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A B S T R A C T

Critical metals are indispensable components of our daily lives, becoming increasingly scarce due to their irre
placeable functions in electronics. As technological progress fuels demand, the reevaluation of end-of-life devices 
and electronic waste presents a sustainable approach to ensuring metal supplies. However, the extraction of 
critical metals from electronic waste necessitates careful management to mitigate material loss and address 
environmental concerns. Conventional large-scale hydrometallurgical and pyrometallurgical methods lack tar
geted selectivity for critical metals like Ga, In, and REEs. These metals are often lost in pyrometallurgical pro
cesses or require extensive purification following chemical leaching. Consequently, attention has shifted to 
emerging bioleaching and phytomining technologies as alternative selective recovery methods that adhere to 
sustainability criteria without excessive capital investment. Nevertheless, knowledge of these recovery mecha
nisms remains limited, and their application faces challenges such as longer processing times and slower yields. 
This review article seeks to provide insights into these novel technologies for recycling critical metals from end- 
of-life materials by examining their mechanisms and key parameters, exploring potential optimization strategies, 
and assessing trade-offs to evaluate their feasibility and sustainability in large-scale operations.

1. Introduction

Electronic waste (e-waste) is an umbrella term for discarded electric 
and electronic devices, classified into six categories per Annex III of the 
EU WEEE Directive (Directive 2018). These categories encompass 
namely, temperature exchange equipment, screens and monitors, lamps, 
large appliances such as dishwashers, and tumble dryers, small equip
ment such as e-cigarettes, electric kettles and calculators, and small IT 
and telecommunication equipment (Directive 2018, Priya, 2024, Baldé 
et al.).

As electronic devices have become ubiquitous devices in daily life, 
their usage increased during the Sars-Cov-2 pandemic due to changes in 
work environments, rendering many to transition into home-office and 
remote studies (Botelho Junior et al., 2024). Due to the ever-growing 
demand for electric and electronic devices, e-waste generation peaked 
at 62 billion kg in 2022 but only 13.8 billion kg is collected and recycled 
(Baldé et al.). Moreover, by the year 2030, e-waste generation is antic
ipated to reach 82 billion kg [3].

E-waste comprises ferrous, non-ferrous, plastic, glass, and ceramic 
parts, of their composition diversifies per unit kg (Tesfaye et al., 2017). 

Generally speaking, e-waste streams contain precious metals (Ag, Au, Pt, 
Pd) and technology-critical metals (Ga, In, rare earth elements, and so 
on) and other metals (Fe, Cu, Zn, and so on) (Sahu et al., 2022, For
nalczyk et al., 2022, Wahlström et al., 2017). Technology critical ele
ments Ga, In, Ta, rare earth elements (REE), platinum group, Nb, and Ta 
constitute important electronic components, which are provided in a 
periodic table in Fig. 1, according to the classification regarding the EU 
and US guidelines. The concentration of technology-critical elements in 
discarded electronics can range from 0.01 up to 100 mg/kg (Nd: >100 
mg/kg) (Işıldar et al., 2018, Ballinger et al., 2020, European Commis
sion 2020). However, their supply is at risk considering their natural 
abundance and limited primary production, which might be hampered 
by the volatile economic, environmental, and political conditions 
(Abdou et al., 2023, Walton et al., 2021). Considering the built-in 
obsolescence of electronic devices, and the conundrum of supply and 
demand for critical metals, their extraction from e-waste is considered a 
vital aspect of e-waste management (Işıldar et al., 2018, Bakas et al., 
2016, Xavier et al., 2023).

Nevertheless, precious and base elements remain the main driver for 
e-waste recycling due to their abundance in electronic components and 
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their monetary value, undermining the concentrations of technology- 
critical metals in e-waste matrices (Zamprogno Rebello et al., 2020, 
Sagrillo Pimassoni et al., 2023). As exemplified in a simulation study by 
Reuter and van Shaik (2015), recovery rates were quantified for Ag, Au, 
Al, Cu, and Fe, whereas the critical metals in the waste LED lamp matrix 
such as Ga, In, and REE were disregarded (Reuter and van Schaik, 2015). 
This gap in the recovery for the vital fraction of critical metals un
derscores the need for more targeted recovery efforts for these elements.

Although efforts have been made to address critical metals in e-waste 
management, current industrial practices primarily employ pyrometal
lurgical and hydrometallurgical techniques or a combination of both. 
Pyrometallurgical recovery, a well-established method, involves ther
mal treatment through incineration, smelting, or roasting (Thakur and 
Kumar, 2020). A notable example is the ISASMELT process, used in 
large-scale e-waste facilities such as Auribis AG in Lünen and Umicore in 
Hoboken, Belgium (Alvear F and Nikolic, 2013). ISASMELT is a selective 
smelting process targeted at metals, in which the impurities are liberated 
from the precursor by taking advantage of the selective oxidation phe
nomenon (Alvear F and Nikolic, 2013). Despite attaining higher recov
ery efficiencies in one-pot large-scale reactors, the recovery is usually 
targeted at base elements, meanwhile, technology-critical metals often 
end up in the slag phase during smelting due to their thermodynamic 
properties, leading to their loss along the process (Hasan et al., 2022, 
Chu et al., 2022, Binnemans et al., 2013).

Hydrometallurgical recovery is a less energy-intensive alternative to 
the pyrometallurgical processes, involving a leaching process (Thakur 
and Kumar, 2020). Leaching is a mass transfer-driven process, revolving 
around the extraction of solid phase by a chemical reagent (Ray, 2023). 
In general, the leaching processes are influenced by the particle size of 
the material, temperature, mixing, and the choice of a suitable solvent, 
after which the extracted solid phase can be recovered through ion ex
change, solvent extraction, or electrowinning (Ray, 2023, Murali et al., 
2022). The commonly used leaching agents are sulfuric acid, nitric acid, 
aqua regia, and hydrochloric acid for the recovery of elements from 
e-waste (Dass et al., 2023, Xie et al., 2023, Illés and Kékesi, 2023). These 
reagents are excellent solvents for recovery, yet they not only lack 
selectivity which requires multiple purification steps for the recovery of 
small fractions but also pose challenges in the waste management of 
toxic and concentrated acid residual liquids (Li et al., 2019, Rice, 2016, 
Cheng et al., 2024). Considering the low recovery of technology-critical 
metals via conventional methods, the search for sustainable and selec
tive alternatives has become more urgent than ever.

Bioleaching and phytomining emerge as promising technologies in 

the quest for alternative yet promising metal recovery methods. Bio
leaching involves using microbial leaching liquor for extracting metals 
from ore or e-waste matrices, eliminating the need for concentrated and 
toxic chemicals while operating at lower temperatures (Brown et al., 
2023). Nguyen and Lee (2015) reported a significantly higher leaching 
efficiency of bioleaching with the mixed culture of A.ferrooxidans and A. 
thiooxidans than the chemical leaching with sulfuric acid in the recovery 
of Mn, As, Fe, and Cu. Moreover, Pourhossein et al. (2022) also high
lighted the superior extraction efficiency of biogenic leaching over 
chemical leaching due to the presence of biogenic metabolites such as 
amino acids, thiosulfates, glycine, etc.

Phytomining, on the other hand, harnesses the metal uptake and 
sequestration abilities of hyperaccumulator plants (Chaney et al., 2004, 
Dinh et al., 2022, Merlot et al., 2018). Due to the exceptional selective 
metal accumulation abilities of hyperaccumulators, phytomining has 
become a viable option for metal extraction (Wang et al., 2020). In a 
study, Acacia mangium inoculated with Bacillus amyloliquefaciens showed 
Ni accumulation at 825.50 mg/kg in the roots (Joradon et al., 2023). 
Preliminary research on Eleocharis acicularis by Ha et al. (2011) also 
demonstrated its potential for In and Ag phytomining. Yet, at present, 
phytomining cannot replace conventional recovery methods or tradi
tional mining technologies (Akinbile et al., 2023). It can, however, be 
combined with phytoremediation processes to make the process finan
cially more viable and can be considered as an accompanying procedure 
(Ha et al., 2011, Robinson et al., 2003). For instance, plants growing 
near e-waste dumping sites can be evaluated for their potential in phy
tomining. Additionally, leachates, sludges, and wastewater from pro
cessed e-waste can be incorporated in a hydroponic bath treatment with 
hyperaccumulators in a controlled environment to reduce the environ
mental burden of e-waste processing sites, as illustrated in the graphical 
abstract (Singh and Kumar, 2022).

Considering various factors, bioleaching and phytomining show 
great potential in the circular recycling of critical and precious metals. 
However, the scalability of these alternative technologies faces certain 
limitations, which often confine the current research to laboratory-scale 
or smaller reactor volumes. For instance, bioleaching has slower ki
netics, necessitates a pre-culture period, and demands substantial 
amounts of nutrients and water, as well as increased energy consump
tion due to sterilization (Alipanah et al., 2020, Thompson et al., 2018). 
The process also typically necessitates multi-step reactor configurations, 
which increases space requirements and makes one-pot applications 
challenging (Lee et al., 2024, Tezyapar Kara et al., 2023). Similarly, 
phytomining remains under-explored and presents its own set of 

Fig. 1. The latest critical elements are listed in the periodic table, according to the reports by the EU (2023) (European Commission, 2023) and the US Geological 
Survey (2022) (Final List of Critical Minerals 2024).
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challenges, including a lengthy uptake process influenced by environ
mental factors and the need for vast areas of arable land (Robinson et al., 
2015). In comparison with the conventional methods, they also fall short 
in several aspects. The conventional methods are well-established and 
are operated on a large scale without the need for an extensive spatial 
volume, as they rely on more compact process equipment. This makes 
them more efficient and practical for widespread operations.

While bioleaching and phytomining may not match the efficiency of 
conventional technologies, plausible environmental and cost aspects, 
combined with their untapped potential, call for more extensive 
research and investment. A comprehensive analysis and a thorough 
understanding of key parameters, coupled with optimization strategies 
and hybrid methods that incorporate both thermal and physical pre
treatment of e-waste, may potentially enhance metal recovery rates for 
critical metals (Parsa et al., 2024, Ilkhani et al., 2024, Dolker and Pant, 
2019). This approach offers promising avenues for sustainable e-waste 
management solutions.

