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d-order nonlocal shifts of scattered wave-packets: What can be measure
Goos-Hänchen and Imbert-Fedorov effects ?

Klaus Morawetz1,2,
1Münster University of Applied Sciences, Stegerwaldstrasse 39, 48565 Steinfurt, Germany and

2International Institute of Physics- UFRN, Campus Universitário Lagoa nova, 59078-970 Natal, Brazil

The scattering of wavepackets with arbitrary energy dispersion on surfaces has been analyzed.
Expanding up to second order in scattering shifts, it is found that besides the known Goos-Hänchen
or Imbert-Fedorov spatial offset, as well as the Wigner delay time, new momentum and frequency
shifts appear. Furthermore, the width of the scattered wave packet becomes modified as well, which
can lead to a shrinking of pulses by multiple scattering. For a model of dielectric material char-
acterized by a longitudinal and transverse dielectric function the shifts are calculated analytically.
From the Goos-Hänchen and Imbert-Fedorov shifts one can access the longitudinal and transversal
dielectric function. Perfectly aligned crystal symmetry axes with respect to scattering beam shows
no Imbert-Fedorov effect. It is found that the Goos-Hänchen and Imbert-Fedorov effect are absent
for homogeneous materials. Oppositely it is found that the Wigner delay time and the shrinking of
the temporal pulse width allows to access the dielectric function independent on the beam geometry.

INTRODUCTION AND RESULTS

he experiments of Goos and Hänchen, it has
n that a wave packet or a beam of light suffers
l shift when reflecting from surfaces [1]. The
e focal plane is called the Goos-Hänchen effect,
ift out of the plane is called the Imbert-Fedorov
For an overview, see [3, 4]. Both deviations
etrical optics predictions can be distinguished

nd on the shape of the incident beam, its po-
, and the material composition of the reflecting
]. Treatments consider beam shifts for pairs of
ves [6] or show that a classical spinning pho-
s an ’exotic particle’ on a curved surface [7].
ntally, it was shown that the degree of spatial
influences the angular beam shifts, while the
am shifts are unaffected [8]. The effect of beams
tal angular momentum was clarified in [9, 10].
d with these effects are the spin separations of
femtosecond laser pulses due to the spin-Hall
]. As special forms of beams rotating elliptical
[12] or Airy beams [13] are used. Airy vortex
vector beams are created by modulation of dy-
d geometric phases [14]. Circular Airy vortex
n be created in the terahertz regime [15]. Large
ifts of a reflected Airy beam on the surface of
c crystals were found [16]. Reflection and trans-
f an Airy beam impinging on a dielectric surface
investigated in [17]. Other applications of these
sider graphene [18, 19] or optical vortex beams
e effect of an independent quantum degree of
n the barycenter of a diffraction-free light beam
lated in [21].

eoretical basis of these shifts is the energy
omentum dispersion of the wavepacket or beam.
lts in nonlocal shifts when wavepackets are scat-
m a surface [22]. Quite frequently the treat-
ages over the Fresnel coefficients [12, 23] or uses
mission coefficients [24, 25]. There exist various

other schemes to describe such shifts ranging f
aging over the center of mass of field energy de
to averaging over the incoming and outgoing fi
analogously to quantum expectation values [28
plete quantum kinetic theory, including nonlo
can be found in [29–31]. All quantum effects of
can be recast in a set of nonlocal spatial, temp
mentum, and energy shifts. This results in con
to the thermodynamic variables due to binar
tions [32].

In this letter, we consider the various offse
panding up to second order in various dispersi
formalism can be applied to any surface, be
molecules, dielectric, or other materials with an
sion ω(k) of beams. We assume simply that th
ing is described by a proper scattering amplitud
show that an incident wave packet scattered at
becomes modified by six effects. These effects c
pressed as nonlocal shifts in terms of derivativ
scattering amplitude

f

(
p

p
, ω

)
= |f |eiΨ.

One needs simply derivatives with respect to e

δ = ϕ+ i∆ = ∂ω ln f = ∂ω ln |f |+ i∂ωΨ

and the vector shifts

δ = ϕr + i∆r =
1

k
∂θ,φ ln f =

1

k
∂θ,φ ln |f |+

i

k

with the orbital derivatives

∂θ,φ = −eθ∂θ −
eφ
sin θ

∂φ = k∂k − k∂k.

