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Abstract: In this work, the (MnCl2(C6N10H6) complex has been synthesized via solid-state re-
action between manganese (II) chloride and melamine in the molar ratio of 1:2. A similar syn-
thesis has been repeated with CoCl2, and FeCl2, resulting in two new metal–melam complexes
(FeCl2(C6N11H9) and CoCl2(C6N11H9)). MnCl2(C6N10H6) crystallizes in the monoclinic crystal
system with the space group I2/a. The crystalline powder of MnCl2(C6N10H6) was studied by
X-ray diffraction, infrared spectroscopy, and thermogravimetric analysis to examine its structure and
properties. MnCl2(C6N10H6) also shows good thermal stability up to 370 ◦C; however, the complete
decomposition occurred at 900 ◦C, yielding Mn7C3. This paper presents an easy synthesis of the first
luminescent transition metal–melem complex, providing new insights into the reactivity of melamine
at elevated temperatures in the presence of transition metal chlorides.

Keywords: melem; melamine; coordination sites of melem; manganese chloride; photoluminescence;
transition metal carbide

1. Introduction

The first synthesis of melamine (1,3,5-triazine-2,4,6-triamine) dates back to a century
ago with the reaction of thiocyanate with ammonium chloride [1]. Later on, there were
more synthetic methods suggested by many researchers to yield melamine based on heating
thiourea, guanidine carbonate, cyanamide, or dicyandiamide [1,2]. Nowadays, urea is a
precursor for the industrial production of melamine, which has increased the production of
melamine to millions of tons per year, making this material widely available.

When pure melamine (C3N6H6) is heated up, it will form different condensation
products such as melam (C6N11H9) at around 360 ◦C [3] (340 ◦C [4]), and subsequently
melem (C6N10H6) at approximately 400 ◦C [3] (380 ◦C [4]) (Figure 1). This process is
accompanied by the release of ammonia during the condensation. Interestingly, during this
transformation process, the characteristic rings of triazine (cyanuric nuclei) and heptazine
(cyameluric nuclei) are retained or restructured. Triazine rings are composed of a single six-
membered ring with alternating carbon and nitrogen atoms, as can be found in melamine.
Heptazine rings, on the other hand, consist of three fused triazine rings which create a
larger and more complex structure of melem and melon [5].

The formation of extended supramolecular structures based on the molecular entities
of melem and melon through the thermal condensation of melamine is a conventional way
to form metal-free molecules and polymers [6]. Derivatives of s-heptazine are particularly
interesting due to their intriguing thermal stability and unique electronic structures. The
formation of ionic and polymeric carbon nitride compounds [7–9] based on aromatic tri-
cyclic units (tri-s-triazine, C6N7) typically involves an ordered self-assembly with bonding
via covalent and noncovalent interactions [2]. These polymeric materials are represented

Molecules 2024, 29, 5598. https://doi.org/10.3390/molecules29235598 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules29235598
https://doi.org/10.3390/molecules29235598
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-6381-2290
https://orcid.org/0000-0002-5147-5677
https://orcid.org/0000-0003-3664-5364
https://orcid.org/0000-0002-9455-5044
https://orcid.org/0000-0003-2450-4011
https://doi.org/10.3390/molecules29235598
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules29235598?type=check_update&version=1