This paper presents a critical evaluation of alternative methods for 
recovering metals, focusing on bioleaching and phytomining, and aim
ing to provide new insights into their potential as viable alternatives to 
conventional technologies for recycling critical metals from electronic 
waste. The review examines the biological mechanisms and key pa
rameters that drive these processes and offers a comprehensive analysis 
of optimization strategies to enhance efficiency. The study aims to 
address existing research gaps and establish a solid foundation for future 
research and innovation in the field.

2. Pretreatment of the e-waste

As raw e-waste materials cannot be directly used in the chemical / 
thermal and possibly in biological treatments for the recovery, the waste 
precursor should undergo a series of operations encompassing disman
tling, size reduction, milling, sieving, screening, and further separation 
processes such as magnetic, electrostatic, and density separation (Castro 
and Bassin, 2022, Kumar et al., 2022). Pre-processing is a crucial step in 
the recovery of critical and valuable elements. The selectivity of sol
vents/leaching liquors for the desired elements in the waste matrix is 
impaired by the presence of interfering metals since the mass transfer is 
mainly driven by the concentration gradient (Cussler, 2009). Anaya-
Garzon et al. (2021) reported that the presence of interfering and toxic 
metals in the leaching medium retarded the microbial growth, hindering 
the bioleaching efficiency. Hence, a favored strategy to preprocess 
e-waste not only enhances the diffusion rate of desirable elements but 
also reduces the need for excessive amounts of chemicals, and prolonged 
operations.

Size reduction, a crucial parameter in attaining suitable particle size, 
is usually achieved through shredding and grinding. This is evident in 
the case of shredded waste PCB samples, in which the REE content was 
enriched below 0.25 mm sieving size (Baez et al., 2022). As for the LED 
waste, a notable concentration of Ga, Al, Au, and Ag below 600 µm sieve 
fraction was observed (Zhang et al., 2023). This observation is also 
consistent with the findings of Nagy et al. (2017), who detected a con
centration of 254 ppm of Ga in the 106–1000 µm fraction followed by 
the grinding of LED waste. Size reduction not only enables a selective 
fractionation for the biorecovery, but also enhances the area-to-volume 
ratio for metal leaching, and bioavailability. Díaz Martínez et al. (Díaz 
Martínez et al., 2018). observed higher bioaccumulation in the L.perenne 
roots, which were exposed to ground PCBs of smaller particle sizes.

Magnetic separation is commonly utilized to segregate ferromagnetic 
elements such as Fe and Ni from nonferromagnetic elements in an e- 
waste matrix (Suponik et al., 2019). Magnetic separation is often paired 
with electrostatic separation technologies, in which corona or 
eddy-current separation can be counted among them, facilitating the 
isolation of conductive fractions, predominantly Cu, from other 
non-conductive fractions (Kumar et al., 2022, de Souza and Veit, 2023). 
(Baniasadi et al., 2021) separated the ceramic and plastic fractions from 

the ground waste PCBs with the help of the electrostatic separator, 
which later remarkably increased the bioleaching rate with A. 
ferrooxidans.

Ultimately, the prior processing of e-waste plays an immense role in 
enhancing recovery rates. As there is a wide spectrum of plausible 
configurations, notable gaps persist in current research. Therefore, the 
emphasis should be placed on coupling mechanical or mechanochemical 
treatment techniques with further leaching, and separation processes to 
optimize the long-term recycling efficiencies of critical elements. This 
will also pioneer in mitigating environmental concerns, associated with 
energy consumption and the use of chemicals.

3. Bioleaching

Bioleaching is an alternative technology, that utilizes microorgan
isms such as bacteria, fungi, or archaea to leach metal ions from ore 
surfaces or e-waste particles (Adetunji et al., 2023). Cyanogenic, 
sulfur-oxidizing bacteria and filamentous fungi have been utilized to 
recover precious and critical metals from various precursors such as red 
mud or waste from electrical and electronic equipment (WEEE) (Qu 
et al., 2019, Li et al., 2020, Parsa et al., 2024). Bioleaching behavior in 
microorganisms diversifies into two categories bioleaching by hetero
trophic and chemolithotrophic organisms, respectively. Heterotrophs 
such as Aspergillus Niger and cyanogenic bacteria Bacillus megaterium 
secrete secondary metabolites to immobilize metals through metabo
lizing organic carbon sources (Ertan, 2023, Karim and Ting, 2022). 
Whereas, chemolithotrophic microorganisms such as A. ferrooxidans and 
A. thiooxidans obtain energy by reducing inorganic compounds, which 
consequently produce biogenic acids such as sulfuric acid (Tezyapar 
Kara et al., 2023).

3.1. Heterotrophic bioleaching

Heterotrophic microorganisms, such as cyanogenic bacteria (e.g., 
Pseudomonas spp., Bacillus mageterium) and filamentous fungi (e.g., 
Aspergillus sp., Penicillium sp.) require organic compounds as their carbon 
source (Madigan et al., 2022). These microorganisms are not only 
capable of impressive metal extraction but also possess the ability to 
withstand various abiotic stresses, including temperature, pH changes, 
and metal toxicity (Crecca et al., 2023, Dusengemungu et al., 2021, 
Naseri and Mousavi, 2022). Bioleaching by heterotrophs consists of 
three steps: acidolysis, where secreted organic acids are deprotonated 
and cations are removed; complexolysis, where dissolved cations are 
complexed by deprotonated organic acids; and redoxolysis, where 
insoluble metals are reduced through oxidation–reduction reaction 
(Mulligan et al., 1999, Trivedi et al., 2022, Srichandan et al., 2020).

3.2. Chemolithotrophic bioleaching

Chemolithotrophs (rock-eating microorganisms) use inorganic 
sources such as H2S, pyrite, and FeS2 as energy sources to be used in 
respiratory processes (Madigan et al., 2022, Ji et al., 2022). Chemo
lithotrophs that use CO2 as an energy source are considered autotrophs 
(Madigan et al., 2022). Due to their adaptability in various abiotic set
tings, chemolithotrophic bioleaching is considered a viable approach for 
recovering metals from ores and e-waste matrices (Priya and Hait, 2018, 
Wang et al., 2017). As shown in Fig. 2, chemolithotrophic bioleaching 
occurs through two primary mechanisms: direct and indirect. In the 
direct mechanism, bacteria adhere to the metal surface by secreting 
extracellular polymeric substances (EPS), where metals are dissolved 
through enzymatic reactions (Wang et al., 2009, Vera et al., 2022, Sri
chandan et al., 2019). The indirect mechanism involves metal degra
dation through the oxidation–reduction cycle of Fe (Srichandan et al., 
2020, Nestor et al., 2001).
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3.3. Key parameters

Bioleaching is a process that involves various parameters, including 
pH, temperature, energy source, method of bioleaching, and pulp den
sity (Sarkodie et al., 2022). Furthermore, the operational mode, or the 
selection of a specific strain for metal extraction, can significantly in
fluence the process. Given that the mechanisms of heterotrophic and 
chemolithotrophic bioleaching differ, it is essential to select appropriate 
criteria to achieve higher efficiencies. Moreover, time is a critical factor 
in bioleaching, necessitating a comprehensive understanding of the key 
parameters and kinetics involved in optimizing the process.

3.3.1. Strain
The selection of suitable strains is a crucial step in bioleaching. 

Owing to the presence of various metals in the bioleaching matrix, the 
reaction mechanisms of strains differ, as well. Therefore, one-size-fits-all 
solutions are not applicable in the context of bioleaching. Chemo
lithotrophic acidophiles are effective for leaching sulfide minerals and 
pyrites, while heterotrophs are preferred for their shorter lag phase, 
tolerance to toxic metals, and wide pH adaptability (Aghazadeh et al., 
2023, Horeh et al., 2016). Given the typically alkaline nature of e-waste, 
the bioleaching medium for chemolithotrophs must be adjusted to a pH 
below 2 to promote microbial growth and redox potential, often 
necessitating substantial use of concentrated HCl (Wang et al., 2009).

Chemolithotrophic microorganisms efficiently extract base, critical, 
and precious metals (Pourhossein et al., 2021, Pourhossein and 
Mousavi, 2023). Abhilash et al. (2021) found that a chemolithotrophic 
mixture of A. ferrooxidans and A. thiooxidans achieved significant 
leaching efficiencies, extracting 93 % of Cu and 94 % of Fe from PCBs, 
whereas heterotrophic A. niger extracted only 66 % of Cu and 78 % of Fe. 
Ni, Co, and Al recovery rates were comparable between the bioleaching 
setups, highlighting the superior performance of chemolithotrophs for 
base metals. Conversely, heterotrophic microorganisms selectively leach 
REEs and other critical metals by secreting organic acids (Di Piazza 
et al., 2017, Shen et al., 2023). For instance, Penicillium expansum 
leached terbium and lanthanum from e-waste up to 1520 ppm and 390 
ppm, respectively (Di Piazza et al., 2017). Under optimal conditions 
(initial pH of 7.5, 0.1 mM phosphate concentration without a buffering 
agent), Penicillium expansum extracted 41.3 % La, 61.3 % Pr, 57.6 % Nd, 
and 46.4 % Tb from waste PCB (Baez et al., 2024). Yet, selective re
covery of critical and precious metals relies on metabolic activity and 
secreted metabolites in the bioleaching medium (Kang et al., 2020, 
Suyamud et al., 2020). Understanding the strain’s selectivity for certain 
metals requires analyzing its metabolic pathways during cultivation 
(Naderi et al., 2023). Optimizing organic acid production can facilitate 
selective critical metal recovery from e-waste without requiring 
post-processing to separate targeted elements from recycled base metals. 
This enhances the appeal of heterotrophic bioleaching over chemo
lithotrophic bioleaching (Bahaloo-Horeh and Mousavi, 2024, 

Gavrilescu, 2022). Table 1 details the bioleaching capabilities of various 
strains, including information on secreted metabolites and precursors.