As a result, the scattered wavepacket with velo
∂kωk

1. becomes delayed by the Wigner delay tim
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]

(10)

ponential
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ains a spatial offset ∆r, which includes the
s-Hänchen

∆GH = ∆x + tanϑ0∆z (5)

Imbert-Fedorov effects

∆IF = ∆y (6)

light if the incident angle to the z-axes is ϑ0.

ers a shift of momentum

K = k − σ2(ϕr − vkϕ)

h the momentum width of the wavepacket σ.

eriences a change in the temporal width of the
ket by

σ̄t
2 = σ2

t − ∂ωϕ.

ws a frequency shift of

− ϕ

σ̄t
2
.

a modified momentum width

1

σ2
+

ϕθ − vkϕ

k
+ i

(
∆θ − vk∆

k
+ Γt

)
(7)

h the second-order derivative of dispersion Γ =
ωk.

stic impurity scattering, the modulus |f | is con-
d effects 3, 4, and 5 are not present. Effects
are independent on the form of the beam or
et.
following chapter we give a derivation of these
d calculate the shifts for a model of light scat-
a dielectric material in chapter III.

ATTERING OF A WAVE PACKET ON A
SURFACE

sider a three-dimensional incident wave packet

k, t) =

∫
d3pdω

(2π)4
eip·r−

(p−k)2

2σ2 −iωt−σ2
t
2 (ω−ωp)

2

(8)

disperion ωp which scatters at a surface with
ring amplitude f(pp , ω)

, t)=

∫
d3pdω

(2π)4
eip̄·r−

(p−k)2

2σ2 −iωt−σ2
t
2 (ω−ωp)

2

f

(
p

p
, ω

)

(9)

outgoing momenta p̄ interchanges the sign of
ponent according to the reflection at a surface
ince we have p̄ · r = r̄ · p we work with r̄ in

the following. Since the wavepacket is sharpl
around p ≈ k and ω ≈ wp we expand in two st
we expand the energy up to second order

f

(
p

p
, ω

)
= f

(
p

p
, ωp

)[
1+

∂ωp
f

f
(ω−ωp)+

∂ωp

2f

2f

= f

(
p

p
, ωp

)
eδ(p)(ω−ωp)+

∂ωδ
2 (ω−ωp)

2

where we rewrote the Taylor expansion as ex
leading to the energy derivative of the shift
second order term. The appearing shifts have
panded around p ≈ k to provide

δ(p) = δ(k) + (p− k) · ∂kδ

= δ(k) + (p− k) · vk∂ωk
δ +

1

k
(p− k

∂ωp
δ(p) = ∂ωk

δ(k)

up to second order. Here we used

∂k = ek∂k +
1

k
∂θ,φ = vk∂ωk

+
1

k
∂θ,φ.

In the second step we expand the scattering am

f

(
p

p
, ωp

)
= fk e

(p−k)·∂kf

f +(p−k)·∂k
(p−k)·∂k

2f

With the shifts introduced in (2) and (3) we h

∂kf

f
= vkδ − δ

and a helpful relation between the second deriv

vk∂θ,φδ = −δr − vkδ
′
r.

In the following we abbreviate δ′ = ∂ωk
δ. Now

late

p · ∂k
p · ∂kkf

f
=

(
p · ek∂k+

1

k
p · ∂θ,φ

)(
p · vkδ+

1

k
p · ∂θ,φf

f

term by term. The first one leads to

p · ek∂k(p · vkδ) = (p · ek)2Γδ + (p · vk)
2

with Γ = ∂k
2ωk. The second one

1

k
p · ∂θ,φ (p · vkδ) =

vk
k
p · (pθeθ + pφeφ)δ

+ (p · vk)p ·
(
−δ′r −

=
vk
k

(
p2 − (p · vk)

2

v2k

)
δ − p · vk

kvk
− (p · vk)p
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sed k(∂θ,φ)i(ek)j = (eθ)i(eθ)j+(eφ)i(eφ)j and
on (15) in the first step. The third term reads

(
p·∂θ,φf

kf

)
=

p·vk

kvk
p·δr−(p·vk)(p·δ′

r). (19)

problematic term is the last one. Due to (3)
l shifts have only two orbital components δr =

φδrφ and we obtain

1

k
p · ∂θ,φ

(
1

k
p · ∂θ,φf

f

)
=

−1

k

(
p2θ∂θδrθ + 2pθpφ

∂θδrφ
sin θ

+ p2φ
∂φδrφ
sin θ2

)

