures, mainly full-scale investigations were 
chosen within the literature review. Thus, individual publications differ 
in the applied algorithms, selected input and output features, time res-
olution or individual data preparation techniques, among other aspects.

Generally, most investigations in Table 1 depict biogas production at 
daily resolution, while only a few studies include methane production as 
output feature [10,15,12,23] or use process data at intra-day resolution 
[13,17]. Thus, typically daily measurements were used to describe 
continuous (and often steady-state) operation of industrial AD plants. 
Furthermore, most investigations simulate AD plants treating agricul-
tural or municipal wastes (including sewage sludge) while only a few 
studies use lignocellulosic biomass [20] or energy crops [13] as sub-
strates for the AD process. Sun et al. [22], for instance, predicted steady- 
state biogas production from full-scale AD of food waste with a Multi-
layer Perceptron (MLP) Neural Network (NN), whereas Dittmer et al. 
[13] used Linear Regression (LR) to predict dynamic operation with 
irregular feeding patters of agricultural biomass and dung at hourly 
resolution.

Several publications in Table 1 apply ML and Deep Learning (DL) 
algorithms to predict methane or biogas production. Among the most 
commonly used ML methods, LR, Random Forest (RF), Support Vector 
Regression (SVR), and Extreme Gradient Boosting (XGBoost) have been 
successfully implemented, as demonstrated by Li et al. [17]. The authors 
applied these algorithms to model biogas production from an industrial- 
scale AD plant digesting food waste. More complex approaches, such as 
Long Short-Term Memory (LSTM) NNs and Convolutional Neural Net-
works (CNNs) have been investigated less frequently [14,19]. Addi-
tionally, some studies employ advanced architectures, such as the dual- 
stage attention-based LSTM NN with a Variable Selection Network 
(VSN) used by Jeong et al. [14]. The authors tested several architectures 
to predict biogas production from AD of wastewater treatment sludge 
and food waste leachate at daily resolution.

In general, the selection of an appropriate ML or DL algorithm should 
be based on the specific characteristics of the available data and 
experimental conditions. Thus, suitable data preparation procedures are 
crucial for effective process depiction with ML or DL models [24]. 
However, seven out of fourteen publications analyzed in Table 1 either 
do not make use of data preparation or perform only mandatory oper-
ations such as data cleaning or replacing zeroes with close to zero values 
[10,11]. Thus, only the remaining seven authors applied individual data 
preparation procedures. Among the seven publications, Schroer and Just 
[18] used LR, the Tree-based Pipeline Optimization Tool (TPOT), MLP 
and a hybrid linear-MLP model to successfully predict biogas production 
one day in advance during full-scale AD of municipal wastewater sludge 
and high-strength waste such as fats, oil and grease. The data prepara-
tion process involved linear regression-based feature selection, addition 
of time variables and distribution-based train-test split. Results show 
that the MLP overperformed all the applied models, while TPOT and the 
hybrid model did not outperform the LR model. This study represents 
one of the rare occasions where authors used a systematic concept for 
the optimization of model hyperparameters and data preparation tech-
niques, including data engineering and feature selection.

To investigate explainability of applied ML algorithms different 
procedures were applied in individual investigations summarized in 
Table 1. Thus, established procedures such as Permutation Feature 
Importance (PFI), Mean Decrease of Impurity (MDI) for RF or Shapley 
Additive Explanations (SHAP) were frequently used to investigate model 
behaviour and dependencies. Zhang et al. [23], for example, applied the 
SHAP algorithm to the prediction of biogas yield and methane content 
from municipal solid waste and straw through a dry fermentation 

process. Results show that the weight of the percolate tank content and 
level of liquid in the percolate tank are the most important input pa-
rameters for both biogas production and composition.

Depending on individual process conditions a clear understanding of 
model complexity is required for efficient application of ML and DL al-
gorithms in industrial operation. While several studies investigated the 
application of multiple model types to a single data set, no direct com-
parison of different model types and experimental conditions (e. g., 
steady-state or dynamic operation) has yet been performed. As shown in 
Table 1, many investigations utilize daily measurements for model 
application (training, test and simulation), which however are not suf-
ficient for online application of model-based monitoring and control 
procedures. Furthermore, industrial datasets most often show a high 
imbalance of online and offline measurements (with considerable 
measurement error and high amount of missing data). Detailed inves-
tigation for systematic application of suitable procedures for data 
preparation and hyperparameter optimization are required for direct 
comparison and comprehensive evaluation of different model types and 
process conditions.

This work aims to bridge the gap between experimental application 
of ML algorithms to AD processes and industry usage of such algorithms, 
providing guidance for future development of ML-based monitoring and 
control procedures. Thus, three different full-scale datasets were 
analyzed and modelled with 12 ML and DL algorithms and one purely 
statistical model. All algorithms and data preparation processes were 
optimized based on a meta-heuristic optimization pipeline [24]. The 
three datasets differ within the type and number of substrates used, the 
stability of the process and quality of available measurements. Thus, the 
experimental setup represents typical operating conditions of industrial 
AD plants (including e. g., pulse feeding or limited amount of laboratory 
analyses). Moreover, the impact of the prediction horizon and data 
resolution on model performances was analyzed. Importance of each 
feature was calculated for the best performing models and the most 
relevant hyperparameters in the model optimization process were 
highlighted and discussed within a Sensitivity Analysis (SA).

2. Methods

In the current investigation 13 prediction models were tested on 
three datasets. All the datasets were resampled at 15 min, 1 h and 6 h 
resolution. Moreover, datasets were evaluated also on three different 
Observation Distances (ODs). As described in Meola et al. [24],

“[…] the Observation Distance (OD) is defined to characterize the 
time interval between historical data and prediction of methane pro-
duction. For prediction at time t, all measurements of available features t 
to t − OD are ignored, considering the historical input from t − OD 
backwards. Only feeding quantities are provided to the model until the 
time t at each prediction since they are considered as operational control 
variables.”

Thus, the tested ODs were one timestep (15 min, 1 h and 6 h), 12 h 
and 24 h. One combination of an individual dataset, data resolution and 
OD is defined as an optimization instance (Table 2).

Each dataset was split with a 70:20:10 ratio in train, validation and 
test data. The models were trained on the training set, model hyper-
parameters were optimized on the validation dataset (based on [24]), 
and model performance was evaluated on the test dataset.

Time and model performance on specific datasets, data resolution 
and OD were analyzed separately, as well as differences between vali-
dation and test performance. Finally, SA was performed on all datasets 
at OD 24 h and FI was performed on the best performing models.

2.1. Prediction models and Hyperparameters

The AD process is a non-linear process with high measurement un-
certainty and unknown process behaviour [25]. Nevertheless, linear and 
generally less robust models were tested, since individual algorithms for 
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Table 1 
Summary of recent publications on the application of ML and DL algorithms for AD process prediction.

Authors and 
year

Applied algorithms Input features Output feature 
(s)

Reactor 
scale

Substrates used Time 
resolution

Data preparation 
technique

Hyperparameters 
optimization

Explainability

De Clercq 
et al. [10]

EN, RF, XGBoost Feed type and quantities, day number Methane 
production

Full- 
scale

15 substrates including animal 
manure, food waste and 
percolate

Daily Data cleaning, 
generation of 
additional features

Manual optimization PFI and PDP

Hansen, 
Bolette D. 
et al. [11]

Ensemble of various 
ML algorithms

Gas production of previous days Biogas 
production

Full- 
scale

Seaweed, manure, eulat, 
pectin and other 14 substrates

Daily Replacement of zeros 
with close-to-zeros 
values

Unknown –

Wang et al. 
[12]

RF, EN, SVR, k-NN Carbon, Nitrogen, cellulose and xylan 
content, C/N Ratio

Methane 
production

Lab- 
scale

Different substrates – such as 
manure, food waste and corn 
stover – depending on 
considered reactor

Daily – Unknown MDI for RF

Dittmer 
et al. [13]

LR Previous gas production, feed type and 
quantities

Biogas 
production

Full- 
scale

Corn, grass, whole crop silage, 
sugar beet and dung

Hourly – Lags determined via 
cross-correlation

LR coefficients

Jeong et al. 
[14]

Dual-stage attention 
LSTM

17 process variables, including input 
and output sludge, mass and organic 
loading rates

Biogas 
production

Full- 
scale

Wastewater Daily VSN Bayesian optimization 
network

Unknown feature 
importance 
technique

Long et al. 
[15]