Molecules 2024, 29, 5598 2 of 12

by an extended network of melem, connected by hydrogen bonding and π-π stacking,
featuring surprisingly high thermal stabilities. The research on carbon nitride compounds
is extensive, covering a wide range of materials. Depending on the bonding arrangement
and ratio of carbon to nitrogen atoms, these compounds are classified with their very
own nomenclature, such as triazine-based polymers [10], graphitic carbon nitride, carbon
nitride nanotubes, boron carbon nitrides, and so on. Melem and carbon nitride (C3N4) were
reported for their potential applications in flame retardance [11], photocatalysis [12,13],
heterogeneous catalysis [14], as nanosheets for bioimaging [15], luminescence devices [16],
the anode material of lithium-ion battery [17], and as an adsorbent of heavy metals and
dyes [18,19], etc.
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Carbon-nitride materials have significant and various applications; however, there
are few studies on the reactivity of melem up to now [12,20]. Early studies on s-heptazine
derivatives faced challenges because of the insolubility (in water and any organic solvents)
and low reactivity of melem [21]. S-heptazine and s-triazine are considered electron-
deficient aromatic compounds due to the existence of nitrogen atoms in the ring, which
makes them able to undergo nucleophilic substitution under specific conditions [20]. Yet,
the chemical behavior of melem remains less explored when compared to the triazine
analog. There are only limited examples of the reactivity of NH2-groups of melem reported
up to now [12,20]. Examples of such studies include those on 2,5,8-triphthalimido-tri-s-
triazine [22], 2,5,8-tri(2,3,4,5-tetrafluorophthalimido)-tri-s-triazine [23]. Furthermore, by
treating melem with mineral acids, several melemium salts were obtained such as phos-
phate salt C6N7(NH2)3·H3PO4, sulfate salt H2C6N7(NH2)3SO4·2H2O, melemium melem
perchlorate HC6N7(NH2)3ClO4·C6N7(NH2)3, etc. [24,25].

Recent research by Xu et al. has explored the reactivity of melem with various metals.
Their study involved the interactions of melem in an aqueous suspension with AgNO3,
Zn(NO3)2, Cu(NO3)2, Co(NO3)2, and Ni(NO3)2. Among these, the only compound ob-
tained was an infinite Ag-N nanocage coordinated with melem [26]. Simultaneously, our
research group investigated the formation of complex metal-halide–melem compounds by
reacting binary metal halides with melem, which introduces compounds of CaBr2, SrBr2,
SrI2, BaI2, and PbBr2 with melem [27].

In this study, we explored the solid-state reactivity of melamine in the presence of
transition metal chlorides at higher temperatures, where melam and melem can form new
complexes of FeCl2(C6N11H9), CoCl2(C6N11H9), and more importantly MnCl2(C6N10H6).
MnCl2(C6N10H6) has been characterized by powder X-ray diffraction (PXRD), single-crystal
diffraction, and infrared (IR) spectroscopy. Additionally, thermogravimetric analyses (TGA)
were conducted to evaluate the stability of MnCl2(C6N10H6) and to determine its decom-
position products. The TGA analysis indicates that manganese carbodiimide [28] is formed
as an intermediate compound at 700 ◦C, and at higher temperatures, the decomposition
product is manganese carbide, Mn7C3 (ICSD 69534).

This transition metal carbide has been previously synthesized in the carbothermal
reduction of manganese oxide in two steps, forming MnO at 1050 ◦C and Mn7C3 at 1300 ◦C.
Alternatively, Mn7C3 can also be obtained from the reaction of manganese dust with n-
pentane at 850 ◦C at reduced pressure [29]. Additionally, various researchers have proposed
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other methods for synthesizing this carbide [30]. Due to the wide range of applications
of transition metal carbides in the heat-resistance and hard material industry, Mn7C3 is
valued [31]. Furthermore, manganese carbodiimide and manganese carbide can exhibit
various applications due to the position of manganese in the middle of the 3d series [30].

Finally, the photoluminescence properties of MnCl2(C6N10H6) are discussed, provid-
ing comprehensive insight into its remarkable photochemical behavior

2. Results and Discussion
2.1. Crystal Structure of MnCl2(C6N10H6), and FeCl2(C6N11H9)

The MnCl2(C6N10H6) crystallizes in a monoclinic crystal system and the space group
of I2/a with crystallographic details summarized in Table 1. The crystal structure is
composed of MnCl4/4 chains along the a-axis that are interconnected by melem units to
form a layered arrangement (Figure 2). The melem units are connected to the manganese
atom through the two inner nitrogen atoms of N1, with a bond distance of 2.331 (5) Å,
thereby completing the coordination number six of manganese. These melem units are
situated between the MnCl4/4 layers, as shown in Figure 2b. FeCl2(C6N11H9) crystallizes
in a monoclinic crystal system, in the space group P21/c. The iron chloride is coordinated
through N1 and N7 to the bidentate melamine ligand binding a melam unit. The steric
demand and tetrahedral environment of the central atom force the melamine ligand to
protrude from the plane, disrupting the planarity of the triazine rings. The crystal structure
of FeCl2(C6N11H9), along with the crystallographic details, is presented in Figure S1 and
Table S1, respectively.