= −1

k

(
p2 − (p · vk)

2

v2k

)
∂θδrθ (20)

an rotate the coordinates of p-integration such

0 and can express pθ
2 = p2 − (p·vk)

2

v2
k

.

ing all four terms together we obtain

k
p · ∂kkf

f
=

vk)
2

[
δ
(
Γ− vk

k

) δ

v2k
+ δ′

]

k

k
p2δ − 2(p · vk)(p · δr)−

1

k
pθ

2∂θδrθ. (21)

e can calculate the ω− and p−integration in (9).
urpose we shift ω−ωp → ω and p−k → p. This
an exponential factor iωpt which we expand up
order as well

p = ωk + (p− k) · vk + (p− k)2
Γ

2
. (22)

r for the ω integration reads then

· δr
kvk

−iδ′p · vk+ip · δ′r−t−iδ

)
ω − σ2

t − δ′

2
ω2

}

(23)

ussian integral is readily integrated. Separating
dependence from the p-dependence we obtain

= f

(
k

k
, ωk

)
e
−iωkt− (t+iδ)2

2(σ2
t −δ′)

√
2π(σ2

t − δ′)

×
∫

d3p

(2π)3
e
ip·̃r+(p·vk)(p·c)+ (p·d)2

2(σ2
t −δ′)+bp2

.(24)

Here the abbreviations are

b = − 1

2σ2
+

vk
2k

δ − ∂θδrθ
2k

− i
Γ

2
t

c =
vk

2

[
δ′
(
1 +

δ′

σ̄2
t

)
+ δ

(
Γ

v2k
− 1

vk

)
+

∂

− δ′δr
kvkσ̄2

t

− δ′r

(
1 +

δ′

σ̄2
t

)

d = δ′r +
δr
kvk

r̃ = r̄− vkt− ivkδ + iδr − (t+ iδ)
vkδ

′ −
σ̄2
t

We see that the width of the time-dependent
comes modified by δ′. Working it out for real a
inary parts according to (2) it becomes

e
−iωkt− (t+iδ)2

2(σ2
t −δ′)

√
2π(σ2

t −δ′)
=

e
−i(ωk− ϕ

σ̄2
t
)t− (t−∆)2

2σ̄2
t

+i ∆′
2̄σ2

t√
2πσ̄2

t

+o

(
δ

σ

Besides an overall complex phase shift due to
ization we see that the time evolution is delay
the width is modified by σ̄2

t = σ2
t −ϕ′, and the

obtains a shift ϕ/σ̄2
t which establishes the result

5.
To calculate (24) we can facilitate the algebr

ing to linear orders in the shifts in the sense of (
omits the (pd)2 term in (24) and we have

∫
d3p

(2π)3
eip·̃r+(p·A·p) =

e
1
4 r̃·A−1 ·̃r

(2π)3/2
√

2|A|

with the matrix

A = bI+ vk ⊗ c.

The inverse and the determinant can be found

A−1 =
1

b
− vk ⊗ c

b(b+ vk · c)
|A| = b2(b+ c · vk)

proved by inspection. The scalar products with
be worked out somewhat tediously and with lin
in the shift according to (26) we can finally wr

Ψout = f

(
k

k
, ωk

)
1√

2π(σ2
t − ϕ′)

e
−i(ωK− ϕ

σ2
t
)t

× σ̄3

(2π)3/2
eiK·̄r− σ̄2

2 (r−∆r−vk(t−∆))2

with the modified momentum width

1

σ̄2
=

1

σ2
+

ϕθ − vkϕ

k
+ i

(
∆θ − vk∆

k
+ Γt
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r one can be separated into real and imaginary
he same way as done for the time width. The
der dispersion Γ of (22) leads to a broadening of
with increasing time as it is well known. This
the spatial wave-packet becomes modified by
imaginary parts of the scattering shifts which
effect 6. As new effects 3 and 5 we see that the
m and frequency are shifted according to

K = k− σ2(ϕr − ϕvk)

ωK = ωk − σ2(ϕr − ϕvk) · vk. (32)

he latter one appears exactly as the first-order
of the frequency in terms of the shifted mo-

is a check of internal consistency of the ex-
As an additional justification, one sees that
time appears consistently in the time of the

et and in the traveling spatial wavepacket. So
ave derived the modification of wave packets
an arbitrary dispersion wk = w(k). In the next
e will calculate these shifts for light scattering
d a model of scattering on a dielectric material.