3.3.2. Energy source
Organic carbon sources and inorganic compounds as energy sources 

in the metabolism of microorganisms play a crucial role in metal 
leaching. In the case of A. ferrooxidans, elemental sulfur as a sole energy 
source showed better efficiencies than iron (II) sulfate (He et al., 2019). 
However, in the context of heterotrophic bioleaching, its strategic use of 
energy sources such as sucrose or glucose, galactose, and so on becomes 
even more important considering the dependence of secondary metab
olite production on these mono/di-saccharides (Naseri et al., 2023). 
Bahaloo-Horeh and Mousavi (2024) observed that among the various 
sugars investigated, glucose emerged as the most effective in promoting 
metabolite production, with the highest quantity of oxalic acid secreted. 
Whereas, sucrose, xylose, galactose, and lactose followed in descending 
order of effectiveness. This can be attributed to the faster processing of 
monosaccharides than disaccharides, leading to higher flux rates 
through glycolysis. Another exemplary study indicated a higher yield of 
organic acid in a sugar cane molasses medium than in a sucrose medium 
attaining also higher Mn and Li recovery from spent coins (Naseri et al., 
2023). These findings, which revolve more on metabolite production, 
may be of interest to researchers in the field.

3.3.3. Initial pH-value
The metabolism, microbial colonization, microbial growth, and 

secondary metabolite production are all influenced by the initial pH 
value of the culture medium (Dusengemungu et al., 2021, Peng et al., 
2019, Wang et al., 2018). Microorganisms tend to have a specific pH 
range, in which they can grow and leach the metals at higher rates. 
Metal mobility usually increases with a decrease in pH and an increase in 
the redox potential (Kamizela and Worwag, 2020). By way of illustra
tion, the acidophilic A.manzaensis strain showed a higher copper 
dissolution from jarosite at lower pH values and the highest recovery at 
the pH of 1.25 (Liu et al., 2016). On the other hand, initial pH takes on a 
different dimension in fungal bioleaching, where secondary metabolite 
production comes into play. A drop in the pH after the initial growth 
period of filamentous fungi is closely associated with organic acid pro
duction (Naderi et al., 2023). According to Walaszczyk et al. (2018), 
oxalic acid is secreted mostly at neutral to lower pH (~ 6), whereas citric 
acid reached its peak at the initial pH of the sucrose medium at 3. Owing 
to having a higher dissociation constant than the other carboxylic acids, 
oxalic acid is an important leaching reagent in the complexation reac
tion with metals (Zhou et al., 2019). Even though a pH close to 6 favors 
the overall oxalic acid secretion, acidolysis may be the controlling step, 
which requires an acidic medium to dissolve the metals (Bahaloo-Horeh 
and Mousavi, 2024). Hence, it is essential to strike a balance between the 
final pH of the solution and the frequency of buffering the medium at 
specific intervals to favor the secretion of the ideal carboxylic acid for 

Fig. 2. Chemolithotrophic metal bioleaching from metal ores, e-waste materials, sulfite moieties, etc. (Adapted from Srichandan et al . (2019) (Srichandan et al., 
2020). Created with Biorender.
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Table 1 
Bioleaching efficiencies of various strains in studies dealing mainly with the recycling of critical metals from e-waste.

Microorganism E-waste material Process conditions Leaching agent Leaching efficiency Reference

A.niger Waste fluorescent lamp 
(< 60 µm)

One-step 
bioleaching, 
Inoculation: 1 % (v/ 
v) 
Pulp density: 1 % 
(w/v), 
Stirring rate: 150 
rpm, 
Initial pH: 5.3, 
Temperature: 30 ◦C

1.2 mM oxalic acid, 3.6 mM citric 
acid, and 34 mM gluconic acid in the 
presence of waste powder after 4 days

13.43 % Y, 
11.99 % Eu, 
0.86 % La, 
0.70 % Ce, 
0.74 % Tb 
after 7 days

(Castro et al., 2023)

A mixture of A.niger & 
A.tubingensis

Waste PCBs 
(< 1 mM)

Two-step 
bioleaching, 
Inoculation: 5 % (v/ 
v) 
Pulp density: 3 % 
(w/v), 
Stirring rate: 170 
rpm, 
Initial pH: 5.7, 
Temperature: 30 ◦C

16.3 g/L citric acid, 
8.4 g/L oxalic acid, 
0.5 g/L malic acid

86 % Cu, 
51 % Ni, 
100 % Zn 
after 33 days

(Trivedi and Hait, 2024)

A.niger Waste LCD 
(≤ 74 µm)

Indirect bioleaching, 
Inoculation: 1 % (v/ 
v) 
Pulp density: 1 % 
(w/v), 
Stirring rate: 160 
rpm, 
Initial pH: 7.5, 
Temperature: 70 ◦C

14,880 mg/L oxalic acid, 
1180 mg/ L gluconic acid, 
904 mg/L citric acid, 
391 mg/L malic acid

81.4 % Al, 
69.1 % As, 
60 % In, 
33.3 % Sr 
after 29 h

(Parsa et al., 2024)

A mixture of 
A. thiooxidans, A. 
ferrooxidans

Waste 
LED monitors 
(<75 µm)

One-step 
bioleaching, 
Inoculation: 1.5 % 
(A. ferrooxidans), 
0.5 % 
(A. thiooxidans) (v/ 
v) 
Pulp density: 6 % 
(w/v), 
Stirring rate: 160 
rpm, 
Initial pH: 2, 
Temperature:30 ◦C

~ 7.2 g/L sulfate ion 99 % In 
after 18 days

(Khezerloo et al., 2023)

Alcaligenes aquatilis Waste PCBs 
(d50 = 0.175 mM)

One-step 
bioleaching, 
Inoculation: 5 % (v/ 
v), 
Pulp density: 2 % 
(w/v), 
Stirring rate: 160 
rpm, 
Temperature: 28 ± 3 
◦C

n.a.[a] 47.99 % Cu 
after 84 hours

(Madhavan et al., 2023)

A.ferrooxidans Waste PCBs 
(75µm<ϕ<100 µm)

Two-step 
bioleaching, 
Inoculation: 10 % 
(v/v) 
Pulp density: 0.22 % 
(w/v), 
Stirring rate: 100 
rpm, 
Initial pH: 1.8, 
Temperature: 30 ◦C

n.a.[a] 100 % Al, 
83.82 % Cu, 
98.27 % Pb 
after 10 days

(Silva et al., 2023)

Pseudomonas aeruginosa Waste PCBs (< 2 mM) Two-step 
bioleaching, 
Inoculation: 5 % (v/ 
v) 
Pulp density: 1 % 
(w/v), 
Stirring rate: 150 
rpm, 
Initial pH: 8, 
Temperature: 30 ◦C

~ 10 mg/L cyanide after 20 h from 1 
g/L glycine

90 % Ag, 
20 % Au 
after 7 days

(Merli et al., 2022)

Acidithiobacillus 
ferrooxidans

Waste LEDs (≤75 µm) Multi-step indirect 
bioleaching, 

Biogenic ferric ion concentration of 
4–5 g/L

83 % Ga, 
97 % Cu, 

(Pourhossein and 
Mousavi, 2019)

(continued on next page)
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Table 1 (continued )

Microorganism E-waste material Process conditions Leaching agent Leaching efficiency Reference

Pulp density: 2 % 
(w/v), 
Stirring rate: 140 
rpm, 
Initial pH: 2.11, 
Temperature: 29 ◦C

84 % Ni 
after 15 days

Penicillium citrinum Waste LIB powder Indirect bioleaching, 
Inoculation: 1 % (v/ 
v) 
Pulp density: 7 % 
(w/v), 
Stirring rate: 140 
rpm, 
Initial pH: ~5, 
Temperature: 40 ◦C

40.12 g/L citric acid 79 % of Mn, 90 % of Li after 
6 days

(Naseri et al., 2023)

Acidithiobacillus 
thiooxidans

WEEE Two-step 
bioleaching, 
Inoculation: 10 % 
(v/v) 
Pulp density: 1 % 
(w/v), 
Stirring rate: 150 
rpm, 
Initial pH: 3.5, 
Temperature: 30 ◦C

Biogenic sulfuric acid of unknown 
concentration

99 % of Ce, Eu, N, ~80 % of 
La, Y after 8 days

(Marra et al., 2018)

A.niger Waste autocatalyst 
powder

Indirect bioleaching, 
Inoculation: 1 % (v/ 
v) 
Pulp density: 0.5 % 
(w/v), 
Stirring rate: 130 
rpm, 
Initial pH: 6, 
Temperature: 30 ◦C

11,366 mg/L oxalic acid 33% of Pt, and 57 % of Pd 
after 24 h

(Bahaloo-Horeh and 
Mousavi, 2024)

A.niger Spent LIB Indirect bioleaching, 
Inoculation: 1 % (v/ 
v) 
Pulp density: 1 % 
(w/v), 
Stirring rate: 130 
rpm, 
Initial pH: 6, 
Temperature: 30 ◦C

8078 mg/L citric acid, 1170 mg/L 
oxalic acid,1251 mg/L malic acid, 
2126 mg/L gluconic acid

100 % of Cu, 95 % of Li, 70 
% of Mn, 65 % of Al, 45 % 
of Co, 38 % of Ni after 16 
days

(Horeh et al., 2016)

A mixture of 
A. thiooxidans, A. 
ferrooxidans

Waste 
PCBs < 150 µm

One-step 
bioleaching, 
Inoculation: 10 %, 
(v/v) 
Pulp density: 8% (w/ 
v), 
Stirring rate: 120 
rpm, 
Initial pH: 2, 
Temperature:35 ◦C

~ 7.2 g/L sulfate ion 93% of Cu, 70 % of Ni, 69 % 
of Co, 94 % of Fe, 41 % of Al 
after 10 days

(Abhilash et al., 2021)

A mixture of A. niger, 
Bacillus megaterium

Waste PCBs Indirect bioleaching, 
Inoculation: n.a.1 

Pulp density: 1 % 
(w/v), 
Stirring rate: 160 
rpm, 
Initial pH: 4.6, 
Temperature: 60 ◦C

7460 mg/L oxalic acid 100 % of Mn, 100 % of Pt, 
70.7 % of Pd, 50.8 % of Fe, 
48.3 % of Co, 21.8% of Al 
after 24 h

(Vakilchap and 
Mohammad Mousavi, 
2024)

A. thiooxidans Spent LED lights < 75 µm Multi-step indirect 
bioleaching, 
Inoculation: 2 % (v/ 
v) 
Pulp density: 4 % 
(w/v), 
Stirring rate: 140 
rpm, 
Initial pH: 2, 
Temperature: 29 ◦C

biogenic sulfuric acid 
ranging from 9000 to 11,000 mg/L

100 % of Ga, 
100 % of Cu, 
100 % of Ni 
after 10 days

(Pourhossein et al., 
2022)

B.megaterium Bio-pretreated ground 
LED powder

Direct hybrid 
bioleaching, 
Pulp density: 1 % 
(w/v), 
Inoculation: 2 % (v/ 

15 mg/L biogenic cyanide 93 % of Ag, 91 % of Au, 98 
% of Ni, 87 % of Cu, and 84 
% of Ga after 4 days

(Pourhossein et al., 
2021)

(continued on next page)
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metal mobilization.