Table 1. Crystallographic details of the crystal structure refinement of MnCl2(C6N10H6).

Empirical Formula MnCl2(C6N10H6)

CCDC code 2141509

Formula weight (g/mol) 344.05

Wavelength (Å) 1.54184

Crystal system Monoclinic

Space group I 1 2/a 1

Unit cell dimensions (Å)

a/Å 6.6697 (4)

b/Å 21.926 (1)

c/Å 7.718 (2)

Volume (Å3) 1128.61

Z 4

Density (calculated) (g/cm3) 2.025

Absorption coefficient (mm−1) 13.947

Final R indices (I > 2σ(I)) R1 = 0.0288, wR2 = 0.0581

R indices (all data) R1 = 0.0333, wR2 = 0.0594

GOOF 1.070

Crystals of CoCl2(C6N11H9) were obtained under the same reaction conditions. The
PXRD pattern closely matches the calculated pattern based on the single-crystal refinement
of FeCl2(C6N11H9), indicating both structures to be isotypic.
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2.2. Thermoanalytic Studies

A valuable technique that can provide insights into the formation or decomposition of
new phases is combining differential scanning calorimetry (DSC) with X-ray diffraction
(XRD). In the DSC analysis of a 1:2 molar mixture of manganese (II) chloride and melamine,
as shown in Figure 3a, there are three notable thermal effects: two endothermic peaks
centered at 300 ◦C and 370 ◦C, and an exothermic peak at 306 ◦C. The endothermic peak at
300 ◦C is followed by an exothermic peak at 306 ◦C, which is attributed to the formation of
an unknown intermediate phase (see Figure S2), which subsequently decomposes around
370 ◦C, resulting in the formation of MnCl2(C6N10H6). The stability of MnCl2(C6N10H6)
has been further investigated using thermogravimetric analysis (TGA).

The compound demonstrates good thermal stability up to 400 ◦C, with only a 2.6%
weight loss. This reduction in weight may be attributed to a small amount of an amorphous
side phase from the reaction, which will be further explained in the next section. The
TGA results, presented in Figure 3b, indicate that the complex gradually decomposes into
different compounds when it is heated to 900 ◦C. To better understand the decomposi-
tion process, the TGA was repeated, with the analysis stopped at specific temperature
intervals (approximately 500 ◦C, 700 ◦C, and 900 ◦C) to identify the decomposition prod-
ucts. At around 500 ◦C, an ex situ powder X-ray diffraction (PXRD) analysis revealed that
MnCl2(C6N10H6) had decomposed into an amorphous intermediate phase. By 700 ◦C, the
complex forms manganese carbodiimide [28] (Figure S3a). Finally, at 900 ◦C, the complex
underwent complete decomposition, resulting in the formation of the transition metal
carbide Mn7C3, as confirmed by the XRD pattern shown in Figure S3b.
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Figure 3. (a) DSC of the reaction of MnCl2 and melamine in a molar ratio of 1:2 and (b) TGA of
MnCl2(C6N10H6).