MODEL OF LIGHT SCATTERING ON
DIELECTRIC MATERIALS

sider a dielectric material which is characterized
itudinal ǫl(ω, k) = ǫz and transverse ǫt(ω, k) =
ielectric function such that the dielectric tensor

ε = αT
φ1
αT
θ1diag{ǫx, ǫy, ǫz}αθ1αφ1

(33)

is the rotation around y-axes and φ1 the rota-
nd the z-axes out of the symmetry axes of the
We keep for general case three different ǫ for
ent directions. A scattering of electromagnetic
be described by the scattering amplitude [33]

mentum and energy-independent constants

f ∼ e · ε · ea (34)

direction of the incoming wave with wavevector
en as e = (sin θ, 0, cos θ) and the direction ea
attered wave has an opposite z-direction. We
late any further shifts by derivatives of this ex-
and will average about the Gaussian profile of
. This integration is to be performed about the
lf plane (z > 0) as possible incoming directions.
verage about the total space if we extend the
n (34) by ea → e such that finally we will cal-

δ = 〈∂ ln(e · ε · e)〉Gauß (35)

e consider the spatial shifts (3) by performing
ar derivatives (4) with (34). We consider dielec-
ions ǫl,t(ωk, k) = ǫl,t(ωk) with ωk = ck which

means that the derivatives on the dielectric fun
self vanishes

1

k
∂θ,φǫ = (e∂k − ∂k)ǫ(ωk) = c∂ωǫ

(
k

k
− e

)

Therefore only the derivatives with respect to
tion factors e in (34) matters. This would be
for dielectric functions with explicit momentu
dencies. Since k = ke we use

(
eθ∂θ +

eφ
sin θ

∂φ

)
b · e = (eθ · b)eθ + (eφ ·

= b− (b · e)e

with b = e · ε to obtain a material-depende
material-independent part

δ = −k · ε+ ε · k
k · ε · k + 2

k

k2
= δ1 + δ2.

Since we consider a Gaussian beam around the
mentum

k0 = k0(sinϑ0, 0, cosϑ0)

and a momentum spreading of σ we have t
about this Gaussian beam. In the second pa

we scale the momenta x0 = k0/
√
2σ and k̄ = k/

obtain

〈δ2〉 = 〈2k
k2

〉 = 2

∫
d3k

(2πσ2)3/2
e−

(k−k0)2

2σ2
k

k2

=
2k0√
πσ

(
1 +

1

2x0
∂x0

) ∞∫

0

dk̄

π∫

0

dθ sin θe−k̄2−x2
0

=
2k0√
πσ

(
1 +

1

2x0
∂x0

)
e−x2

0

x0

∞∫

0

dk̄

k̄
e−k̄2

sinh(2k̄

=
2k0√
πσ

(
1 +

1

2x0
∂x0

)
πe−x2

0

2x0
erfi (x0)

=
2k0

k20

(
1− D(x0)

x0

)
=

2k0

k20

(
1− o

(
1

x0

)2
)
.

Here we used the complex error
erfi(x) = −ierf(ix) and the Dawson
D(x) = exp(−x2)

∫∞
0

dy exp(y2). This sec
of the spatial shift is independent on the mat
purely real. It follows the beam direction
gives a contribution to the Goos-Hänchen effe
sively by the beam shape and no contributio
Imbert-Fedorov effect. As a check we see that
of vanishing momentum width σ → 0 appears
which means x0 → ∞ corresponding to averag
the δ(k− k0) function.

For the first and material-dependent part o
perform a partial integration

〈δ1〉 = −∂k0

∫
d3k

(2πσ2)3/2
e−

(k−k0)2

2σ2 ln(k · ε ·
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we obtain
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rstand the derivative not concerning ε accord-
6). For the logarithm we use the trick ln c =
p(−ξ)− exp(−cξ)]/ξ such that we obtain

k0e
− k2

0
2σ2

∞∫

0

dξ

ξ

∫
d3k

(2πσ2)3/2
ek·p−

1
2k·A·k− k2

0
2σ2(42)

k0/σ
2, A = bI +2ξε and b = 1/σ2. We further

ate ε(k) ≈ ε(k0) and can apply the formula
that purpose we need

1

b
I

+αT
φ1
αT
θ1diag{

−2ξǫx
2ξǫx+b

,
−2ξǫy
2ξǫy+b

,
−2ξǫz
2ξǫz+b

}αθ1αφ1

(2ξǫx + b)(2ξǫy + b)(2ξǫz + b) (43)

easily seen from (33). With the substitution
and the abbreviations

a = sinϑ0 cos θ1 cosφ1 − cosϑ0 sin θ1

b = − sinϑ0 sin θ1

c = sinϑ0 sin θ1 cosφ1 + cosϑ0 cos θ1 (44)