3.3.4.Temperature
Temperature is one of the most influential parameters in bioleaching 

studies, which is frequently tested in response surface methodology 

(RSM) studies to evaluate the influence of temperature on metal leach
ing (Manikkampatti Palanisamy et al., 2023, Tian et al., 2022). Pri
marily, the temperature utilized in bioleaching studies averaged at 
ambient temperature, so most bioleaching studies were conducted at a 
temperature lower than 40 ◦C (Mokarian et al., 2022). As an example, 

Table 1 (continued )

Microorganism E-waste material Process conditions Leaching agent Leaching efficiency Reference

v), 
Glycine 
concentration: 2.5 g/ 
L, 
Methionine 
concentration: 10 g/ 
L, 
Stirring rate: 150 
rpm, 
Initial pH: 7, 
Temperature: 30 ◦C

Cellulosimicrobium 
funkei

Ground thin-film GaAs 
solar cell waste

indirect bioleaching, 
Pulp density: 20 % 
(w/v), 
Inoculation: 4 % (v/ 
v), 
Stirring rate: 150 
rpm, 
Initial pH: 7, 
Temperature: 30 ◦C

Growth supernatant at death phase 
(after 3 days) containing amino acids

70 % of Ga after 15 days (Maneesuwannarat 
et al., 2016)

Arthrobacter 
creatinolyticus

Ground GaN powder <
38 µm

indirect bioleaching, 
Pulp density: 20 % 
(w/v), 
Inoculation: 4 % (v/ 
v), 
Stirring rate: 150 
rpm, 
Initial pH: 7, 
Temperature: 30 ◦C

Growth supernatant (after 3 days) 
containing amino acids, peptides, 
proteins

18 % of Ga after 15 days (Maneesuwannarat 
et al., 2016)

A.niger Waste PCBs < 150 µm Two-step 
bioleaching, 
Pulp density: 1 % 
(w/v), 
Inoculation: 1 % (v/ 
v), 
Stirring rate: 130 
rpm, 
Initial pH: 5.15, 
Temperature: 30 ◦C

Mainly biogenic oxalic acid of 
unknown concentration

97 % of Cu, 
97 % of Ni

(Arshadi et al., 2020)

A.ferrooxidans Waste OLED touch 
screens < 75 µm

Two-step 
bioleaching, 
Pulp density: 1.5 % 
(w/v), 
Inoculation: 5 % (v/ 
v), 
Stirring rate: 140 
rpm, 
Initial pH: 1.1, 
Temperature: 29 ◦C

Biogenic sulfuric acid of unknown 
concentration

100 % of In, 5 % of Sr after 
30 days

(Pourhossein et al., 
2021)

A.niger Thermally treated ground 
waste LCDs ≤ 74 µm (at 
1100 ◦C)

Indirect bioleaching, 
Inoculation: 1 % (v/ 
v) 
Pulp density: 1 % 
(w/v), 
Stirring rate: 160 
rpm, 
Initial pH: 7.5, 
Temperature: 70 ◦C

15,103 mg/L biogenic oxalic acid 82.6 % of Al, 70,8 % of As, 
64.5 % of In, 36.2 % of Sr 
after 2 days

(Parsa et al., 2024)

Penicillium expansum Waste PCBs < 0.5 mM Two-step 
bioleaching, 
Inoculation: 1 % (v/ 
v) 
Pulp density: 1 % 
(w/v), 
Stirring rate: 150 
rpm, 
Initial pH: 7.5, 
Temperature: 25 ◦C

>70 mM gluconic acid,8 mM acetic 
acid, 3 mM citric acid, 5 mM succinic 
acid, 4 mM malic acid, <0.02 mM 
fumaric acid

~ 70 % of Pr, Nd, Gd, 
50 % of Tb, 40 % of La after 
24 h

(Baez et al., 2024)

[a] n.a.: not available data
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Leptospirillum ferriphilum showed the highest efficiency in leaching Zn at 
40 ◦C, whereas A.niger could leach heavy metals mostly at 30 ◦C 
(Sundramurthy et al., 2020, Zeng et al., 2015). Nevertheless, the ideal 
temperature for leaching various metals is typically species-specific and 
varies in the processes involved. Therefore, the temperature is usually 
optimized with other bioleaching parameters such as pulp density, 
stirring speed, initial pH, etc. (Tian et al., 2022, Naseri et al., 2023).

3.3.5. Aeration and mixing
Aeration and mixing are critical parameters, as their interaction 

ensures adequate oxygen for cell metabolism and suspends pellets in 
large vessels (Wang and Wang, 1979). In shake flasks, oxygen transfer 
occurs through orbital rotation (Peter et al., 2006), but in larger systems, 
the presence of media components, e-waste pulp, and viscosity fluctu
ations can limit oxygen uptake, making proper aeration and mixing 
essential for both mass transfer and microbial growth (Ilyas and Lee, 
2014, Maiorano et al., 2020). Research has demonstrated that improper 
mixing rates can decrease biomass and metal leaching efficiency, most 
likely due to cell damage caused by mechanical forces (Qu et al., 2022, 
Ilyas and Lee, 2014). Moreover, Nili et al. (2022) found that exacerbated 
attrition resulting from increasing pulp density led to reduced dissolved 
oxygen and microbial growth, indicating the need for optimized aera
tion in bioleaching processes, where aerobic microorganisms are often 
used (Ni’am et al., 2019).

The volumetric oxygen transfer coefficient (KLa) defines the effi
ciency of oxygen transfer in bioreactors and fermenters, typically 
ranging from 0.02 s− 1 to 0.25 s− 1 in larger-scale settings (Doran, 2013). 
Enhancing KLa through increased stirring, gas flow rate, and higher 
partial pressure can improve mass transfer due to the improved gas 
hold-up and residence time of bubbles. However, this approach comes at 
the cost of higher capital expenses and energy demands (Doran, 2013). 
Although aeration coupled with mixing is more beneficial in terms of 
energy costs by 60–65 % compared to stand-alone mixing, overall en
ergy demand and capital costs still increase with the scaling-up(Wang 
and Wang, 1979).

3.3.6. Method
The bioleaching method diversifies primarily into one-step, two-step, 

and indirect bioleaching. The one-step method involves the simulta
neous interaction of metals with microorganisms (Srichandan et al., 
2019), while the two-step method requires a preliminary growth stage 
(Naseri et al., 2019). In indirect bioleaching, biogenic liquid is separated 
from microorganisms after reaching the desired growth stage to subse
quently leach metals. Indirect bioleaching has been gaining ground in 
application for advantages such as not having metal stress on microor
ganisms, flexibility such as easier biomass separation, and scalability in 
operation since no microorganisms are found in the leaching medium 
(Chu et al., 2022, Tian et al., 2022). A good example of this is the in
direct bioleaching of GaAs powder with Cellulosimicrobium funkei, in 
which the supernatant solution at the death stage was utilized, and as a 
result, 79 % of gallium could be leached (Maneesuwannarat et al., 
2016). As demonstrated in Table 1, an extensive range of options are 
available for the efficient extraction of critical and precious metals. Due 
to the slower processing rates encompassing days or even months to 
recover one metal to its attainable limit, the volumetric recovery rate is 
currently unable to be achieved on smaller scales. As a result, larger 
vessels or multiple configurations in series processes are necessary to 
compensate for the low efficiency in prolonged times. However, as the 
size of the vessel increases, so does the mixing time proportionally 
(Wang and Wang, 1979). Therefore, to maintain a consistent mixing 
time, larger impellers and higher stirring speeds must be used, which in 
turn increase energy and capital demands (Doran, 2013). Owing to this, 
comprehensive research encompassing various methodologies for tar
geted and enhanced metal extraction in line with reasonable energy and 
capital costs is noteworthy. Given these challenges, further research is 
needed to explore and enhance targeted metal extraction processes that 

are cost-effective in terms of energy and capital.

3.3.7. Pulp density
Pulp density, the ratio of solid to liquid, is a crucial parameter 

affecting bioleaching efficiency, immensely. Even though toxicity in
fluence does not apply to the process of indirect bioleaching, the 
increasing pulp densities might retard the availability of deprotonated 
organic acids, leading to lower bioleaching efficiencies (Petrus et al., 
2018). Pulp density was found to be the most influential parameter in 
the recovery of scandium from Bauxite residue, in which the highest 
recovery could be attained with 1 % pulp density in one-step A.niger 
bioleaching (Kiskira et al., 2023). Increasing pulp density beyond this 
threshold decreased the leaching efficiency. The study by Rouchalova 
et al. (Rouchalova et al., 2020) also suggested that increasing pulp 
densities decreased the bioleaching efficiency of Cu, Pb, Zn, and Fe in 
one-step bioleaching with A.ferroxidans, which possibly stems from the 
toxicity of precursors on microorganisms in contact bioleaching mech
anisms. However, through the adaptation of microorganisms with 
stepwise incorporation of pulp, the toxicity can be alleviated. For 
instance, multi-step incorporation of the waste LED pulp up to 20 g/L 
resulted in higher efficiencies (Pourhossein and Mousavi, 2018).