2.3. X-Ray Powder Diffraction

The reaction between MnCl2 and melamine in the ratio of 1:2 at 400 ◦C for 100 h yields
a product where MnCl2(C6N10H6) can be isolated as a separate phase. From the theoretical
Equation (1), we would have expected that this product is formed by the release of NH3
and can be obtained as a pure phase (Figure 4). However, the XRD powder pattern showed
a high background after the first synthesis, implying that there might be an amorphous
phase. Therefore, in order to purify the MnCl2(C6N10H6), a double chamber ampule
with a temperature gradient (Figure S4) was utilized. Subsequently, the product (orange
powder, Figure S4) is subjected to analysis via powder X-ray diffraction (PXRD), with the
resulting diffractogram then compared with the calculated pattern derived from structure
refinement based on single-crystal data (Figure 3). The white residue on the colder side of
the ampule has been also analyzed, which shows that the amorphous phase is crystallized
into melamine and ammonium chloride (Figure S4a,b).

MnCl2 + 2C3N6H6 → MnCl2(C6N10H6) + 2NH3 (1)

Figure S5 presents the PXRD patterns of two complexes of FeCl2(C6N11H9) and
CoCl2(C6N11H9). Similarly, the high background of the XRD pattern can be attributed to
either the fluorescence effect of Fe and Co or the presence of an amorphous phase. These
complexes were also prepared from a molar ratio of 1:2 of FeCl2, and CoCl2 with melamine,
in the same condition as a synthesis of MnCl2(C6N10H6). The theoretical reaction equation
is shown in Equations (2), and (3). These complexes closely resemble those previously in-
troduced by our group, including LiBr(C6N11H9) (CCDC: 2039843), CuX(Cl,Br,I)(C6N11H9)
(CCDC: 2057533, 2059117, 2041008, respectively), and ZnI2(C6N11H9) (CCDC: 2056462).

FeCl2 + 2C3N6H6 → FeCl2(C6N11H9) + NH3 (2)

CoCl2 + 2C3N6H6 → CoCl2(C6N11H9) + NH3 (3)
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Figure 4. XRD powder pattern of the synthesized MnCl2(C6N10H6) (bottom), compared with the
calculated pattern based on the single-crystal refinement (top) (CCDC code: 2141509).

2.4. Infrared (IR) Spectroscopy

The IR spectrum of the MnCl2(C6N10H6) complex was compared with the spectra
of melamine and melem as shown in Figure 5. Table S2 shows details of the frequencies
related to the different vibrational modes of these compounds and the corresponding bond
assignments. As illustrated in Figure 5, infrared spectra for all three compounds were
recorded in the range from 4000 to 500 cm−1. This comparison aids in visualizing the
similarity and difference of the MnCl2(C6N10H6) with that of melem and linking them
to the established vibrational modes. As expected, because all the compounds contain
NH2 groups, similar spectral patterns in the 3500–3100 cm−1 and 1580–1600 cm−1 regions
are related to NH stretching and bending vibrations. However, MnCl2(C6N10H6) reveals
notable differences from melamine in these areas. Despite some minor changes in intensity
and splitting, the vibrational features of MnCl2(C6N10H6) are similar to those of melem.
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2.5. Photoluminescence Measurements

The photoluminescence (PL) properties of Mn(II) complexes, whether in inorganic
compounds [32] or organic–inorganic complexes [33–35], are particularly captivating. These
complexes exhibit intriguing optical properties and have potential applications in sensors,
optical devices, optical markers, and cost-effective OLEDs [33]. The PL of Mn2+ is primarily
associated with 3d-3d transitions [36,37]. However, its photoluminescence can be signif-
icantly affected by both the local coordination environment of the manganese ions and
the overall crystal structure. Mn2+ comprising luminescent materials with multiple 3d-3d
transitions (see Figure S6, Tanabe-Sugano-Diagram for d5 ions) have been known since the
forties of the last century [38], while the Mn-centered absorption lines are rather weak due
to the spin and Laporte forbidden character of these 3d-3d transitions. Therefore, applied
Mn2+ luminophores are sensitized, either by the band-to-band transition of the host, e.g.,
in the widely applied EL and display phosphors ZnS:Mn or Zn2SiO4:Mn [39,40]. Alter-
natively, sensitization is achieved by a co-activator, as in the fluorescent lamp phosphors
Ca5(PO4)3(F,Cl):Sb,Mn and BaMgAl10O17:Eu,Mn [41,42], or by ligand-centered transitions
as in coordination compounds. In its pure phase, MnCl2 displays different emission charac-
teristics under varying pressures [43]. At ambient pressure, the emission occurs at 642 nm
(15,580 cm−1), attributed to the spin-forbidden 4T1g(G) → 6A1g(6S) transition [36,37,43]. As
pressure increases, a red-shift of the emission band is observed as the ligand to metal dis-
tances decline and the crystal field strength increases. Moreover, the color of the emission
from Mn(II) complexes and phosphors is dependent on the coordination geometry. In a
tetrahedral field, the emission is typically green, while in an octahedral crystal field, it is
observed from the red to the orange range [43].