EN, RF, MLP, k-NN, 
SVM, XGBoost

Genomic data, VFAs concentration, 
temperature, OLR, HRT, substrate type

Methane 
production

Lab- 
scale

Several substrates, such as 
waste activated sludge or 
seaweed

Daily – Unknown MDI for RF

Wang et al. 
[16]

Ensemble of ML 
algorithms

Feed type and quantities, TS, VS, VFA 
content, alkalinity and VFAs/ 
alkalinity ratio

Biogas 
production

Full- 
scale

WWTP sludge and 29 
additional substrates such as 
brine, dairy, fats and oils

Daily TPOT TPOT PFI and PDP

Li et al. [17] RF, SVM, XGBoost, 
logistic regression, 
MLP

Feed type, quantities, and qualities, 14 
digestate properties such as TS, COD, 
VFAs among others

Biogas 
production

Full- 
scale

Restaurant and household 
food waste

ca. 3 h Local outlier 
algorithm detection, 
k-NN as imputation 
method

Grid search –

Schroer and 
Just [18]

Ensemble ML 
models, MLP

Previous gas prediction, VS loading, 
hour of the day and several operational 
parameters such as aeration basin air 
flow and recycled activated sludge

Biogas 
production

Full- 
scale

WWTP sludge Daily Feature selection with 
LR and TPOT

Grid search Ridge regression 
coefficients, SHAP

Sappl et al. 
[19]

TFT, ARIMA, k-NN Operational parameters such as 
temperature, total carbon loading, raw 
sludge dry matter load, sludge loss on 
ignition, and pH values

Biogas 
production

Full- 
scale

WWTP sludge Daily Outlier removal, VSN Grid search Attention-based FI

Wang et al. 
[20]

LR, EN, MLP, SVM, 
GPR, ELM, decision 
tree, k-NN, 
ensemble

Substrate composition (TS, VS and 
cellulose among others)

Biogas 
production

Lab- 
scale

Lignocellulosic biomass Daily Data cleaning Unknown –

Yildirim and 
Ozkaya 
[21]

k-NN, RF, SVM, 
MLP, XGBoost

Digestate VS, TS and VFAs 
concentration, alkalinity, pH, reactor 
temperature, gas composition

Biogas 
production

Full- 
Scale

Biowastes such as manure and 
slaughterhouse waste

Ca. 4 days Data cleaning 10-fold cross-validation PCA and F-score

Sun et al. 
[22]

MLP Biomass type and fed mass, digestate 
VS concentration and pH, reactor 
temperature and volume, OLR and 
HRT

Biogas 
production

Lab- 
scale

Food waste of several origins, 
such as kitchen waste or food 
distributors waste

Unknown – Several meta-heuristic 
methods such as COA 
and MVO

SA

Zhang et al. 
[23]

Ensemble of ML 
algorithms

Substrate and digestate TS and VS, 
VFAs concentration, electrical 
conductivity

Biogas 
production and 
methane 
content

Full- 
scale

Municipal solid waste and 
straw

Unknown Autogluon and H2O – 
both AutoML 
frameworks

Autogluon and H2O – 
both AutoML 
frameworks

SHAP

ARIMA: Auto Regressive Integrated Moving Average, COA: Cuckoo Optimization Algorithm, COD: Chemical Oxygen Demand, ELM: Extreme Learning Machine, EN: Elastic Net, FI: Feature Importance, GPR: Gaussian 
Process Regressor, HRT: Hydraulic Retention Time, k-NN: k-Nearest Neighbors, LR: Linear Regression, LSTM: Long Short-Term Memory, MDI: Mean Decrease of Impurity, ML: Machine Learning, MLP: Multi-Layer 
Perceptron, MVO: Multi-Verse Optimization, OLR: Organic Loading Rate, PCA: Principal Component Analysis, PDP: Partial Dependence Plots, PFI: Permutation Feature Importance, RF: Random Forest, SA: Sensi-
tivity Analysis, SHAP: Shapley Additive Explanations, SVM: Support Vector Machine, SVR: Support Vector Regression, TFT: Temporal Fusion Transformer, TPOT: Tree-Based Pipeline Optimization Tool, TS: Total Solids, 
VFAs: Volatile Fatty Acids, VS: Volatile Solids, VSN: Variable Selection Network, WWTP: Wastewater Treatment Plant, XGBoost: Extreme Gradient Boosting Regressor.
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data preparation can provide nonlinear generated features that can help 
linear models to model nonlinear process behaviour [24].

While several selected models are commonly used in relevant liter-
ature (RF, EN, k-NN, LR, GPR), recently developed new methods (1D- 
CNNs, LSTM, GRU, ELM) were also selected and modified to meet the 
requirements of the specific prediction task. GBR was selected instead of 
XGBoost due to the simpler implementation process while a combined 
LSTM/GRU was chosen instead of standard LSTM due to the fast and 
variable performance of GRU. ELM was upgraded to a multi-layer ELM 
and SARIMAX was applied instead of ARIMA due to the influence of the 
feed on the biomethane production. CNNs, in general, have been 
selected since they are proven to be effective in time series forecasting 
[26], while PLS and BR were applied for evaluating further linear 
models that might outperform LR and EN. ABR was chosen to evaluate 
one further gradient boosting technique apart from GBR. Ordinary 
multi-layer perceptrons were excluded due to their performances on 
time series being inferior than RNNs – with similar simulation time on 
optimized GPU architectures [27]. Moreover, transformers were 
excluded due to extremely long training time and to possible instability 
due to the number of hyperparameters to be optimized [28]. Due to high 
computational time, several other models were also excluded, such as 
support vector regression and genetic programming.

2.1.1. ML models
Several classical ML models were applied in this study to evaluate 

which model could provide the best results (Table 2).
As basic benchmark an ordinary least squares optimization of an LR 

shown in Eq. 1 was applied. 

y = xβ (1) 

where x represents the input data, β represents the coefficient matrix 
and y represents the output value. The equation is solved as in Eq. 2. 

β̂ = argmin
β

S(β) (2) 

with β̂ being the estimated optimal coefficient matrix and S being the 
cost function.

Based on LR, Elastic Net involves the usage of the L1 (lasso method) 
and L2 (ridge method) to regularize the output of the linear model [29]. 
The linear coefficients are optimized by the addition of two regulari-
zation parameters λ1 and λ2, and model coefficients are calculated ac-
cording to Eq. 3. 

β̂= argmin
β

(
‖ y − xβ‖2 + λ2 ‖ β‖2 + λ1 ‖ β‖1

)
(3) 

This procedure (also called shrinkage) is used to prevent overfitting 
on the data, considering that new data samples might not follow the 
distribution of the training data [30].

Bayesian Ridge (BR) was applied as well, which consists of a 
Bayesian LR with an L2 regularization [31]. Bayesian LR is based on 
prior assumptions on the distribution of the dependent variable y. The 
LR model is then first expressed in probabilistic form as in Eq. 4. 

μ = α + βx
y ∼ N (μ, σ) (4) 

The dependent variable follows a normal distribution parametrized 
by mean μ – directly proportional to X parametrized by α and β – and the 
standard deviation σ. A prior distribution is then assumed for α, β and σ, 
and the parameters of such distribution are then optimized according to 
Eq. 5 [32]. 

β̂ = argmin(
β

1
σ2 ‖ y − xβ‖2

2 +
1
τ2 ‖ β‖2

2

)

(5) 

with τ being the precision parameter for the prior distribution [33].
Additionally, Partial Least Squares (PLS) was applied in his canonical 

variation [34]. In PLS, a defined number of latent variables is defined as 
linear combination of the input features. Those latent variables are then 
used as input features for linear prediction of the output feature and are 
defined as those variables that maximize their covariance with the 
output feature. The canonical variation of PLS uses a canonical corre-
lation analysis for the calculation of the covariance.

For direct description of non-linear process behaviour as well, 
further non-linear ML methods are implemented. RF is an ensemble 
learning algorithm that combines multiple decision trees [35]. Each tree 
is trained on a random subset of available data, and the final prediction 
is an average of the predictions from individual trees, as shown in Eq. 6. 

y =
1

NT

∑NT

i=1
fi(x) (6) 

with NT indicating the number of decision trees used by the model to 
perform the prediction. Since the trees are not correlated, RF helps 
reduce overfitting. In this study, the RF algorithm was utilized in its 
regressor version.