3.3.8. Particle size
Grinding waste materials to smaller diameters enhances mass 

transfer, as it increases the contact surface area, facilitating the attain
ment of higher bioleaching efficiencies (Olubambi et al., 2008). The 
immobilization of Cu from waste PCBs using Alcaligenes aquatilis could 
be optimized at 169.45 mg/g in shake flasks, in which the smallest 
particle size of 0.175 mm was added (Madhavan et al., 2023). None
theless, by further grinding below the critical particle size threshold 
such as 25 µm or 75 µm, bioleaching does not seem to improve and 
shows a rather negative trend, which has to do with the particle-particle 
attrition, damaging the cell structure (Olubambi et al., 2008, Nemati 
et al., 2000).

3.4. Bioleaching: overall assessment

All in all, bioleaching can be considered a viable technology for the 
recovery of critical metals from e-waste, but it is important to 
acknowledge the challenges associated with it. For instance, bioleaching 
has slower reaction rates than chemical leaching, which requires con
stant monitoring of parameters to ensure efficiency, resulting in 
increased capital expenses for larger vessels or more vessels and im
pellers, as well as higher energy demands due to the need for larger 
equipment and increased gas flow rates. Therefore, prior economic 
assessment and identification of cost drivers within the system bound
aries have become a primary focus for revenue forecast in recovery 
processes (Lin et al., 2020). The examination of the economic and 
technical aspects of bioleaching and phytomining necessitates a thor
ough evaluation, which should also take into account any direct and 
indirect expenses that may arise during the design of such processes.

Scaling up from shake flasks to large vessels is often not easy to 
translate, as maintaining constant parameters across different scales is 
difficult. Additionally, there is a risk of contamination and dependence 
on specific energy sources, incurring more expenses to the overall pro
duction costs. Thompson et al. (2018) identified the energy source of 
glucose as the largest cost, which accounted for 44 % of the total ex
penses. As a result, the cost of raw materials is a critical factor in 
determining the feasibility of bioleaching processes. Additionally, the 
pulp density of metal sludges or e-waste governs the profitability of 
bioleaching (Thompson et al., 2018). As reported by Van Yken et al. 
(2023), higher metal extraction rates were achieved with lower pulp 
densities, which necessitated a higher generation of lixiviant, leading to 
increased total capital costs. Therefore, it is more profitable to use 
higher pulp densities per operation. Deng et al. (2020) also reported an 
increased annual profit of $1.08m in 2020 by incorporating higher pulp 

A.N. Erkmen et al.                                                                                                                                                                                                                              



Resources, Conservation & Recycling 215 (2025) 108057

9

density at 50 %. Thus, the primary focus ought to be on enhancing metal 
extraction rates within a reasonable timeframe, while reducing capital 
expenditures and energy consumption, particularly by maximizing the 
volumetric production rate within minimal volume, without requiring 
extensive production capacity.

Despite the limitations, bioleaching is an innovative and environ
mentally friendly technology for critical metal recycling. Further 
research is required to optimize the kinetics and key parameters for 
efficient recycling of critical metals, particularly during the fermenta
tion stage of cultivation to increase the yield of organic acids in the 
medium before leaching, as well as an assessment of the feasibility of 
hybrid chemical-biological leaching technologies. Future research 
should also concentrate on scale-up engineering to adapt parameters 
from small-scale experiments with smaller bioreactors equipped with 
stirrers and spargers to larger vessels while maintaining optimal recy
cling yields, minimizing plant volume, and controlling capital costs, all 
while considering sustainability in terms of emissions and energy 
demands.

4. Phytomining

Phytomining is a novel technology, utilizing hyperaccumulator plant 
species to recover metals for financial gains (Chaney et al., 2018). 
Phytomining entails the utilization of hyperaccumulator plant species to 
immobilize, translocate, and sequester trace metals in their vacuoles, 
culminating in harvesting to capitalize on the extracted metals (Yan 
et al., 2020). This process of phytoextraction, which commences in the 
rhizospheric environment, is fundamental to phytomining and facili
tates economic returns through the extraction of metals.

Hyperaccumulator plant is an umbrella term for plants that can 
accumulate metals in their shoots more than 10,000 mg/kg than non- 
hyperaccumulator plant species (Dai et al., 2022, Baker et al., 2000). 
However, this threshold value might differ in hyperaccumulators for 
specific elements (Baker and Whiting, 2002). For example, a suggested 
total REE hyperaccumulation threshold was specified in the range of 
100–1000 µg g− 1 (van der Ent et al., 2021), whereas the threshold values 
are specified to 1000 µg g− 1 for Ni, 1 µg g− 1 for Au (Nemutandani et al., 
2006), and 100 µg g− 1 for Tl in dry weight (van der Ent et al., 2013). The 
hitherto discovered hyperaccumulator species are confined to 761 spe
cies on a global scale, largely dominated by 523 nickel hyper
accumulators, followed by 28 zinc, 22 rare earth elements, and 7 
cadmium hyperaccumulator species (Balafrej et al., 2020, Liu et al., 
2018, Liu et al., 2023).

4.1. Uptake mechanism of hyperaccumulators

Although hyperaccumulation in plants is an acknowledged process, 
the mechanism behind it, as well as the evolutionary process, remains 
shrouded in mystery. Several hypotheses attempted to shed light on the 
phenomenon of hyperaccumulation towards elements and their trans
location to aerial tissues. The elemental defense strategy suggests 
hyperaccumulation as a protection mechanism against pathogens and 
herbivores (Cappa and Pilon-Smits, 2014, Hörger et al., 2013). In 
contrast, the inadvertent uptake hypothesis considers hyper
accumulation as a by-product of physiological processes (Boyd and 
Martens, 1998). In other words, the uptake of ultra-trace elements such 
as Ga, In, REE, etc. is not intentional but rather a consequence of the 
shared similarities with essential nutrients or the shared pathways (van 
der Ent et al., 2021, Meindl et al., 2021). Nkrumah and van der Ent 
(2023) observed a Ga accumulation of 150 mg kg− 1 (DW=dry weight) in 
the Al accumulator C. sinensis, denoting the consequential uptake of Ga 
through Al transporter channels (Nkrumah and van der Ent, 2023). 
Similarly, REE accumulation was also attested in P. Americana, through 
the uptake of essential elements such as Mn, Fe, Ca, and so on (Liu et al., 
2021, Yuan et al., 2017).

4.2. Steps, transporter systems, organic acid complexations

As mentioned earlier, plant transport systems play a pivotal role in 
the consequential uptake of non-essential elements, which encompasses 
the uptake of critical as well as other non-essential elements through the 
pathways of nutrients (Matzen and Pallud, 2023). The plant transporters 
are the main actors in the metal uptake, accumulation, translocation, 
detoxification, and sequestration of essential and non-essential elements 
(Memon, 2016). Apart from controlling vital nutrients like iron, phos
phate, nitrate, and potassium, there are also plant transporters that 
manage the flow of metals by expressing transport genes, which help 
regulate the uptake process and prevent the negative impact of excessive 
metals on plants (Ahad et al., 2022, Final List of Critical Minerals 2008).

The upregulation of transporter genes varies depending on the 
accumulated metal species as well as strategies taken for dealing with 
toxicity coming from these elements (Gong et al., 2003). Prevalently 
encountered transporters in the regulation of detoxification and uptake 
mechanisms are known to be ZIP, MATE, ABC, YSL1, and NRAMP (Song 
et al., 2014). A well-known ZIP transporter family, also known as, Zinc 
regulated transporter (ZRT) and IRT (Iron-regulated transporter) stim
ulates the uptake of essential metals such as Zn and Fe, and the inad
vertent uptake of non-essential heavy metals by hyperaccumulators 
(Thakur et al., 2022). The study by Ding et al. (2017) pointed out the 
proactive role of the ZIP 6.2 transporter in the uptake of the 
non-essential element Cadmium in Populus × canescens. In addition, the 
multidrug toxic compound extrusion (MATE) family tackles heavy metal 
stress by releasing detoxification agents into the environment to later 
expel them from plant cells (Kar et al., 2022). Members of the MATE 
family were held accountable for secreting citric acid under Al stress for 
dealing with Reactive Oxygen Species (ROS) triggered by Al and other 
potentially toxic elements (Yang et al., 2019). Moreover, ATP-Binding 
Cassette (ABC) family transporters are more involved in the trans
location of phytohormones as well as in the uptake of divalent metals 
(Jalmi, 2022). The Yellow-striped like1 (YSL1) family, another transport 
protein, is responsible for the long-distance translocation of Fe and Cd 
by forming metal-nicotianamine complexes and utilizing natural 
resistance-associated macrophage proteins (NRAMP) to mediate ho
meostasis and the transport of divalent elements from the apoplast to the 
cytosol (Ball et al., 2022, Ghosh et al., 2022, He et al., 2022, Kumar 
et al., 2023, Tian et al., 2021). In addition to these common metal 
transporters, recent research by Zheng et al. (2023) has identified a 
novel REE transporter, NRAMP REE Transporter 1 (NREET1), which 
further supports the hypothesis of shared similarities between Al and 
REE, Ga, In, and so on. The elucidation of the biological function of 
transporters and their identification in the uptake process for targeted 
elements presents novel opportunities in the context of phytomining of 
critical and valuable elements. Following a discussion of the essential 
biological principles and mechanisms in hyperaccumulator plants, the 
following chapter tackles the key factors that influence the success of 
phytomining.

4.3. Key parameters

Previous research, thus far has provided valuable insights into the 
mechanisms by which hyperaccumulators take up trace metals, as well 
as potential strategies to enhance the yield of hyperaccumulation. 
However, the uptake of non-essential elements, such as REE, Ga, In, and 
other critical metals, can be challenging due to their scarcity in the 
rhizosphere (Jensen et al., 2018, Wiche and Heilmeier, 2016). As a 
result, the phytomining potential of these metals may be more viable 
when combined with phytoremediation strategies, such as recovering 
from industrial wastewater or harvesting plants near e-waste dumping 
facilities or tailing storage facilities, as illustrated in the graphical ab
stract (Ha et al., 2011).