1〉 =
1

k0
[e1∂c +eθ1∂a+eφ1

∂bb] I(a, b, c) (45)

, c) =

∞∫

0

dz
e
−x2

0

[
za2ǫx
1+ǫxz+

zb2ǫy
1+ǫyz+

zc2ǫz
1+ǫzz

]

z
√
(1+ǫxz)(1+ǫyz)(1+ǫzz)

, (46)

ical unit vectors e1, eθ1 , eφ1
, and x0 = k0

σ
√
2
.

he prefactors (44) we see already that for sym-
oriented probes with θ1 = 0 as well as per-

r beams ϑ0 = 0 the Imbert-Fedorov shift disap-

r illustrative purpose let us discuss the case of
eous materials ǫ = ǫl = ǫt . Then we have a2 +
1 and the prefactor in (45) becomes

+ eθ1a+ eφ1
b =

k0

k0
= (sinϑ0, 0, cosϑ0) (47)

ans that Imbert-Fedorov effect is absent. Scal-
ǫ the first part becomes independent on the

δ1r〉 = −2k0

k20
x2
0

∞∫

0

dz

z(1 + z)5/2
e−x2

0
z

1+z

= −2k0

k20

[
1− D(x0)

x0

]
(48)

ctly compensates the second part (40) such that
spatial shift vanishes

〈δr〉 = 0 (49)

FIG. 1. The Goos-Hänchen shift versus width of wav
for a plasma frequency ~ωp = 5.8eV of Au and th
transverse to longitudinal relaxation times. The
relaxation time was chosen as τ = 20fs.

τ=0.1/�p

τ=0.5/�p

τ=2/�p

τ=176/�p≂20fs

200 400 600 800 10

-0.8

-0.6

-0.4

-0.2

Δ fs

200 400 600 800 10

-0.8

-0.6

-0.4

-0.2

fs]

FIG. 2. The Wigner delay time (above) and the
(below) for at width of σ = ~/30nm and various
times.

and no Goos-Hähnchen or Imbert-Fedorov shif
for homogeneous dielectric materials.

For demonstration we assume ǭ = (ǫl − 1)
Then we can directly calculated the Gaussian
Goos-Hänchen (5) and Imbert-Fedorov shifts (
(
∆GH

∆IF

)
=

〈(
sin θ cos2 θ cosφ−sin3 θ

sin θ cos2 θ sinφ

)
2(ǭ

k(sin2 θ

which shows that the Imbert-Fedorov shift van
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elay time

(55)
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ing about sinφ and the Goos-Hänchen shift be-
th the notation of (40), x = cos θ, and t = x2

√
2(ǭ− 1)√

π
e−x2

0

∞∫

0

dk̄e−k̄2

1∫

−1

dx
(1− x2)3/2ex

2x2
0

1 + (ǭ− 1)x2

2(ǭ− 1)

k0
x2
0e

−x2
0

1∫

0

dt
(1− t)3/2etx

2
0

1 + (ǭ− 1)t
. (51)

τ�0.1/�p

τ�0.5/�p

τ�1.5/�p

τ�2/�p

τ�176/�p�20fs

50 100 150 200 250 300
Δλ nm]

τ�0.1�ωp

τ�0.5�ωp

τ�1.5�ωp

τ�2�ωp

τ�176�ωp≂20fs

200 400 600 800
λ [nm]

he ratio of the reduced temporal width effect 4 vs.
h width (above) for λ = 770nm and vs. wavelength
r ∆λ = 100nm.

ose as an example a simple Drude model in the

ǫj = 1− ω2
p

ω(ω + i
τj
)