A similar method is the AdaBoost Regressor (ABR). This algorithm 
works by iteratively training a sequence of weak learners and assigning 
weights to each data point based on the errors made by the previous 
models [36]. The final prediction is a weighted sum of the individual 
weak learner predictions as shown in Eq. 7. 

y =
∑NL

i=1
αifi(x) (7) 

with NL indicating the number of weak learners used by the model to 
perform the prediction. The coefficient α is assigned to each regressor, 
which allows specific weak learners to have a higher weight compared 
to others. This is achieved by updating α at each learning iteration 
depending on the training error. The higher the training error, the lower 
the weight assigned to each regressor. This approach allows to adap-
tively adjust the weights of misclassified samples, focusing on the 
harder-to-predict instances in each iteration. The adaptability of ABR 
contributes to improved overall prediction performances.

Unlike ABR, which sequentially adjusts the weights of misclassified 
samples, Gradient Boosting Regressor (GBR) focuses on fitting subse-
quent models to the residuals of the previous ones [37]. This iterative 
process minimizes a loss function by optimizing each new model to the 
residuals of the ensemble, gradually reducing the overall error. The 

Table 2 
Individual choices for the definition of different optimization instances and 
prediction models.

Prediction Model1 Dataset Data 
Resolution

Observation 
Distance

LR, EN, BR, PLS, RF, ABR, 
GBR, GPR, k-NN, ELM, RNNs

Dataset B 
and C

15 min 
1 h 
6 h

1 timestep 
12 h 
24 h

Dataset A 15 min 
1 h

1 timestep 
12 h 
24 h

1D-CNN2 Dataset A, B 
and C

1 h 
6 h

1 timestep 
12 h 
24 h

SARIMAX2 Dataset B 
and C

6 h 1 timestep 
12 h 
24 h

1 ABR: AdaBoost Regressor, BR: Bayesian Ridge, ELM: Extreme Learning 
Machine, EN: Elastic Net, GBR: Gradient Boosting Regressor, GPR: Gaussian 
Process Regressor, k-NN: k-Nearest Neighbors, LR: Linear Regression, PLS: 
Partial Least Squares, RF: Random Forest, RNN: Recurrent Neural Networks.

2 Due to the excessive time consuming training process at higher sample 
numbers, 1D-CNN was only applied at 1 h and 6 h resolution, while SARIMAX 
was only tested at 6 h resolution.
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functional dependencies to predict model output of GBR are summarized 
in Eq. 8. 

y = Fm− 1(x)+ αmhm(x) (8) 

with Fm− 1(x) representing the ensemble of previous models, αm the 
learning rate for model m, and hm(x) represents the weak learner – 
typically a regression tree – trained to forecast residual errors.

For testing Bayesian inference also on non-linear models, gaussian 
processes in their regression type were applied. The Gaussian Process 
Regressor (GPR) is a non-parametric Bayesian approach for regression 
[38]. It models the underlying function as a probabilistic distribution of 
possible functions that could explain the provided data, assigning a 
probability to each function based on its wellness of fit. Mathematically, 
the predicted value for a given input is a Gaussian distribution, as shown 
in Eq. 9. 

y ∼ N
(
μ(x) , σ2(x)

)
(9) 

In general, GPRs are features-efficient, producing valid process pre-
dictions with a low amount of input features.

Another approach represents the usage of neighbouring values to 
determine the best fit [39]. The k-NN in its regressor form predicts the 
target value by averaging the target values of its k nearest neighbors in 
the feature space, as presented in Eq. 10. 

y =
1
k
∑k

i=1
yi (10) 

where yi is the target value of the nearest neighbour i to x, and k is the 
number of neighbors considered.

2.1.2. DL models
Considering the complexity of the AD process, DL models were 

applied and tested as well. While such models do not guarantee a global 
optimum [40,41], they often outperform simpler ML algorithms in time 
series prediction tasks [42] and might be faster when a Graphic Pro-
cessing Unit (GPU) is used [43].

2.1.2.1. Multi-layer ELM. Extreme Learning Machine (ELM) is a type of 
feedforward NN capable of achieving high performances with low time 
and resource consumption [44]. ELM NNs do not use backpropagation 
as weight optimization method, but apply a Moore-Penrose generalized 
inverse matrix instead to compute the optimal solution for individual 
weight updates [45]. It has been proven that ELMs perform better when 
well-extracted hidden features are provided to the model [46], and 
therefore a Multi-Layer ELM (ML-ELM) was tested on the available 
datasets. ML-ELM uses a multi-layer structure where the hidden neurons 
assume the weights of the hidden layer in an ELM autoencoder, 
following Eq. 11. 

a = βT with β = KT and K =

(

HTH +
I
C

)− 1

HT (11) 

where K is the pseudo-inverse of the ELM-based autoencoder’s hidden 
layer output matrix H, T is the output of the previous layer and C is the 
regularization constant. The input and hidden weights W and V are then 
updated based on β. The output y is then calculated as in Eq. 12. 

y = g(norm(Wx+VH) )β (12) 

with g being the activation function and norm being the layer 
normalization.

2.1.2.2. LSTM and GRU. Long Short-Term Memory (LSTM) networks 
are a type of Recurrent Neural Network (RNN) that are designed to 
remember information for extended periods of time. They were intro-
duced by Hochreiter and Schmidhuber [47] to address the vanishing 

gradient problem, which is a difficulty encountered by traditional RNNs 
where the contribution of information decays geometrically over time.

As any other NN, LSTMs have a predefined number of neurons 
distributed into layers, that apply sequential operations to the input 
value, multiplying weight of each neuron to predict the output values. 
Each LSTM neuron has an input gate, a forget gate, and an output gate 
[48], as illustrated in Fig. 1. These gates collectively decide how to 
update the current cell state and what information to output. The forget 
gate decides which information should be discarded and the input gate 
updates the cell state with new information. The cell state is the 
component of the cell which is responsible for the propagation of the 
information from the previous steps. The output gate defines the next 
hidden state.

Gated Recurrent Unit (GRU) NNs are a variation of LSTM NNs where 
the gating mechanism is simplified by merging the forget and input gates 
into a single update gate, and combining the cell state and hidden state 
into a reset gate [49], as shown in Fig. 1. This simplification reduces the 
computational complexity of the model, while still allowing it to capture 
long-range dependencies in sequential data.

A hyperparameter belonging to the present model application is the 
choice of LSTM or GRU cell for the RNNs model category.

2.1.2.3. 1D-CNN. One-Dimensional Convolutional NNs (1D-CNN) are a 
type of NN that is able to recognize patterns in the provided data. Unlike 
their 2D counterparts, which are commonly used for image processing, 
1D-CNNs operate over a temporal sequence, looking for hidden patterns 
and relationships within the available data.

The key component of 1D-CNNs is the convolutional layer that uses a 
1D convolution operation. In this operation, a filter (or kernel) slides 
across the input time series to extract local features. The size of the filter, 
often referred to as kernel size, is a sensitive hyperparameter [50]. This 
operation involves element-wise multiplication of the filter with a 
window of the input time series, and then summing the results to pro-
duce the output. Convolutional layers are normally accompanied by 
pooling layers – especially MaxPooling layers, that return the highest 
value out of a specific set of values – that reduce the size of the input 
value, conserving the most important information.

In the current application, the CNN is structured with two alternated 
layers of convolution and MaxPooling, followed by either a dense layer 
or a LSTM layer, depending on the choice of the optimizer for further 
data processing.

2.1.3. SARIMAX
The Seasonal ARIMA with eXogenous inputs (SARIMAX) is a time 

series forecasting method that extends ARIMA by incorporating seasonal 
components and exogenous variables [51]. It models the relationship 
between the observed series and its lagged values, seasonal differences, 
and external predictors. In the present study, the selected external pre-
dictors are set with the Minimum Redundancy Maximum Relevance 
(mRMR) algorithm [52], and the number of external predictors is 
defined within the applied optimization pipeline presented in Section 
2.3. The fundamental equation for SARIMAX can be expressed as shown 
in Eq. 12. 

y = c+φ+ϑ+Φ+Θ+Xtβ+ εt (12) 

with c being a constant, φ, ϑ,Φ,Θ being autoregressive, moving average, 
seasonal autoregressive and seasonal moving average components, 
respectively. Furthermore, Xt represents the exogenous variable(s) and β 
their coefficient, and εt the white noise. Seasonal parameters were 
implemented, since the biogas production follows a seasonal-like 
pattern, represented by regular sections in the dataset, due to the reg-
ularity of the feed times in the tested datasets. Due to the impossibility 
for such a model to predict the methane yield without information on 
variable amount of substrate fed, exogenous variables were imple-
mented as well.
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2.2. Feature importance

The SHAP method was applied to evaluate the importance of model 
features within the prediction algorithm [53]. The SHAP algorithm as-
signs each feature an importance value in predicting the output of a 
model by considering its contribution to the difference between the 
actual prediction and the expected prediction. It calculates these con-
tributions using cooperative game theory principles [54], specifically 
the Shapley value (φ), which evaluates the marginal contribution of 
each feature in all possible combinations, ensuring fair allocation of 
credit among features.