Most studies concerning the metal recycling from e-waste material 
are confined to the phytoremediation processes taking place in the 
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vicinity of e-waste contaminated sites, so the research gap persists in the 
context of phytomining of critical and precious elements from ground e- 
waste materials in hydroponic and pot experiments (Kriti et al., 2023, 
Luo et al., 2018, Xu et al., 2024). In Table 2, the preliminary findings 
centering on the phytoextraction of critical metals via hyper
accumulators from pure solutions in a controlled environment are pre
sented. As suggested in Fig. 3, the uptake of these elements is 
underscored by various key parameters such as the selected plant spe
cies, abiotic factors, exogenous agents, and so on, which will be explored 
within this subchapter for establishing a plausible framework for the 
phytomining of critical metals.

4.3.1. Hyperaccumulator species
Opting for a suitable “plant family” is one of the most crucial pa

rameters in hyperaccumulation (Shi et al., 2023). As presented in 
Table 2, various species can accumulate certain elements at varying 
uptake rates. The sought-after criteria for hyperaccumulators can be 
listed as higher selectivity for targeted elements (exceeding the nominal 
assigned threshold values), high biomass yield within short periods, and 
resistance to interfering toxic metals (Nkrumah et al., 2021). Bio
concentration factor (BCF) is a good indicator in the selection of suitable 
hyperaccumulator candidates, which is a ratio of accumulated metal 
content in plant tissues from the contaminants. Higher BCF values than 1 
denote a potential hyperaccumulator candidate (Maiti et al., 2022). 
Upadhyay et al. (Upadhyay et al., 2021) identified a hyperaccumulation 
of In from an LCD slurry consisting of 353 mg/L at a BCF of 147.69 ±
14.49 by Eleocharis acicularis. Nguyen et al. (2019) also reported a metal 
uptake by Eleocharis acicularis for Ga, In, Ag, Tl, and Cu, constituting the 
BCF values of, 1230, 777, 179, 264, 1690 after 21 days, respectively. 
Therefore, selecting a suitable hyperaccumulator of high metal selec
tivity commensurate with high biomass yields helps attain the assigned 
threshold values in the phytomining (van der Ent et al., 2021, Mohsin 
et al., 2022, Shen et al., 2022).

4.3.2. Light and temperature
Light and temperature regulate plant metabolism and various 

enzymatic activities, which are deemed to correlate with the uptake 

efficiencies in hyperaccumulators (Seydel et al., 2022, Tang et al., 
2022). Light is the main energy source of plants, regulating nutrient 
uptake, photosynthesis, transpiration, and transport of genes, and as 
well as it is also known to influence the development of branch and 
aerial tissues (Karimi et al., 2022, Lintner et al., 2023, Mao et al., 2023, 
Mohammadi et al., 2023, Prasad et al., 2023, Sathasivam et al., 2023). 
Chen et al. (2021) revealed the correlation between the light combina
tion of blue and red with higher biomass production, accompanied by 
enhanced uptake of Cd (up to 121.6 mg/kg) in Arabidopsis thaliana.

As for temperature, the optimal temperature for most terrestrial and 
aquatic plants has been found to fall between 10 and 30 ◦C for photo
synthesis, and other biochemical activities (Nievola et al., 2017). Tem
perature influences plant growth while regulating the uptake of nutrient 
elements, functioning of transporters, root exudates, and bioavailability 
of metals (Hooda and Alloway, 1993, Kawasaki et al., 2014, Pramanik 
et al., 2000, Xu et al., 2018). Cd accumulation was proved to be a 
temperature-dependent first-rate reaction between the temperatures of 
5 and 10 ◦C, in which the total Cd accumulation in Arabidopsis helleri ssp. 
gemmifera has risen from 7.9 ± 1.6 to 11.1 ± 1.9 µg (Kudo et al., 2023) . 
Ever-changing environmental conditions in open-field experiments 
challenge metal accumulation efficiencies in hyperaccumulators. Yet, 
growing chambers present a viable alternative for having controlled 
environmental conditions in the context of light and temperature. As it is 
shown in Table 2, temperature, illuminance as well as day/night cycle 
can be adjusted for tailoring certain hyperaccumulation schemes.

4.3.3. Initial pH value
The bioavailability of metal species is directly influenced by the pH 

fluctuations in the rhizosphere matrix. Adamczyk-Szabela and Wolf 
(2022) investigated the speciation of Mn, Zn, and Cu under various pH 
levels spanning from 4.7 to 8.5, which pointed out the pH dependence of 
the translocation factor of these metals in the rhizosphere. Rhizosphere 
pH controls metal speciation, promoting the release of certain metals, 
and reducing the solubility of other metals, thus aiding hyper
accumulators in absorbing metals. Fluctuation in the rhizosphere pH is 
attributed to respiratory CO2 release, secretion of organic acids in the 
roots, and microbial activity, influencing the uptake of metals at the root 

Fig. 3. Main parameters influencing the phytoextraction in hyperaccumulators. Created with BioRender.com.
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Table 2 
Relevant experimental studies as to the uptake of critical metals via phytoextraction.

Hyperaccumulator Exposure Process parameters Accumulation (mg/g DW)[a] Reference

Hypnum 
cupressiforme

Al (0,40,400 µM) Type: Hydroponic 
Nutrient Medium: Hoagland 
pH: 4 
Duration: 4 weeks 
Light-dark period: 16/8 h 
PAR: 300 µmol.m2− .s− 1 

Temperature (day/night): 27/16 ◦C 
Relative Humidity: 70–80 %

2500 mg/kg Al at 400 µM spike in old leaves 
of. H. cupressiforme

(Hajiboland et al., 
2023)

Cannabis sativa L. Li (0,50,150,300 mg/L) Type: in vitro 
Nutrient Medium: Murashige-Skoog 
Medium with 30 g/L Sucrose + 0.8 % 
Agar 
pH: 5.7 
Duration: 2 weeks 
Light-dark period: 16/8 h 
PAR: 60 µmol.m2− .s− 1 

Temperature (day/night): n.a.[b]

Relative Humidity: n.a.2

2400 mg/kg Li at 300 mg/L spike in micro 
shoots

(Zacchini et al., 
2023)

C.sinensis Al (500 µM),Ga (500µM), 
In (500 µM), 
Al+ Ga (250 µM, each), 
Al+ In (250 µM, each)

Type: Hydroponic 
Nutrient Medium: ½ modified 
Hoagland 
pH: 4.5 or 5.8 
Duration: 8 weeks 
Light-dark period: 12/12 h 
PAR: 350 µmol.m2− .s− 1 

Temperature (day/night): 26/20 ◦C 
Relative Humidity: n.a.[b]

150 (Ga), < 20 (In), 300 (Al) (Nkrumah and van 
der Ent, 2023)

Phytolacca 
americana L.

REE (0, 1, 10, 50, 100 and 250 μM) Type: Hydroponic 
Nutrient Medium: Modified Hoagland 
pH: 5.3 ± 0.1 
Duration: 28 days 
Light-dark period: 14/10 h 
PAR: 350 µmol. m2− .s− 1 

Temperature (day/night): 25 ◦C 
Relative Humidity: 75 %

~ 1250 mg/kg (
∑

REE at 50 µM spike) (Yuan et al., 2017)

Eleocharis acicularis In, Ga, Ag, Tl (0.5 mg/L each) Type: Hydroponic 
Nutrient Medium: MiliQ Water 
Exogenous agent: Silicon at 4 mg/L 
pH: 5.5 
Duration: 21 days 
Light-dark period: 16/8 h 
PAR: 54 µmol. m2− .s− 1 

Temperature (day/night): 24 ± 1 ◦C 
Relative Humidity: n.a.[b]

Roots, Shoots (mg/kg): 
239, 538 mg/kg In, 886, 340 mg/kg Ga, 
68.4, 111 mg/kg Ag, 
117, 146 mg/kg Tl

(Nguyen et al., 
2019)

Arabidopsis thaliana Ga (0, 6, 30,150,250,500,750 µM) Type: Hydroponic 
Nutrient Medium: ½ Murashige-Skoog 
with (1 % Sucrose) 
pH: 5.7 
Duration: 8 days 
Light-dark period: 16/8 h 
PAR: 70 µmol. m2− .s− 1 

Temperature (day/night): 22 ◦C 
Relative Humidity: n.a.[b]

Ga in roots: 1000 > x > 80 mg/g 
In shoots: 200 > x > 150 mg/kg(at 500 µM)

(Chang et al., 2017)

Eleocharis acicularis ITO Powder (300,600 Indium mg/L) 
and 800 g/L LCD waste

Type: Hydroponic 
Nutrient Medium: Saline solution (1:1 
(w/w), NaCl and CaCl2) 
pH: 5 and 3 
Duration: 15 days 
Light-dark period: 16/8 h 
PAR: 12,000 cd. sr/ m2−

Temperature (day/night): 24 ± 1 ◦C 
Relative Humidity: n.a.[b]

58.9 mg/g (300 mg In/L), 122.4 ± 13.8 mg/ 
kg (600 mg/L), 
52.8 ± 0.9 mg/kg (800 g/L LCD)

(Upadhyay et al., 
2021)

Eleocharis acicularis In (0,0.1,0.2,0.3,0.4 mg/L) Type: Hydroponic 
Nutrient Medium: MiliQ Water 
pH: 5.5 
Duration: 15 days 
Light-dark period: 16/8 h 
PAR: 54 µmol. m2− .s− 1 

Temperature (day/night): 24 ± 1 ◦C 
Relative Humidity: n.a.[b]

477 mg/g In in roots, 353 mg/kg In in shoots 
(at 0.4 mg/L spike)

(Ha et al., 2011)

Silene latifolia Tl (0,0.5,1,6, and 12 mg/L) Type: Hydroponic 
Nutrient Medium: ½ Hoagland 
pH: 5.5 
Duration: 16 days 

12,900 ± 4140 µg/g Tl (at 6 mg/L spike), 
16,700 ± 2810 (at 12 mg/L spike) in young 
leaves

(Corzo Remigio 
et al., 2022)

(continued on next page)
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interface (Rengel, 2003). Most metals tend to be more soluble under 
acidic conditions, whereas the mobilization of cations is favored under 
alkaline conditions for amphoteric metals (Król et al., 2020). As an 
example, at alkaline pH, the bioavailability of Pb and Cr decreases (Pang 
et al., 2023). Whereas, at low pH, proton exchange capacity increases, 
thus leading to the release of heavy metals in the rhizosphere matrix. As 
can be deduced, metal migration in the plant matrix is rather specific to 
metals as well as to the nature of plants (Zhang et al., 2023). In this 
respect, Pourbaix diagrams can be utilized as a compass for under
standing metal speciations to optimize metal uptake mechanisms (Gailer 
and Turner, 2022). For example, the affinity of divalent metal ions in the 
soil matrix towards organic matter is listed as Cu > Ni > Pb > Co > Ca >
Zn > Mn > Mg (Mcbride, 1989). If the pH is found at elevated levels, the 
proton deposit retards, reducing the bioavailability of metals (Zhang 
et al., 2023). (Gao et al., 2019) observed a significant decrease in the 
dissolution rate for Cu by 30.36 % at an elevated pH level from 5.9 to 
6.8, whereas another study showed the promoting effect of increasing 
pH for more cation release of Mn under alkaline conditions (Sato et al., 
2017). Due to the pH dependence of bioavailability and translocation 
behavior, adjusting the pH will play a key role in comprehending the 
mobility of trace elements, especially the critical metals, in the rhizo
sphere matrix.