(52)

lasma frequency for Au of ~ωp = 5.8eV [34]
ent relaxation times in longitudinal j = l and
e j = t direction. The result is plotted in fig-
e assume different relaxation times in longitu-
transverse direction. It vanishes quadratically
k0/σ

√
2 and in the homogeneous limit τt = τl.

t the sign of the shift is changed.
e discuss the time shifts (2) which are calculated
sly

+ i∆ = ∂ωI(a, b, c) = 〈∂ω ln e · ǫI · e〉 = ∂ωǫ

ǫ
(53)

where the last expression is valid for homogene
rials. It shows that the geometry of the Gauss
drops out due to the logarithmic derivative o
ing amplitude (34) for homogeneous dielectric
Therefore measuring the time delay ∆ (effect 1
shrinking of the temporal width of the pulse ∂
4) one has the possibility to access the dielectric
of the material directly.

The behaviour of the time shifts an be see
derivatives of the dielectric function (52)

ϕ = Re
∂ωǫ

ǫ
=

ω2
pτ

2
(
2τ2ω2

(
ω2 − ω2

p

)
− ω2

p

)

ω (τ2ω2 + 1)
(
τ2
(
ω2 − ω2

p

)2
+ ω

≈ 2ω2
p

ω3−ωω2
p

+ω2
p

4ω4−3ω2ω2
p+ω4

p

τ2ω3
(
ω2
p−ω2

)3 +

∆ = Im
∂ωǫ

ǫ
=

ω2
pτ

3
(
ω2
p − 3ω2

)
− ω2

pτ

(τ2ω2 + 1)
(
τ2
(
ω2 − ω2

p

)2
+ ω2

≈ ω2
p

ω2
p − 3ω2

τω2
(
ω2 − ω2

p

)2 + o

(
1

τ

)3

presented in figure 2. One sees that Wigner’s d
changes the sign for

ω2
∆ =

ω2
p

3

(
ωpτ − 1

ωpτ

)

which means for τ > 1. The real part changes

ω2
ϕ =

ω2
p

2

[
1 +

√(
1 +

2

ω2
pτ

2

)]

for any τ . For large relaxation times the shifts
pole at the plasma frequency.

The shrinking of the temporal width is give
frequency derivative of the real part ∂ωϕ acc
effect 4 and is shown in figure 3. It leads to a ma
the plasma frequency for large relaxation times
it shows a zero at certain wavelength or freque

Re ∂ω

(
∂ωǫ

ǫ

)
≈ ω2

p

2ω2
p−6ω2

ω2
(
ω2−ω2

p

)2

+
20ω6−17ω4ω2

p+12ω2ω4
p−3ω6

p

ω2
pτ

2ω4
(
ω2−ω2

p

)4 .+

One sees that the real part ϕ(ω) has an extre

at ω = ωp/
√
3 corresponding to a zero at th

temporal width ∂ωϕ for large τ . We see in figu
the effect 4 of the shrinking of the temporal wid
wave packet is dependent on the wavelength a
Though is seems to be very small it should be n
it is proportional to the square of the inverse p
quency. A reduced plasma frequency leads to a
enhancement of effect 4.
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val, P. A. Horváthy, and P. M. Zhang, Transverse
in paraxial spinoptics, Journal of Optics 15, 014005
).
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öffler, N. Hermosa, A. Aiello, and J. P. Woerdman,
internal reflection of orbital angular momentum
s, Journal of Optics 15, 014012 (2013).
erano, N. Hermosa, J. P. Woerdman, and A. Aiello,
orbital angular momentum affects beam shifts in
l reflection, Phys. Rev. A 82, 023817 (2010).
in, Y. Li, J. Ren, Q. Wen, J. Zhang, Y.-F. Xiao,
ng, and Q. Gong, Spin separations of light at the
ass interface for femtosecond laser pulses, Journal
tics 15, 014006 (2013).
u, W. Zhen, M. Gao, and D. Deng, Goos-Hänchen
Imbert-Fedorov shifts for the rotating elliptical
sian beams, Results in Physics 18, 103297 (2020).
rnigotti, Goos-Hänchen and Imbert-Fedorov shifts
ry beams, Opt. Lett. 43, 1411 (2018).
ou, Y. Liu, Y. Ke, H. Luo, and S. Wen, Generation
y vortex and airy vector beams based on the mod-
n of dynamic and geometric phases, Opt. Lett. 40,
(2015).
u, J. Liu, L. Niu, and et al, Terahertz circular airy
x beams, Sci Rep 7, 3891 (2017).