2.3. Data preparation and Hyperparameter optimization

Effective preparation of training and test data is essential for the 
successful application of ML algorithms in scientific research [55]. Based 
on the optimization procedure proposed in Meola et al. [24], a Genetic 
Algorithm (GA) is designed to identify optimal conditions for data 
preparation and prediction model hyperparameter estimation, inde-
pendently from the applied model. A simplified scheme of the applied 
pipeline is summarized in Fig. 2. The GA was set with 50 generations, 10 
parents mating and a parents retention rate of 80 %. The gene mutation 
was set as adaptive, with a gene mutation probability of 20 % for gene 
values providing worse results, and a gene mutation probability of 8 % 
for good performing gene values (Marsili-Libelli and Alba, 2000). This 
optimization pipeline is applied to all the tested models and datasets.

The applied optimization pipeline includes a heuristic procedure for 
detection of impossible values, feeding correction, isolation forest al-
gorithm for measurement error detection, an autoencoder for creation of 
additional input features and a mRMR algorithm for feature selection, 
among others. The model hyperparameters available to the optimizer 
are summarized in Table A1 and A2, while the data preparation pa-
rameters are presented in Fig. 1 in Meola et al. [24].

For process improving of missing data handling, the used data 
optimization procedure was extended with a soft sensor to include an 
additional option for NaN handling. The soft sensor is based on BR, ABR 
or GBR (see Section 2.1.1), and it switches to the next model in case an 
individual algorithms outputs invalid results. The structure is summa-
rized in Algorithm 1. 

Algorithm 1. Simplified structure of soft sensor for imputation of 
unknown values

The soft sensor is designed to impute missing values using a model 
trained on the existing training values at the same timestep.

Another modification from the original pipeline consists of the pos-
sibility of the feature selection to be either after the addition of features 
or directly after the LSTM autoencoder (shown as Variable position in 
Fig. 2). Feature selection can be performed using two different 

Fig. 1. Cell structure of LSTM and GRU NNs.

Fig. 2. Data preparation and model hyperparameter optimization pipeline. 
Adapted from Meola et al. [24].
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approaches. The first approach applies feature selection to the original 
dataset without NaN handling and autoencoder features, thereby auto-
matically adding all autoencoder-generated features by default. The 
second approach involves performing feature selection after the NaN 
handling and the addition of the autoencoder features. This method may 
potentially improve the feature selection process by excluding less 
relevant autoencoder-generated features. This leads to an additional 
data preparation parameter (0 = feature selection is positioned after 
LSTM autoencoder; 1 = feature selection is positioned after the addition 
of features) to be optimized by the GA. The feature selection is per-
formed through a mRMR algorithm [56], as in the original description of 
the implemented pipeline.

2.4. Sensitivity analysis on pipeline hyperparameters

A variance-based SA was performed on data preparation parameters 
and model hyperparameters of the optimization pipeline (see previous 
Section). The applied SA technique – also referred to as Sobol’ method – 
quantifies the contribution of each input variable to the overall output 
variance of a model [57]. In this case, the model input are the data 
preparation parameters and the model hyperparameters, while the 
output is the prediction error on the validation dataset. The validation 
dataset was chosen over the test error because the optimization pipeline 
is optimized on the validation error. Thus, using test error as output 
values could lead to invalid results. The Sobol’ method involves a quasi- 
random sampling from the original input data distribution and an esti-
mator based on Saltelli et al. [58] to calculate the Sobol Total-Effect 
indices. Since the standard number of samples (1024) originates 
28,672 input parameter combinations, it was impossible to run such a 
high number of simulations. Therefore, an RF Regressor – described in 
this paper as surrogate RF – was fitted on the pipeline data and was used 
for the calculation of Sobol indices. The surrogate RF model was opti-
mized first with a random search, and the results were further improved 
with a grid search. Each surrogate RF model was trained on one opti-
mization instance at a time (e. g., BR predicting dataset A at a resolution 
of 15 min and an OD of 24 h, according to Table 2).

2.5. Data availability

To evaluate the tested algorithms on several, realistic scenarios, 
three full-scale datasets for AD of agricultural substrates and residues 
were chosen. Each dataset includes different operating and process 
conditions to allow for a comprehensive analysis of the model perfor-
mances. Database A represents a steady state AD process with constant 
substrate characteristics and many available features (n = 51). Dataset B 
includes less sensor features, but more in general (n = 57) with highly 
variable OLR and high measurement uncertainty. Dataset C uses several 
substrates at various OLR, with 93 available features. All the experi-
ments were carried on in a single primary continuous stirred tank 
reactor (CSTR) with a total volume of 188 m3 at the Deutsches Bio-
masseforschungszentrum (DBFZ, German Biomass Research Center) 
research biogas plant. The data availability and the progression of the 
OLR for each full-scale experiment is illustrated in Fig. 3 and Fig. 4, 
respectively.

2.5.1. Dataset A
AD of rye whole crop silage (solid substrate) and cattle manure 

(liquid substrate) were conducted at steady-state conditions with a 
constant OLR of approximately 4 kg VS m− 3 d− 1 and an average HRT of 
30 days for 189 days. The reactor was fed on average with 1.4 t of solid 
substrate and 2.8 m3 of liquid substrate per day, with an average liquid 
to solid feed ratio of 2:1 m3 t− 1.

2.5.2. Dataset B
In Dataset B dynamic AD of corn silage (solid substrate) and cattle 

manure (liquid substrate) was investigated with variable OLR between 2 

and 12 kg VS m− 3 d− 1, with peaks of 16 kg VS m− 3 d− 1, for 165 days. The 
one-week mean HRT varied between 22 and 97, with a mean of 40 days. 
The high OLR towards the end of the experiment led to process 
inhibition.

2.5.3. Dataset C
In dataset C, the conditions were dynamic with a mean organic 

loading rate of 3.6, and a maximum of 8.9 kg VS m− 3 d− 1. HRT varied 
between 23 and 66 days with peaks of 90, 120 and 140 days. The reactor 
was fed on average with 4 t of a mixture of solid and liquid substrate per 
day, with a highly variable liquid to solid feed ratio between 81.3 and 
0.3 m3 t− 1. Liquid substrate was uniquely cow manure, while solid 
substrate variated among apple pomace, sugar beet, grass silage and 
corn silage.

The measurements available in each dataset (including data resolu-
tion) are summarized in Table 3.

2.6. Data manipulation

All three datasets used for simulations were resampled (up sampled 
when feature resolution was lower than the desired one, down sampled 
when the resolution was higher than the desired one) to 15 min, 1 h and 
6 h resolution. Depending on the feature, the down sampling was carried 
out by averaging the values over time (such as methane yield or VFAs 
concentration in digestate) or summing the values over time (such as 
feeding amounts).

While RNNs, 1D-CNN and SARIMAX natively support a third time 
dimension for consideration of previous time steps, all the other applied 
models support only one timestep at a time. Thus, all the other applied 
models support a sliding window as long as the sequence length. For 
such models, an additional data preparation parameter has to be added 
and optimized by the GA in the optimization pipeline (see Section 2.3), 
which is the sequence length for the output feature, which can assume 
the same values as the sequence length.

2.7. Implementation

The simulations were carried out on three different High- 
Performance Clusters (HPCs). All the simulations involving neural net-
works were carried out on an HPC with one AMD EPYC 7551P CPU with 
64 threads and a maximum clock of 3 GHz, and with one Nvidia GeForce 
RTX 2080 Ti encompassing 11 GB of RAM as GPU. 15 min resolution 
simulations were carried on with 40 GB RAM, 1-h resolution with 30 GB 
and 6-h resolutions with 20 GB RAM. All the other simulations were 
either executed on a HPC with 2 Intel Xeon E5–2698 V3 CPUs with 64 
threads, a maximum clock of 3.6 GHz and 110 GB of RAM in total; or 
they were executed on a HPC with two AMD EPYC 7713P CPU with 128 
threads and a maximum clock of 3.7 GHz each, and a RAM distribution 
following the first HPC. To ensure a comparability while analyzing the 
execution time, the optimization pipeline was programmed in Python 
3.9, but is compatible with any python version from 3.7 to 3.11. The 
pipeline makes use of several packages. Pandas (McKinney, 2010) and 
Numpy (Harris et al., 2020) were used for the data preparation pro-
cesses, Scikit-learn (Pedregosa et al., 2011) for both data preparation 
process and prediction model. Tensorflow (TensorFlow Developers, 
2022) was applied for the autoencoder and for the prediction model, 
while Pygad (Gad, 2021) was used for the development of the GA 
optimizer. Each optimizer iteration (data preparation, model train and 
model test) returns a 7 • 107 error when the process takes more than 30 
min. SHAP [53] was used for the calculation of feature importance and 
SALib [59] was applied for the calculation of Sobol’ indices.