In this study, MnCl2(C6N10H6) exhibits red photoluminescence upon excitation with
a UV radiation source. The emission spectrum reveals a broad band centered at 620 nm
(16,130 cm−1), while the FWHM is 2460 cm−1. Weak excitation bands are observed between
350 and 500 nm (Figure 6), which are attributed to the Mn2+-centered transitions between
the ground state term 6A1g and the excited state terms 4T1g, 4T2g, 4A1g, and 4Eg [41].
The strong excitation band at 325 nm is caused by the coordinated ligand melem, which
sensitizes the Mn2+ luminescence.
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The decay measurement after a 325 nm excitation delivers a biexponential decay curve
with an emission lifetime τ1 of 109 µs (26%) and a longer component with τ2 of 464 µs
(74%). The decay time of Mn2+-activated phosphors with a high quantum yield close to
unity is in the range of 8 to 40 ms [44], while the decay time of Mn2+ in coordination
compounds is in the range from 0.1 to 25 ms [33]. However, the decay time can be strongly
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reduced by concentration quenching, by Mn2+ ions at the particle surface [45], and/or
by magnetic interaction (superexchange) between ligand-bridged Mn2+ ions [46]. We
observed a low quantum yield < 10%, which is in line with a rather short decay time. Upon
comparing the qualitative absorption spectrum of MnCl2(C6N10H6) (Figure S7) with the
UV/Vis absorption spectra of melem [6,47], it is evident that while the absorption in pure
melem completely diminishes in the visible-light region, the absorption in MnCl2(C6N10H6)
shows a similar initial decline but persists slightly longer, though only at a very low
intensity (approximately 2% of the absorption), before fully fading away at a wavelength of
600 nm. Melem has also been previously coupled with other organic monomers to construct
extended conjugated networks, thereby enhancing visible-light absorption and improving
photocatalytic performance [6].

3. Materials and Methods

The starting materials, MnCl2 (ABCR, Nagano, Japan, 97%), FeCl2 (ABCR, 98%) and
CoCl2 (ABCR, 97%), and melamine (Sigma-Aldrich, St. Louis, MO, USA, 99%), were used
as received without additional purification. All the handling and storage of these materials
were conducted within a glovebox, maintaining an argon atmosphere with moisture and
oxygen levels below 1 ppm.

For the synthesis of MnCl2(C6N10H6), the reaction mixture was prepared with a molar
ratio of 1:2 for MnCl2 to melamine. This mixture was then transferred into a hand-made
silica tube with a length of 6 cm, an outer diameter of 10 mm, and an inner diameter of
7 mm. The resulting mixture, weighing approximately 50 g, was vacuum-sealed. This
ampule was then placed in a Carbolite furnace, where it was heated at a rate of 1 ◦C min−1

to 400 ◦C and remained at this temperature for 100 h, followed by cooling at a rate of
0.1 ◦C min−1 to room temperature. The crystals of MnCl2(C6N10H6) appeared on the wall
of the ampule slightly above the crystalline powder. To prepare the crystalline powder of
MnCl2(C6N10H6), the reaction time can be reduced to 20 h with a heating and cooling rate of
1 ◦C min−1. The obtained XRD powder pattern revealed the presence of small unidentified
peaks and a high background, suggesting the presence of an unknown amorphous phase.
To purify the sample, a double chamber ampule, as shown in Figure S4, was used. One
chamber of ampule was placed in a glass oven at 350 ◦C for 72 h, while the other chamber
was outside of the furnace at room temperature. The pure phase remained on the hot side
of the ampule, while the side phase, consisting of ammonium chloride and melamine, was
separated. The yield of the reaction is estimated to be around 64%.