4.3.4. Chelating agents
Adding chelating agents as well as other exogenous substances is a 

common strategy to increase metal bioavailability and reduce metal 
toxicity for hyperaccumulators in phytoextraction (Solanki, 2022). 
Chelates can be divided into synthetic amino polycarboxylic acids such 
as EDTA, natural amino polycarboxylic acids such as Ethyl
enediamine-N, N’-succinic acid (EDDS), and natural low molecular 
weight organic acids i.e. citric acid, and oxalic acid (Mellor, 1964, 
Ranđelović et al., 2022). EDTA is reported to increase the translocation 
and bioaccumulation efficiency in pot experiments, yielding an 
enhanced accumulation of targeted trace elements (Hosseinniaee et al., 
2023). Nevertheless, due to environmental concerns regarding artificial 
chelators in downstream processing, attention is now turning to more 
biodegradable alternatives such as citric acid oxalic acid, nitrilotriacetic 
acid (NTA), and so on (Gluhar et al., 2020, Greipsson, 2022, Nörtemann, 
1999). Organic chelators of acetic acid, malic acid, and citric acid 
enhanced the La uptake by barley by 4.3, 2.8, and 1.5 times the control, 
respectively (Han et al., 2005). Similarly, Liu et al. (2022) reported an 
enhanced uptake of Y in the roots of P.americana through exogenous 
maleic and citric acid supplements, resulting in an increase in the 

translocation efficiencies by 51 % and 49 %, respectively. Hence, che
lates can be strategically incorporated to enhance the metal extraction 
yields in the context of phytoextraction and phytomining.

4.3.5. Plant growth regulators
Exogenous application of plant growth regulators (PGRs) promotes 

biomass production and metal uptake in plants (Tassi et al., 2008). PGRs 
comprise auxins, cytokinins, abscisic acid, gibberellins, jasmonic acids, 
salicylic acid, and so on (Bulak et al., 2014, George et al., 2008, Zahid 
et al., 2023). Auxins are the main actors in regulating cell elongation, 
differentiation, and division, in which cytokinins are also involved 
(George et al., 2008). Whilst, cytokinins play a role in maturation and 
senescence, as well as in resistance to abiotic stresses (George et al., 
2008). Furthermore, gibberellins are known to promote elongation in 
stems as well as govern seed germination, sex determination, and fruit 
development (George et al., 2008). A recent study by Vaz et al. (2023)
demonstrated the contribution of auxin to phytoremediation, in which 
varying concentrations of auxin from 1.4 to 3 µM achieved a removal 
higher than 15 mg L − 1 for fluoride and 6.42 mg L− 1 for phosphate. In 
another study, exposure to cytokinin resulted in significant growth in 
the ramets of E. acicularis (Sato et al., 2017).

4.3.6. Plant growth promoting microorganisms
Plant growth-promoting microorganisms (PGPM) improve trace 

metal bioavailability, growth in biomass, translocation of metals as well 
as endurance to abiotic stress, by siderophore production, nitrogen fix
ation, release of phytohormones, 1-aminocyclopropane-1-carboxylate 
(ACC) deaminase, and phosphate solubilization (Alves et al., 2022, 
Jing et al., 2007). As the composition of root exudates differs vastly, 
hyperaccumulators respond differently to the promoting effects of 
PGPM (Vocciante et al., 2022, Xiong et al., 2016).

Siderophore-generating microorganisms are dominantly used in 
studies for their potential to increase metal uptake by plants. Side
rophores are small molecules secreted by microorganisms to increase the 
iron solubility in soil for its uptake by plants, which also improves the 
bioavailability of other metals and metalloids (Roskova et al., 2022). 
This is evident in the case of gallium, in which the inoculation of the 
bacterial strain improved the mobility of Ga compared to the commer
cial metallophore solution Desferrioxamine B (Schwabe et al., 2017). In 
a similar case regarding Ge and REE (REE = La, Nd, Gd, Er), the su
pernatants of rhizobacteria Kocuria rosea ATW4 and Arthobacter oxydans 
ATW2 also increased the mobility of these elements accompanied by a 
growth in biomass (Schwabe et al., 2021). In another study, Luo et al. 

Table 2 (continued )

Hyperaccumulator Exposure Process parameters Accumulation (mg/g DW)[a] Reference

Light-dark period: 12/12 h 
PAR: 350 µmol. m2− .s− 1 

Temperature (day/night): 26/20 ◦C 
Relative Humidity: n.a.[b]

Boehmeria nivea L.
∑

REE (0, 1.6, 8, 16, 80, 160, 400, 800 
μmol/L)

Type: Hydroponic 
Nutrient Medium: ½ Hoagland 
pH: 5.5 ± 0.1 
Duration: 16 days 
Light-dark period: 14/10 h 
PAR: 350 µmol. m2− .s− 1 

Temperature (day/night): 25/20 ◦C 
Relative Humidity: 70 %

249 mg /kg REE (at 80 µmol/L); 
∑

LREE/
∑

HREE = 0.51
(C. Liu et al., 2022)

Lolium perenne L. Ga (0,15,31,63,125,250,500, 
1000, and 2000 mg/kg), 
In (0,1.5,3,6,13,25,50,100, and 200 
mg/ kg)

Type: Pot 
Nutrient Medium: Soil 
pH: 5.95 
Duration: 6 weeks 
Light-dark period: 16/8 h 
PAR: 800 µmol. m2− .s− 1 

Temperature (day/night): 20/12 ◦C 
Relative Humidity: 70 %

11.6 mg/kg Ga at 2000 mg/kg spike, 0.02 
mg/kg In at 100 mg/kg spike

(Jensen et al., 2018)

[a] Unless it is specified, it denotes the highest accumulation in the leaf section
[b] n.a. = not available data
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(2012) pointed out that, IAA-producing Endophyte Bacillus sp. SLS18 
promoted metal uptake by 65.2 % for Mn and 40 % for Cd, accompanied 
by increased plant biomass.

Rhizobacteria are also reported to secrete low molecular organic 
acids such as citric acid, and oxalic acid, which influences consequently 
the bioavailability of metals (Archana et al., 2012). This phenomenon 
has been utilized in the study by Virk et al. (2022) to increase nickel 
availability through pH-lowering Bacterium Bacillus sp. ZV6. In the 
study, acidification of soil by 0.98 units via organic acids led to an in
crease in the influx of cations through roots of Salix alba, enhancing the 
nickel uptake in aerial parts from 81.4 mg kg− 1 to 102.3 mg kg− 1. In 
Table 3, related studies centering on PGRM influence on phytoextraction 
are provided. Based on these findings, the symbiotic relationship be
tween plants and PGPMs can be immensely beneficial for phytomining 
to boost the bioaccumulation factor of desired elements in plants’ 
biomatrices.

4.4. Phytomining: overall assessment

Phytomining is a multi-step approach to recovering metals from the 
biomass of hyperaccumulators process that requires a thorough under
standing of its mechanisms and correlational parameters to be success
ful. The use of innovative phytomining has been explored, but it is 
crucial to recognize the limitations and technical challenges. One sig
nificant challenge is the limited extraction capacity, particularly from e- 
waste, which restricts recycling efforts primarily to wastewater from 
leachate (O. et al., 2015). The incorporation of phytoremediation in 
leachate waters from e-waste processing facilities or the areas within the 
proximity of tailing ponds, e-waste contaminated sites might alleviate 
the burden on the ongoing recycling process as well as biological 
treatments and at the same time, might help secure the supply of critical 
metals. Therefore, feasibility studies are often conducted in open fields 
to identify metal-laden sites and to plant suitable hyperaccumulators 
that exhibit fast growth and higher biomass yields (Anderson et al., 
2005, Wilson-Corral et al., 2011, Krisnayanti et al., 2016). However, 
arable areas for phytoextraction are confined to remote regions with low 
land values, whereas in developed regions the application is not feasible 
due to the high land values and longer harvesting periods (Wang and 
Aghajani Delavar, 2023). Moreover, irrigation, manuring, chelation, 
and exogenous treatments also increase the phytoextraction cost in 
long-term processing (Wang and Aghajani Delavar, 2023). Biomass 
conversion and following purification processes also play a critical role 
in the recovery of metals from phytoextraction, which requires a wide 
range of unit operations (Kaksonen and Petersen, 2023). For instance, 
the high energy costs associated with biomass conversion, amounting to 
$215 per ton in 2015, affected the profitability of rhenium phytomining, 
resulting in a profit of 3906 $ ha− 1 harvest− 1 (Novo et al., 2015).

The cost of phytoextraction includes expenses related to planting and 
cultivation, production costs, the value of ore-containing biomass as an 
asset, metal extraction costs, and market prices for the extracted metals 
(Harris et al., 2009, Kuppens et al., 2018). Therefore, to thoroughly 
assess the scalability of phytoextraction in the context of e-waste 

recycling, techno-economic and life cycle assessments are necessary. 
While lab environments enable the achievement of optimal metal 
accumulation yields, the downstream processing for the recovery of 
small concentrations in the context of critical metal recycling from 
e-waste poses challenges and hinders the overall feasibility. The slower 
processing times compared to other methods raise questions about its 
scalability in the long run, making it crucial to evaluate the trade-offs 
involved. Due to the limitations in terms of lower metal accumulation 
rates as well as slower processing and requiring extensive spatial area as 
well as energy input related to conversion processes as well as transport 
costs, phytomining can be phytomining can be conceptualized as a 
complementary procedure conducted in open-field experimental areas 
proximal to mining or electronic waste disposal sites (Robinson et al., 
2015, Vigil et al., 2022). In the context of metal fluctuations and the low 
recovery yield of critical metals from the e-waste, the recovery of 
precious elements such as silver and gold remains an economic driver in 
phytoextraction (Robinson et al., 2015).