3. Results and discussion

In the following section, the simulations results as well as prediction 
performances, time performances, hyperparameters sensitivity and 
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feature importance will be evaluated. The prevailing error metric 
applied for measuring prediction performances is the Root Mean 
Squared Scaled Error (RMSSE), as described in Meola et al. [24]. Thus, 
the RMSSE is calculated as the ratio between the RMSE of the applied 
model, and the RMSE of a naïve forecast, that predicts the next output 
value as corresponding to the present output value.

3.1. Model performances

The 13 models were tested on all available datasets, resolutions and 
ODs. In this section, validation and test errors on all prediction scenarios 
will be presented and discussed. While prediction error alone is not a 
reliable parameter to measure how accurate, in general, ML algorithms 
can be when modelling physical-chemical scenarios, they can give an 
impression on how powerful such models are in comparison to each 
other.

The best result per optimization scenario is meant as the best 
hyperparameter combination for a specific model that produced best 
performances on the validation dataset. In general, models perform 
better on the test dataset in comparison with what is shown in Fig. 5, 
Fig. 6 and Fig. 7, but it would not be scientifically correct to show the 
best hyperparameter combination originating best performances on test 
dataset, since in a real scenario the test dataset is unknown. Fig. 5 shows 
individual results for dataset A.

Among all resolutions and ODs in dataset A, GPR and PLS perform 
regularly worse than the other models. Instead, ABR is able to perform 
comparably to the other models only in 50 % of the occasions. The ML- 
ELM performs better at a 15 min resolution when the OD is higher, while 
it performs comparatively worse especially at OD of 12 h.

Models perform in general better at 1 h resolution compared to 15 
min resolution, except when the OD reaches 24 h. At that point, LSTM/ 
GRU and LR perform better at 15 min resolution.

For the simpler task of predicting 1 h in advance, LR performs better 
on the test set than all the other models, with 61 % as RMSSE error. At an 
OD of 12 h and 24 h, EN performs better than LR, probably because the 
L1 and L2 regularization allow the model to better understand under-
lying relationships between input and output data. In general, linear 
models seem to perform better than any other more complex model, as 
also demonstrated by Dittmer et al., (2021b). BR, LR and EN always 
outperform any other model at 15 min resolution and BR and EN are in 
the top three performing model in all the OD scenarios at 1 h resolution. 
Another notable model in this context is RF, which is among the three 
best performing models in all OD scenarios at 1 h resolution. While more 
complex models, such as XGBoost, RNNs and 1D-CNN show acceptable 
performances, their complexity is unnecessary to reach optimal pre-
diction performances in processes without inhibition or significant 
variations in the fed substrate amount. Since the performances of the 
model were already optimal at 1 h resolution, experiments on 6 h res-
olution were not performed.

While for the dataset A most of the models were able to predict the 
biogas production at any OD and resolution, model efficiency for dataset 
B is much lower, as illustrated in Fig. 6.

The only resolutions and ODs at which the models are able to predict 
the biogas production with high precision are at 1 h resolution and 1 h 
OD and at all ODs at 6 h resolution, while no model can satisfactorily 
predict the biogas production at any OD at 15 min resolution. BR shows 
in every condition signs of overfitting on the validation data, with very 
high differences between the test and validation error. The multi-layer 

Fig. 3. Data availability in the three datasets.
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ELM, LR and EN also show clear signs of overfitting in 50 % of the cases. 
GBR is the best model when predicting biogas production 1 h in advance 
with 1 h resolution, with LSTM/GRU showing similar performances. At 
6 h resolution, RF is the best model for ODs of 1 h and 12 h, while k-NN is 
the best model with 24 h OD. It is the only model able to predict biogas 
production at 24 h OD together with the SARIMAX algorithm. In gen-
eral, more complex models – ABR, RNNs, RF Regressor – together with k- 
NN Regressor demonstrate higher performances than simpler models. 
However, 1D-CNN was not able to match the performances of other 
complex models, demonstrating to be unfit for the prediction of the 
dynamic methane yield at non-stationary conditions (for the specific 
substrate mixture and operating conditions). Therefore, complex models 
are required for modelling methane production during dynamic (un-
stable) conditions, even when the same substrate is fed. Sappl et al. [19] 
also demonstrate that more complex models are required for optimal 
process prediction, while the authors observed how k-NN performed 
comparably worse than the applied transformer architecture.

While the dataset C offers a challenge due to the frequent variation of 
substrates and the variability in OLR, at least one of the tested 

algorithms is always able to successfully predict the biogas production, 
as shown in Fig. 7.

In general, bias and variance alternate themselves in the prediction 
of this dataset. Test results are often more accurate than validation re-
sults. This phenomenon could occur because of the high number of 
substrates used and the substrate difference between train, validation 
and test dataset. In general, linear models (especially BR and LR) 
together with RF overperform all the other algorithms, in particular at 
lower OD, where those three models are always among the top three 
performers. At 12 h OD, RF does not perform as well as at one timestep 
OD, especially at 15 min resolution. Gradient Boosting Regressor can 
better predict methane yield at 12 h OD, as well as the RNNs, that 
performs better at 1 h resolution and 12 h OD, and is the best performing 
model at 6 h resolution, at same OD. At 24 h OD, the trend of RF losing 
prediction accuracy keeps being valid, especially at 15 min resolution, 
while the linear models keep providing optimal performances at any 
resolution. RNNs are among the best performing models along all time 
resolutions, being the absolute best performer at 1 h resolution. Thus, 
linear models and RNNs in particular are adequate models for predicting 

Fig. 4. OLR progression and VS composition for dataset A, B and C.
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dynamic methane production with changing substrate composition and 
high data availability. While the simplicity of linear models could allow 
them to appropriately model the methane yield through appropriate 
input values provided by the data preparation pipeline, RNNs are able to 
depict complex relationships between input and output also at variable 
substrate compositions.

Results of the two best performing models plus a selected model are 
shown in Fig. 8 for each dataset. The OD was kept at 24 h while dataset A 
is shown at 15 min resolution, Dataset B at 6 h resolution and dataset C 
at 1 h resolution.

During the prediction of dataset A, until day 13, all the models are 
able to closely follow and mostly match the methane yield, especially at 
positive and negative peaks. From day 14 (when the peak height in-
creases) most models start losing precision of predicted methane yield, 
while a GRU-based RNN is still able to closely depict individual peaks 
and intermediate periods. This shows that, while error metrics are 
valuable for an initial model evaluation, the analysis of individual plots 
are a more meaningful way to understand which models are most suit-
able for process prediction.

Even when predicting a challenging dataset such as dataset B, indi-
vidual models are suitable to describe the methane yield in detail. While 
during the first three prediction days all the three considered models are 
able to predict the decrease in methane yield, the only model able to 
predict the renewed increase in yield is SARIMAX. From day 5, SAR-
IMAX still follows closely the measured methane yield, but often pre-
dicts the peaks 6 h (one timestep) later than the real ones. While this 
does not mean that the model fell in a local minimum and uses the 
previous time step value, since the closest known value is 24 h before, it 
still does not provide optimal performances for real time applications. 
The other two models applied, and specifically RF, are able to closely 
follow measurements even on peaks from day 6 onwards.

While dataset C was trained on process data that involved the feeding 
of substrates different from the ones fed during the test data process, all 
selected models are suitable to satisfactorily predict the methane yield 
24 h in advance. In general, RF matches better the peaks, even when the 
peaks are lower it tends to overestimate the methane yield. Moreover, 
RF is able to properly depict feeding events that result in three subse-
quent peaks (days 13 and 14 in Fig. 8), while the other two models lack 
in precision in these cases. BR is instead more prone to closely follow 
peaks of lower intensity but underestimates higher peaks. GRU RNN is 
instead more equilibrated, mostly predicting peaks correctly. RF dem-
onstrates to be the most reliable model for model prediction with 
presence of multiple substrates, while the other two models can also be 
useful depending on the use case.