FeCl2(C6N11H9) and CoCl2(C6N11H9) were synthesized in a similar route by mixing
one molar ratio of FeCl2, or CoCl2 with 2 molar ratios of melamine (Sigma-Aldrich, 99%).
A total of 50 mg of each mixture was transferred into a 6 cm ampule and heated to 400 ◦C
in the Carbolite furnace for 100 h (with a ramp of 1 and 0.1 ◦C min−1). To obtain crystals of
these complexes, the same mixture was subjected to the same conditions except in a Simon
furnace with a very small temperature gradient. At the bottom of the ampule, we could see
a few crystals of FeCl2(C6N11H9) and CoCl2(C6N11H9). (If the temperature gradient is too
high, the formation of ammonium melem chloride hinders the formation of main phases).
The reaction scheme of all three compounds is shown in Figure S8.

X-ray diffraction patterns of the prepared powders were recorded using a powder
diffractometer (STOE, Darmstadt, Germany, STADIP, Ge-monochromator) with Cu-Kα1
radiation (λ = 1.540598 Å). Data were collected in the range of 5 < 2θ < 70◦. The patterns
were then compared to those of the relevant crystal structures using Match3! Software [48].

Single crystals of MnCl2(C6N10H6) were selected and mounted on a Rigaku XtaLab
Synergy-S single-crystal X-ray diffractometer [49]. X-ray diffraction data were collected
using Cu-Kα radiation (λ = 1.54184 Å) and a mirror monochromator, with measurements
taken at a temperature of 180 K. Crystal structures were determined using direct methods
(SHELXT), followed by full-matrix least-squares refinement (SHELXL-2014) [50,51]. X-ray
intensity absorption corrections were applied using numerical methods with CrysAlisPro
1.171.41.92a software (Rigaku Oxford Diffraction, Neu-Isenburg, Germany) [49]. Hydrogen
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atoms were identified in the difference maps and refined isotropically based on their
positions. The crystal structure of FeCl2(C6N11H9) was also solved and refined on the basis
of single-crystal X-ray diffraction data (Table S1).

Differential scanning calorimetry (DSC) was performed using a DSC 204 F1 Phoenix
instrument (Netzsch, Selb, Germany). In a glovebox, under an argon atmosphere, the
starting materials were sealed in 100 µL gold-plated (5 µm) steel autoclaves (Bächler
Feintech AG, Hölstein, Switzerland). The reaction between MnCl2 and melamine, with
a 1:2 ratio, was investigated over a temperature range from room temperature to 500 ◦C,
applying heating and cooling rates of 2 and 0.5 ◦C/min.

For thermogravimetric analysis (TGA), a Netzsch Jupiter STA 449 F3 apparatus was
employed. The final product was placed in a hand-made open-ended silica container under
argon and underwent gradual heating and cooling at a rate of 2 K/min. This approach
allowed for the evaluation of the product’s thermal stability across a temperature range
from room temperature to 900 ◦C.

Infrared (IR) spectra of the samples were acquired using a Bruker (Frankfurt, Germany)
VERTEX 70 FT-IR spectrometer, covering the spectral range from 400 to 4000 cm−1. KBr
tablets were utilized as a background reference.