[16] H.-Y. Song, Z.-X. Chen, Y.-B. Li, S.-P. Hao,
S. Zhou, S. fang Fu, and X.-Z. Wang, Large sp
of a reflected airy beam on the surface of hyper
tals, J. Opt. Soc. Am. B 40, 1240 (2023).

[17] X. Yang, T. Qu, Z. Wu, H. Li, L. Bai, L. Gong,
Characteristics of an airy beam at a dielectric
Optics & Laser Technology 156, 108607 (2022

[18] S. Grosche, A. Szameit, and M. Ornigotti, Spa
Hänchen shift in photonic graphene, Phys. R
063831 (2016).

[19] N. A. F. Zambale, J. L. B. Sagisi, and N. P.
Goos-Hänchen shifts due to graphene when
conductivity dominates, Optics Communicatio
(2019).

[20] X. Guo, L. Zhang, X. Zhang, and B. Shen, De
a reflected intense spatiotemporal optical vor
Opt. Lett. 48, 1610 (2023).

[21] S.-Y. Yang and C.-F. Li, Properties of the bary
diffraction-free light beam, Journal of Optics 1
(2013).

[22] R. F. Gragg, The total reflection of a com
group: Long-range transmission in a waveguid
can Journal of Physics 56, 1092 (1988).

[23] W. Zhen and D. Deng, Goos–Hänchen
bert–Fedorov shifts in temporally dispersive a
materials, Journal of Physics D: Applied P
255104 (2020).

[24] O. J. S. Santana and L. E. E. de Araujo, Goo
and Imbert-Federov shifts of vortex beams ne
incidence, J. Opt. Soc. Am. B 38, 300 (2021).

[25] M. Mazanov and K. Y. Bliokh, Wigner time d
Goos–Hänchen shifts of 2d quantum vortices sc
potential barriers, Journal of Physics A: Ma
and Theoretical 55, 404005 (2022).

[26] M. Ornigotti and A. Aiello, Goos–Hänchen
bert–Fedorov shifts for bounded wavepacket
Journal of Optics 15, 014004 (2013).

[27] A. Nieminen, A. Marini, and M.
Goos–Hänchen and Imbert–Fedorov shifts fo
near-zero materials, Journal of Optics 22
(2020).

[28] F. Töppel, M. Ornigotti, and A. Aiello, Goos
and Imbert–Fedorov shifts from a quantum-m



Journal Pre-proof

8

persp
[29] V. Šp
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ime-nonlocal quantum kinetic equations, Ann. of
294, 135 (2001).
orawetz, Interacting systems far from equilibrium
ntum kinetic theory (Oxford University Press, Ox-
2017).
orawetz, Nonequilibrium thermodynamics with bi-
quantum correlations, Phys. Rev. E 96, 032106

(2017), critics: P. Lipavsky, Phys. Rev. E 9
(2018) and reply: K. Morawetz, arXiv:1806.11

[33] B. J. Berne and R. Pecora, Dynamic light
(Dover, Mineola, New York, 2000).

[34] D. Langley, R. A. C. Jr., L. A. Starman, and
Optical metamaterials for photonics applic
Adaptive Coded Aperture Imaging, Non-Ima
Unconventional Imaging Sensor Systems, V
edited by D. P. Casasent, S. Rogers, J. J. Do
Karr, and V. L. Gamiz, International Society
and Photonics (SPIE, 2009) p. 74680H.



Journal Pre-proof

Sample CRediT author statement
Klau
Orig
Writ
Jo
ur

na
l P

re
-p

ro
of

s Morawetz: Conceptualization, Methodology, Software, Data curation, Writing- 
inal draft preparation, Visualization, Investigation, Supervision, Software, Validation, 
ing- Reviewing and Editing



Journal Pre-proof

Decla
 
 Th ips ☒

that 
 
 Th red ☐

as po

 
 
 

Jo
ur

na
l P

re
-p

ro
of

ration of interests

e authors declare that they have no known competing financial interests or personal relationsh
could have appeared to influence the work reported in this paper.

e authors declare the following financial interests/personal relationships which may be conside
tential competing interests:


	Second-order nonlocal shifts of scattered wave-packets: What can be measured by Goos-Hanchen and Imbert-Fedorov effects?
	CRediT authorship contribution statement