3.2. Optimization time performances

Apart from prediction accuracy, the time needed for algorithm 
convergency is a factor in deciding which algorithms are most suitable 
for process prediction, since powerful high-performing computing 
technologies might not always be available, and a low training time 
could be important for efficient operation procedures. The time per-
formance of the algorithms was tested as percent increase or decrease of 
a specific algorithm compared to the other algorithms in the same 
optimization instance. The mean increase or decrease (as well as the 
standard deviation) along all simulative environments is illustrated in 
Fig. 9.

The fastest algorithms on average, considering the total time needed 
for reaching convergency, are k-NN Regressor as the fastest, followed by 
Multi-Layer ELM and PLS Canonical. The slowest algorithm on average 
are RNNs (as confirmed by [60]), followed by CNNs, GBR and SARIMAX. 
While the high convergency time for the first three presented model is 
typical of those models [61,62], the slowness of SARIMAX is determined 
by the implementation, which generated and trained a new model at 
each timestep.

Most of models’ speed can be explained by model complexity. The 
only models whose time performance seems affected by convergence 
time more than by model complexity are CNN and GBR. The high 
number of convergency steps required by CNN – higher on average then 
the steps needed for RNN to converge – is related to the high number of 
parameters optimized in CNNs, and probably by the sensitivity of most 
of model hyperparameters such as the kernel length and the pooling 
length. GBR is probably highly sensitive to input data, since there are 
only four model hyperparameters to optimize.

Moreover, not all models are consistent with their time perfor-
mances. The three best performing models are also the most consistent 
in their time performances, and the three worst-performing models are 
also the ones which are the least consistent. Simpler models such as LR 
and BR also suffer from high relative standard deviation, probably due to 
being too sensitive to the input data.

3.3. Further evaluations of applied models

Effectiveness of applied models might also differ depending on the 
individual optimization instance (dataset, data resolution and OD). 
Fig. 10a shows the average performances of the applied models 
depending on the underlying data resolution. The majority of linear (or 
pseudo-linear) models, BR, LR and ML-ELM demonstrate an extremely 
high difference in performances depending on the resolution used, with 
ML-ELM showing an RMSSE increase of more than 600 % between 6 h 
resolution and 15 min resolution. In general, models perform better at 

Table 3 
Available measurements for dataset A, B and C.

Type of feature Resolution Database Amount Examples

Operational (1 
s)

1 s A and C 8 Biogas production rate and temperature, reactor pressure and temperature, mixing frequency, recirculation, 
output digestate, active volume

B 6 Same as in Dataset A, excluding recirculation and output digestate
Operational (2 

h)
2 h A, B, C 5 CH4, CO2, H2S, O2 and H2 biogas content

Substrate 1 min1 A 28 (14 per 
substrate)

Laboratory analysis carried out on the two substrates (raw ashes and fat content among others)

B 36 (18 per 
substrate)

Laboratory analysis carried out on the two substrates (raw ashes, fat content and VFAs content among others)

C 70 (14 per 
substrate)

Same as Dataset A.

Digestate 1 to 7 days A, B, C 10 Laboratory analysis carried out on the digestate (raw ashes, fat content, TS, VS and VFAs content among others)

1 While the analyses on the substrates are performed only when the fed substrate is changed, the dataset is filled up with 0 s when there is no feed, and with the 
previous measurement at feed time.
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higher resolution, but GPR does not follow this pattern, demonstrating 
worse performances when applied to 6 h resolution cases. Nevertheless, 
multiple models perform better at 1 h resolution than at 6 h resolution 
(such as 1D-CNN and BR). This behaviour can be explained for linear 
models to have more data to be trained on, while for CNN it might be 
explained with the prediction mechanism based on pattern recognition, 
which might be hindered at lower resolution. In general, the best per-
forming models are RNN, RF Regressor, k-NN Regressor and ABR. GBR 
performs better than all the other models at 15 min resolution, con-
firming its optimal performances also at 1 h resolution, followed closely 
by RF Regressor, RNN and k-NN Regressor. At 6 h resolution, RNNs 
perform best, followed by RF Regressor. The good performances of RNNs 
and RF on 6 h resolution might be attributed to the known effectiveness 

of these models to model phenomena with a low amount of data [14,12]. 
Fig. 10b shows model performances depending on the dataset on which 
the model is applied.

While it is evident from the results that dataset B is the hardest 
dataset to model, only simpler (linear) models show a big difference 
(RMSEE > 600 %) between database A, B and C. BR, EN, LR and ML-ELM 
demonstrate to be inadequate to accurately predict dataset B, and GBR, 
PLS Canonical and 1D-CNN are also not performing well. The other 
models perform, in comparison, sufficiently well – specifically GBR, 
which performs best – whilst none of them scores less than 100 % RMSSE 
on average. As expected, performances of models on dataset C are lower 
than on dataset A, due to the more dynamic nature of dataset C, but 
some models (such as RNN and RF) perform better on the dataset C, 

Fig. 5. Best performing model configurations validation and test error for Dataset A. The shown test errors correspond to the best validation result.
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possibly because of the diversity of the training data, that allowed such 
models to capture more complex relationships between input and output 
data. All models, in general, perform well on dataset A and C, except 
GPR, ABR and PLS Canonical, which overcome on average RMSSE of 
100 %.

OD also demonstrates to have a role in model performances. In 
Fig. 10c average model performances depending on OD are shown. 
Models that perform well on average, tend to perform better on lower 
OD (such as RNN and RF, as also demonstrated by [18]). The only 
exception is SARIMAX, which however was only trained and tested on 6 
h resolutions datasets, meaning that the average error is based only on 6 
h resolution datasets that are easier to predict than higher resolution 
datasets. 1D-CNN was trained only on 1 h and 6 h resolutions, meaning 
that the comparatively good performances (especially on 24 h OD) can 
be explained by the lack of testing on 15 min resolution datasets. BR, 
GPR, EN, PLS Canonical and ML-ELM all demonstrate to be inadequate 
to properly predict biomethane production at any OD. Excluding SAR-
IMAX for the previously mentioned reason, RNNs are on average the 
best performing model on 24 h OD, followed by GBR. The complexity of 
those models probably allows them to understand intrinsic process 

proprieties, and predict longer steps in the future. GBR is the best per-
forming models on 12 h OD, together with RF, both followed by RNN 
and k-NN. At 1 h OD, RF performs better than any other model, closely 
followed by GBR.

Moreover, the proneness of models to overfit or include bias is shown 
in Fig. 10d as a percentual difference between the validation and the test 
error, in absolute values. The majority of the models that did not 
perform well in the previous analyses, also reached bad scores in this 
evaluation. Complex NNs (1D-CNN and RNN) together with k-NN, ABR 
and RF Regressor perform well, demonstrating on average less than 30 
% absolute difference between validation and test data. Considering the 
results of this analysis, those models can be considered more robust than 
the other ones. ML-ELM, the least complex NN, surprisingly exhibits a 
very high variance or bias, demonstrating that it should not be used as a 
model for the prediction of dynamic methane production rates.

For more precise evaluation of model performances, the MAE and 
MAPE were calculated for an OD of 24 h. Results are summarized in 
Table 4.

While not all applied model result in the same ranking independently 
from the analyzed error metric, models performing well typically 

Fig. 6. Best performing model configurations validation and test error for Dataset B.
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perform well for all error types. For instance, model predictions result-
ing in RMSSE between 80 and 94 when predicting dataset A at a reso-
lution of 15 min, are also the top performing models when considering 
MAE and MAPE. In several cases, specifically for dataset B and C at a 
resolution of 15 min, and for dataset C at a resolution of 6 h a best model 
can be defined independently from the analyzed metric.

The differences in model rankings between error metrics can largely 
be attributed to two factors. First, the increased presence of peaks in 
certain scenarios tends to increase the RMSSE, whereas these peaks have 
a less pronounced effect on MAE and MAPE. Second, the similarity of the 
previous output when predicting the current one plays a role. When the 
previous value closely resembles the actual one, it provides an advan-
tage to naïve forecasting, which is used as the baseline for RMSSE 
calculation. This can lower the RMSSE without impacting MAE and 
MAPE.

Given the importance of peak prediction and the predictive capa-
bilities of naïve forecasts in assessing ML model performance in the 
context of AD, RMSSE is recommended for use in future experiments.