For optical measurements the emission and excitation spectra of MnCl2(C6N10H6)
were recorded optically using the fluorescence spectrometer FLS920 (Edinburgh Instru-
ments, Livingston, UK) equipped with a 450 W xenon discharge lamp (Osram, Munich,
Germany). A mirror optic designed for powder samples was also utilized. An R2658P
single-photon-counting photomultiplier tube manufactured by Hamamatsu was used for
detection. Photoluminescence spectra were recorded with a spectral resolution of 1 nm, a
dwell time of 0.5 s at 1 nm intervals, and 2 repetitions. Photoluminescence decay curves
were measured using the same spectrometer, with a 445 nm picosecond laser serving as the
pulsed excitation source.

4. Conclusions

In conclusion, the successful synthesis of MnCl2(C6N10H6) is a very important step
toward understanding the coordination chemistry of melem. We attempted to extend this
work by investigating the solid-state reactivity of melamine with transition metal chlorides
at elevated temperatures. This approach led to the successful synthesis of several new
coordination complexes with melam, such as FeCl2(C6N11H9), and CoCl2(C6N11H9).

It is noteworthy to mention that our primary focus is on synthesizing MnCl2(C6N10H6)
since it is the first luminescent transition metal–melem complex. Infrared (IR) spectroscopy,
powder X-ray diffraction (PXRD), and single-crystal X-ray diffraction were used to charac-
terize the structure of MnCl2(C6N10H6). Thermal gravimetric analysis (TGA) also provided
insights into the thermal stability and decomposition of this compound, showing that
MnCl2(C6N10H6) is first decomposed into manganese carbodiimide [28] at 700 ◦C and then
at 900 ◦C to manganese carbide (Mn7C3). The synthesis of manganese carbide, which is
typically produced via carbothermal reduction processes, has applications in heat-resistant
and hard materials. Proposing a new synthetic route for manganese carbodiimide and
Mn7C3 is also another aspect of this work. Finally, the photoluminescence properties of
MnCl2(C6N10H6) were studied which shows red-to-orange fluorescence with an emission
peak at 620 nm and a biexponential decay with a lifetime in the 100 µs range.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29235598/s1, Figure S1: Section of the crystal structure
of FeCl2(C6N11H9) projected on bc-plane (top) and the unit cell content of the structure (bottom).
Table S1: Crystallographic details of the crystal structure refinement on FeCl2(C6N11H9).; Figure S2:
Ex-situ powder XRD pattern of an unknown phase formed by heating a mixture of MnCl2 and
melamine in a 1:2 ratio to the first exothermic DSC peak, observed at 306 ◦C. Figure S3: a. XRD
pattern of manganese carbodiimide (MnCN2) obtained by heating MnCl2(C6H6N10) to 700 ◦C, along
with reflections of unknown side-phase (shown with black stars) compared with the calculated
pattern based on the single-crystal structure refinement (top) (CCDC code: 272236). b. XRD pat-
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tern of manganese carbide (Mn7C3) obtained from heating MnCl2(C6N10H6) to 900 ◦C (bottom),
compared with the calculated pattern based on the single-crystal refinement (top) (CCDC code:
2141509). Figure S4: a. Photograph of a two-chamber ampule used for separation of side-phase from
MnCl2(C6N10H6) under daylight (top) and under UV irradiation (bottom). (The observed blue light
observed in the Figure originates from the reflectance of the blue light (366 nm) on the white powder.
b. XRD pattern of side phase on the left side of two-sided chamber. Figure S5: Recorded XRD patterns
of FeCl2(C6N11H9), CoCl2(C6N11H9) with the calculated pattern from the structure refinement of
FeCl2(C6N11H9) (top). Table S2: Vibrational frequencies (in cm−1) for MnCl2(C6N10H6) compared to
those of melamine and melem. Figure S6: Tanabe-Sugano-Diagram for a d5 ion with the most promi-
nent emission transition between 4T1(4G) and 6A1(6S). Figure S7: A qualitative absorption spectrum
by the aid of the Kubelk-Munk function from the reflection spectrum of MnCl2(C6N10H6). Figure S8:
A reaction scheme of melamine with some transition metal chlorides to obtain FeCl2(C6N11H9),
CoCl2(C6N11H9), and MnCl2(C6N10H6) compounds.
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