5. Conclusion and outlook

This review paper examined the emerging technologies of bio
leaching, and phytomining for recycling critical metals from e-waste. By 
taking a critical stance, it aimed to identify potential improvements for 
enhancing recovery yields through strategic optimization of key pa
rameters, while also acknowledging the challenges associated with 
large-scale implementation.

The co-extraction of valuable and critical metals by bioleaching and 
phytomining could significantly enhance the sustainability profile, 
positioning them as promising alternatives to conventional metal 
extraction methods. Indirect fungi bioleaching shows promise with its 
reliability and selectivity.Further studies are needed to enhance organic 
acid production and to upscale bioleaching, involving experiments in 
small bioreactors and evaluating scalability. Additionally, the scaling-up 
aspect of bioleaching also needs to be explored. The common methods 
and empirical correlations used for scaling up, such as maintaining 
constant volumetric power input or oxygen transfer rate, often do not 
apply when transitioning from smaller volume shake flasks to large 
vessels with a capacity of up to 100,000 liters. This can limit small-scale 
experimental studies to strain selection or suitable nutrient media 
development, making existing findings only applicable on a smaller 
scale. To achieve optimal results in scale-up, future studies should 
consider using smaller bioreactors with stirrers and aeration on a labo
ratory scale, and thoroughly investigate the bioleaching limitations on a 
representative scale concerning slower processing and lower recovery 
yields. By doing so, researchers can directly apply the recovery rates 
obtained from experimental studies to larger scales. This approach may 
help avoid material, capital, energy, utility, and time costs and in
vestments, which can significantly impact the overall process. There
fore, thorough techno-economic evaluations and bottom-up analyzes are 
vital for assessing bioleaching’s integration with current industrial 
processes.

In phytomining, significant research gaps in extracting critical 

Table 3 
Inoculated PGRM in relevant phytoextraction studies and their influence on metal uptake in the context of critical metal recycling.

Microorganism Metal Mechanism of action Impact on plant growth Impact on metal uptake Reference

Variovorax paradoxus Ni Siderophore, auxin, and ACC deaminase 
production

Increased in the biomass 
of root and shoot

Enhanced Ni uptake in the roots up to 105.8 %, 
and in the shoots up to 79.6 %

(Durand et al., 
2016)

Arthrobacter oxydans 
and Kocuria rosea

Ge, REE Mobilization of elements through the 
release of desferrioxamine, bacillibactin, 
and surfactin-like compounds

Increased biomass yield 
and nutrient availability 
with Ge and REE

Increased Ge uptake in the shoots with 163 %, 
and up to 12.2 ± 1.3 µg La accumulation by A. 
oxydans

(Schwabe 
et al., 2021)

Bacillus 
amyloliquefaciens

Ca, Cu, 
Co, 
REEs

Secretion of IAA and ACC deaminase Higher shoot yield For F.esculentum: increased uptake in REE, 
and much more significant with Ca, Cu, and Co 
by 40 %, 383 %, and 2042 %, respectively

(Okoroafor 
et al., 2022)

Bacillus 
amyloliquefaciens

Ni Release of IAA, siderophore, ACC 
deaminase, and phosphate solubilization

Increased root length and 
total biomass weight

Enhanced Ni uptake in roots up to 825.50 mg/ 
kg

(Joradon 
et al., 2023)
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metals from e-waste remain. Future research should concentrate on 
isolating critical, rare, and precious metals from diverse sources, finding 
new hyperaccumulator species, and employing genome editing to in
crease metal absorption. These advancements could broaden the appli
cation of phytoextraction, either as a stand-alone process or in 
conjunction with existing processes for treating e-waste leachate and 
wastewater, or in recovering metals from foliage in polluted regions. To 
fully evaluate the potential of phytomining in the context of metal re
covery while closing the loop, comprehensive techno-economic assess
ments and life cycle studies are necessary.

All in all, these initiatives, bioleaching and phytomining are imper
ative to foster sustainable resource utilization, ensuring the supply 
continuity, while mitigating waste generation. The primary goal is to 
stimulate innovation in metal recovery methodologies and contribute to 
more efficient and environmentally sustainable management of elec
tronic waste.
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Nagy, S., Bokányi, L., Gombkötő, I., Magyar, T., 2017. Recycling of gallium from end-of- 
life light emitting diodes. Arch. Metall. Mater. 62 (2), 1161–1166. https://doi.org/ 
10.1515/amm-2017-0170. Jun. 

Naseri, T., Bahaloo-Horeh, N., Mousavi, S.M., 2019. Environmentally friendly recovery 
of valuable metals from spent coin cells through two-step bioleaching using 
Acidithiobacillus thiooxidans. J. Environ. Manag. 235, 357–367. https://doi.org/ 
10.1016/j.jenvman.2019.01.086. Apr. 

Naseri, T., Beiki, V., Mousavi, S.Mohammad, Farnaud, S., 2023c. A comprehensive 
review of bioleaching optimization by statistical approaches: recycling mechanisms, 
factors affecting, challenges, and sustainability. RSC. Adv. 13 (34), 23570–23589. 
https://doi.org/10.1039/D3RA03498D.

Naseri, T., Mousavi, S.M., 2022. Insights into the polysaccharides and proteins 
production from Penicillium citrinum during bioleaching of spent coin cells. Int. J. 
Biol. Macromol. 209, 1133–1143. https://doi.org/10.1016/j.ijbiomac.2022.04.042. 
Jun. 

Naseri, T., Mousavi, S.M., Kuchta, K., 2023b. Environmentally sustainable and cost- 
effective recycling of Mn-rich Li-ion cells waste: Effect of carbon sources on the 
leaching efficiency of metals using fungal metabolites. Waste Manag. 157, 47–59. 
https://doi.org/10.1016/j.wasman.2022.11.043. Feb. 

Naseri, T., Mousavi, S.M., Liese, A., Kuchta, K., 2023a. Bioleaching of valuable metals 
from spent LIBs followed by selective recovery of manganese using the precipitation 
method: metabolite maximization and process optimization. J. Environ. Manag. 343, 
118197. https://doi.org/10.1016/j.jenvman.2023.118197. Oct. 

Nemati, M., Lowenadler, J., Harrison, S.T.L., 2000. Particle size effects in bioleaching of 
pyrite by acidophilic thermophile Sulfolobus metallicus (BC). Appl. Microbiol. 
Biotechnol. 53 (2), 173–179. https://doi.org/10.1007/s002530050005. Feb. 

Nemutandani, T., Dutertre, D., Chimuka, L., Cukrowska, E., Tutu, H., 2006. The potential 
of Berkheya coddii for phytoextraction of nickel, platinum, and palladium 
contaminated sites. Toxicol. Environ. Chem. 88 (2), 175–185. https://doi.org/ 
10.1080/02772240600585842. Apr. 

Nestor, D., Valdivia, U., Chaves, A.P., 2001. Mechanisms of bioleaching of a refractory 
mineral of gold with Thiobacillus ferrooxidans. Int. J. Miner. Process. 62 (1), 
187–198. https://doi.org/10.1016/S0301-7516(00)00052-1. May. 

Nguyen, H.T.H., Sakakibara, M., Nguyen, M.N., Mai, N.T., Nguyen, V.T., 2019. Effect of 
dissolved silicon on the removal of heavy metals from aqueous solution by aquatic 
macrophyte eleocharis acicularis. Water. (Basel) 11 (5), 940. https://doi.org/ 
10.3390/w11050940. May. 

Nguyen, V.K., Lee, J.-U., 2015. A comparison of microbial leaching and chemical 
leaching of arsenic and heavy metals from mine tailings. Biotechnol. Bioproc. E 20 
(1), 91–99. https://doi.org/10.1007/s12257-014-0223-1. Feb. 

Ni’am, A.C., Wang, Y.-F., Chen, S.-W., You, S.-J., 2019. Recovery of rare earth elements 
from waste permanent magnet (WPMs) via selective leaching using the Taguchi 

method. J. Taiwan. Inst. Chem. Eng. 97, 137–145. https://doi.org/10.1016/j. 
jtice.2019.01.006. Apr. 

Nievola, C.C., Carvalho, C.P., Carvalho, V., Rodrigues, E., 2017. Rapid responses of 
plants to temperature changes. Temperature (Austin) 4 (4), 371–405. https://doi. 
org/10.1080/23328940.2017.1377812. Nov. 

Nili, S., Arshadi, M., Yaghmaei, S., 2022. Fungal bioleaching of e-waste utilizing 
molasses as the carbon source in a bubble column bioreactor. J. Environ. Manag. 
307, 114524. https://doi.org/10.1016/j.jenvman.2022.114524. Apr. 

Nkrumah, P.N., Chaney, R.L., Morel, J.L., 2021. Agronomy of ‘metal crops’ used in 
agromining. In: van der Ent, A., Baker, A.J.M., Echevarria, G., Simonnot, M.-O., 
Morel, J.L. (Eds.), Agromining: Farming for Metals: Extracting Unconventional 
Resources Using Plants. Springer International Publishing, Cham, pp. 23–46. https:// 
doi.org/10.1007/978-3-030-58904-2_2.

Nkrumah, P.N., van der Ent, A., 2023. Possible accumulation of critical metals in plants 
that hyperaccumulate their chemical analogues? Sci. Total Environ. 878, 162791. 
https://doi.org/10.1016/j.scitotenv.2023.162791. Jun. 

Nörtemann, B., 1999. Biodegradation of EDTA. Appl. Microbiol. Biotechnol. 51 (6), 
751–759. https://doi.org/10.1007/s002530051458. Jun. 
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