3.4. Sensitivity analysis

The SA was performed on the three best performing models per 
dataset, while still selecting 15 min resolution for dataset A, 6 h reso-
lution for dataset B and 1 h for dataset C, all with 24 h OD. The results 
are shown for datasets A, B and C in Fig. 11.

The surrogate RF models fitted on dataset A, EN and RNN, evince an 
accuracy of 0.95 and 0.85, respectively. During the training of RNNs, 
model hyperparameters are more important than data preparation pa-
rameters [24]. While hyperparameters are important also when training 
EN, data preparation parameters are largely more important. This aspect 
can be explained by the more complex nature of RNNs, and by the need 
for linear models to have better quality data to deliver optimal results. In 
general, hyperparameters relative to autoencoders seem to have a high 
importance for both models, even if not for both models the same pa-
rameters are equally important. NaNs handling, excluded input vari-
ables and sequence length are among the most important data 
preparation parameters for both models.

The surrogate RF models fitted on dataset B, SARIMAX and RF, show 
an accuracy of 0.93 and 0.99, respectively. While both models 

Fig. 7. Best performing model configurations validation and test error for Dataset C.
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demonstrate acceptable performances when predicting dataset B, they 
work differently and they were therefore expected to be differently 
influenced by individual model hyperparameters. However, the models 
are similarly affected by the variation of the data preparation parame-
ters. For both models, data preparation parameters are more influential 
than hyperparameters (particularly for RF, where the only optimized 
hyperparameter has a Sobol’ index close to zero). In contrast, SARIMAX 
shows relevance for three of its hyperparameters. Additionally, 
autoencoder-related features and sequence length parameters (input 
sequence length for SARIMAX, output sequence length for RF) signifi-
cantly impact both models. Although to varying extents, both models are 
also sensitive to the total feed usage and handling of NaNs. This shows 

that the same data preparation parameters have similar impacts on 
different models when applied to a non-stationary AD process with 
constant substrate input and composition.

The surrogate RF models fitted on dataset C, BR and RNN, had an 
accuracy of 0.98 and 0.92, respectively. As already described for dataset 
A, also in dataset C the RNNs are impacted more than the linear model 
by the model hyperparameters. The sequence length is important for 
both models, and both models also are impacted by autoencoders- 
related data preparation parameters, suggesting the importance of 
autoencoders for both models and more in general for all the cases taken 
into consideration. NaN handling is important for both models as well, 
showing a general trend for all applied ML or DL models. RNNs applied 

Fig. 8. Simulation results of best models on the test datasets, with an OD of 24 h. Dataset A tested on 15 min resolution, dataset B on 6 h resolution and dataset C 1 
h resolution.
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to both dataset A and C are heavily impacted by the dropout value in the 
input cells and less by the removed input feature hyperparameters, 
suggesting that dropout in the input cells is more effective in limiting the 
number of input parameters for RNNs compared to the mRMR 
algorithm.

In general, complex models such as RNNs need a fine calibration of 
various hyperparameters for accurate process prediction, while simpler 
models require the tuning of a few data preparation hyperparameters in 
addition to their most impactful model parameters.

3.5. Feature importance

The FI was calculated for the best performing models in the same 
optimization instance as within the SA calculation process. Since all 
models use multi-step data, features were summed after the calculation 
of the SHAP values. While this process originated relatively color- 
uniform SHAP distributions for all models using rolling window tech-
nique (in this case, EN, RF and BR), RNNs originated less color-uniform 
distributions, since the contribution of each time step of the cell memory 
is regulated by the (hidden) state of the cell. Moreover, SARIMAX 
feature importance could not be analyzed with SHAP due to the different 
nature of the model. Thus, model coefficients are plotted instead.

Within the prediction of dataset A, the features with the highest 
importance for the two tested models (EN and RNNs) do not differ in 
general, as illustrated in Fig. 12.

While some features show a similar quantitative impact on the pre-
diction for both models, such as the recirculated digestate, the HRT, the 
OLR and the mixing frequency, some other features have a completely 
different effect, such as the output digestate, that originate both strongly 
positive and negative effects in the RNNs, while it just originates positive 
effects in EN. Moreover, the methane production rate has a threefold 
positive effect in EN compared to the RNN, which explains why RNNs 
perform better than EN in the presence of higher peaks, as shown in 
Fig. 8 in Dataset A between days 7 and 9. RNNs seem to be affected by far 
more parameters than EN, demonstrating the capacity to handle a 
higher amount of significative input values. This can be deducted from 
Fig. 12 while observing high importance of the group of other features 
compared with individual features in both simulation instances. Physi-
cochemical phenomena are mirrored in the FI of the analyzed models. 
The recirculation of the digestate has in both models a positive impact 
on the output, probably explained by the increased HRT and the gas 
exchange between liquid and gaseous phase in the reactor triggered by 
reactor agitation [63]. RNNs also depict the hydrogen content of 

produced gas as directly proportional to the methane yield, possibly 
explained by the hydrogen content of the produced biogas being an AD 
process indicator [64]. Other phenomena such as the negative impact of 
mixing frequency on the methane yield can either be present because of 
inherent process proprieties or because of wrongly fitted model weight 
[65]. The high importance of the hour of the day (especially for RNNs) is 
explained by the constant feeding time throughout the experiment. 
Thus, the model learned that at a certain time the model is fed, origi-
nating higher methane production. In general it is demonstrated that 
none of both models need laboratory analysis further than the VS of the 
input substrate for accurate process prediction. Instead, in presence of 
complex data or process inhibition, further laboratory analysis might be 
beneficial for accurate prediction. Fig. 12b shows the feature importance 
for SARIMAX and RF on the dataset B.

While an exact comparison of the FI of the two models cannot be 
extensively performed due to their different nature, both applied models 
can be singularly analyzed through their own FI applied techniques, and 
similarities and differences in FI can be found. In general, the HRT, as 
one of the selected exogenous inputs, has a higher impact than any other 
SARIMA coefficient when applied to dataset B. Additional factors have a 
negligible impact on the simulation results. The mixing frequency has 
also a very low importance because it is a constant term. The mRMR 
algorithm did not find any better feature in this case. HRT is also a 
relevant feature when the RF algorithm is applied, being the fourth most 
important feature. While the methane production rate of previous time 
steps was not included in the input parameters of SARIMAX since it 
would have been redundant, the fed corn silage was probably not 
selected by the mRMR algorithm for SARIMAX because its value is often 
zero. Moreover, OLR and HRT are mathematically related, and since the 
GA selected for this model only two exogenous features, OLR was 
excluded by the mRMR algorithm in SARIMAX. Thus, even though 
different features are important, both models appear to behave 
similarly.

The importance of methane production rate, OLR, HRT and fed 
substrate applies to dataset B as well as in dataset A, while the relative 
importance of features such as substrate (butyric) acid content and 
autoencoder-generated features marks a difference between dataset B 
and the other two tested datasets. This fact can be explained by the 
increasing process inhibition level, due to increased VFAs content (high 
importance of features capable of strongly changing the process state). 
Fig. 12c shows the FI for Bayesian Ridge and RNNs on dataset C.

Both models are heavily impacted by fed sugar beet and corn silage, 
methane production rate, and moderately impacted by the corn silage 

Fig. 9. Increase in time and optimization steps compared to same dataset, resolution and OD scenario per each model. The error bars represent the stan-
dard deviation.
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protein content and by the biogas methane content. While the impact of 
fed substrate and methane yield of previous time steps was common in 
all analyzed datasets, the importance of corn silage protein content is 
high only in dataset C, probably because of more regular changes in the 
type of fed corn silage. Statistical features such as rolling mean, variance 
and entropy of biogas yield have importance only in BR when applied to 
dataset C, demonstrating that RNNs do not need additionally generated 
statistical features for accurate prediction. As with dataset A, RNNs give 
high importance to the hour of the day, while BR does not.

In general, both models seem to be affected by similar features (such 
as fed substrate and methane yield) but they differ in the importance 
given to further features depending on model characteristics.

Previous studies applying SHAP to AD process (Zhang et al., [23], 
Schroer and Just [18]) refer, in general, to the amount of substrate 

added and the previous biogas production as most important features. 
Zhang et al., [23] also refer to VFAs as an important feature, similarly to 
the results obtained for Dataset B. In general, results show that previous 
steps methane production has a high impact on all tested datasets, while 
HRT, OLR, mixing frequency, hour of the day and dry substrate feed are 
highly important in two out of the three analyzed datasets. VFAs (in this 
case, butyric acid) and output digestate are highly important in one out 
of three datasets. Thus, gas production, methane content in the gas, 
mixing patterns, TS and VS content of the substrate and amount of dry 
substrate fed are the necessary measurements for accurate process 
prediction.

Fig. 10. Impact of data resolution (a), dataset (b), or OD (c) on model performances as well as error difference between validation and test dataset (d).
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3.6. Discussion

Results clearly show that model choice must be taken depending on 
individual operating conditions, resolution and expected OD. In general, 
PLS and GPR are not recommended for model prediction in any pre-
diction scenarios, since they failed to perform sufficiently well in any of 
the tested scenarios. When modelling steady-state datasets, simple, 
linear models such as EN, BR and LR are sufficient for process modelling. 
While more advanced models, such as RNNs or tree-based methods, still 
achieve reasonable performance, they do not provide significant im-
provements over linear models. This suggests that, for steady-state 
conditions, increasing model complexity does not necessarily enhance 
predictive accuracy. Linear models also excel when several different 
substrates are fed into the reactor, but more complex models such as 
RNNs and RF perform quite similarly, especially at 1 h resolution. 
However, with increasing data complexity, linear models are not rec-
ommended. Signs of overfitting appear as visible from the difference in 
validation and test error from Fig. 6 and Fig. 10d, and complex models 
such as RNNs, k-NN and RF outperform simpler models. Since future 
reactor performances are unknown, more complex models are recom-
mended when used for control purposes, especially due to the high 
average difference between validation and test datasets of linear models. 
At higher resolutions and lower OD, RNNs are recommended over RF 
and k-NN, with GBR and ABR also performing well. While RNNs seem to 
be the best model to be applied for model prediction in general, the 
described alternatives must be applied when training times are crucial 

for model application. Regarding the measurements required for model 
prediction, steady-state datasets mostly require only feeding amount 
information, past data of biogas production, methane and hydrogen 
content as well as reactor and gas temperature. During dynamic oper-
ation of the AD process, laboratory measurements of the substrate and 
digestate are required, especially the VFAs content of the digestate.

The utilization of the applied models for control purposes in indus-
trial scale can be advantageous for feed control in demand-oriented 
energy production from biogas, as described by Jeong et al. [14]. Gas 
production data and additional sensor (and eventually laboratory) data 
might be saved on cloud systems, communicating with the models that 
could predict future methane production to calculate optimal feed 
amounts. While the time-consuming data preparation and hyper-
parameter optimization would be applied before the start of reactor 
control operations, the re-training of the model on newly obtained 
process data would take a fraction of the optimization time. One pipeline 
iteration can be considered as short as 0.05 % of the time required for a 
complete pipeline optimization (1 iteration instead of 2000 iterations). 
Moreover, this calculation does not consider that a considerably lower 
amount of data would be fed to the model at each 1-h timestep. 
Considering a 96-h optimization time for LSTM NNs simulating the AD 
process at 1 h resolution, a single re-training of a 5-months dataset 
would take on average 2.88 min, which would be an acceptable re- 
training time considering the hypothesized 1 h resolution of the con-
trol algorithm. This time is expected to be even lower, since the applied 
amount of data would be considerably shorter than 5 months.

Table 4 
Test results of prediction models applied on tested datasets with 24 h OD.2

Resolution 15 min 1 h 6 h

Error metric RMSSE MAE MAPE1 RMSSE MAE MAPE1 RMSSE MAE MAPE1

Dataset 
A

Adaboost Regressor 108 0.95 10.7 93 0.95 10.5
Bayesian Ridge 88 0.79 8.8 79 0.73 8.1
Elastic Net 80 0.75 8.5 75 0.78 8.6
Gaussian Process Regressor 228 1.04 11.7 146 1.00 11.0
Gradient Boosting Regressor 99 0.88 9.9 85 0.77 8.5
LSTM/GRU 91 0.74 8.4 92 0.86 9.5
Linear Regression 89 0.78 8.7 97 0.88 9.7
Multilayer ELM 91 0.86 9.6 87 0.89 9.8
PLS Canonical 202 1.64 18.4 163 1.38 15.2
Random Forest 91 0.79 8.8 82 0.64 7.0
k-Nearest Neighbors 94 0.82 9.2 83 0.88 9.7
1D-CNN 88 0.77 8.5

Dataset 
B

Adaboost Regressor 235 2.96 19.2 153 2.98 15.4 109 2.14 10.9
Bayesian Ridge 1504 4.12 26.8 164 4.37 22.6 558 4.62 23.6
Elastic Net 1469 4.89 31.8 533 5.77 29.8 256 3.64 18.6
Gaussian Process Regressor 396 5.92 38.5 511 6.75 34.9 244 5.56 28.5
Gradient Boosting Regressor 224 2.62 17.0 153 2.30 11.9 106 2.03 10.4
LSTM/GRU 282 3.40 22.1 125 2.32 12.0 111 2.29 11.7
Linear Regression 1964 5.59 36.3 168 3.00 15.5 817 8.90 45.6
Multilayer ELM 1808 3.81 24.8 156 2.79 14.5 109 2.40 12.2
PLS Canonical 459 6.54 42.5 352 7.16 37.0 181 4.19 21.4
Random Forest 293 2.93 19.0 148 2.65 13.7 101 1.90 9.7
k-Nearest Neighbors 247 2.93 19.0 141 2.49 12.9 95 2.01 10.3
1D-CNN 174 4.59 23.8 244 5.50 28.1
SARIMAX 97 2.18 11.2

Dataset 
C

Adaboost Regressor 176 3.65 34.3 91 2.68 27.5 47 2.12 20.5
Bayesian Ridge 94 1.86 17.5 65 1.74 17.9 45 1.85 17.9
Elastic Net 142 2.74 25.7 88 2.47 25.2 47 1.84 17.8
Gaussian Process Regressor 202 3.97 37.2 133 4.11 42.0 68 2.91 28.1
Gradient Boosting Regressor 110 2.32 21.7 87 2.13 21.8 52 1.85 17.9
LSTM/GRU 141 2.94 27.6 78 1.67 17.1 49 2.00 19.4
Linear Regression 90 1.78 16.7 78 1.48 15.1 44 1.10 10.6
Multilayer ELM 143 2.55 23.9 94 2.33 23.9 51 2.05 19.9
PLS Canonical 188 4.78 44.9 151 4.40 45.1 74 3.90 37.8
Random Forest 143 3.23 30.3 76 1.92 19.7 49 1.76 17.0
k-Nearest Neighbors 158 3.13 29.4 98 2.52 25.8 52 2.19 21.2
1D-CNN 86 2.20 22.5 78 3.35 32.4
SARIMAX 44 1.51 14.7

1 MAPE is approximated as the ratio between MAE and the average target value for the test set.
2 Bold values indicate the lowest value for each error metric in each data set.
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While the optimal results were based on validation accuracy and 
evaluated on test results for avoiding bias, the training of the models on 
additional datasets (including re-training) might further increase the 
understanding of model behaviour. Another aspect that was not 
analyzed in this study was the impact of measurement frequency on 
prediction performance. Thus, the effect of daily VFAs analysis can be 
investigated to determine if datasets with highly dynamic process con-
ditions can benefit from a higher measurement frequency. Additional 
improvement of model performance might be obtained by filtering the 
data for noise removal and setting specific error metrics for peak 
detection. A multi-step prediction of the datasets would also be desired 
for control purposes.

4. Conclusions

This investigation demonstrates the potential of ML and DL models 
applied to full-scale AD processes. All models benefitted from an opti-
mization pipeline, including data preparation parameters and hyper-
parameters, especially linear and ensemble models. Linear models such 
as BR and LR can predict methane yield during stationary and unin-
hibited process conditions, resulting in an RMSSE between 61 % and 97 
%. The usage of more robust models – such as RF and RNNs – is sug-
gested when the process state is unknown or strongly non-stationary. 
Most important measurements for such models are the methane yield, 
fed substrates amounts, as well as calculated features such as OLR and 

Fig. 11. Sobol’ indices of most influential parameters for dataset A (15 min resolution and 24 h OD), dataset B (6 h resolution and 24 h OD) and dataset C (1 h 
resolution and 24 h OD).
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HRT. Additional features that can be relevant for prediction models are 
biogas composition, recirculated and output digestate. However, addi-
tional investigation on the suitability of the applied models and input 
features in case of process disturbance or inhibition are required.
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