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ABSTRACT

Wastewater treatment plants (WWTPs) are under increasing pressure to enhance resource efficiency and reduce emissions into water bodies.

The separation of urine within the catchment area may be an alternative to mitigate the need for costly expansions of central WWTPs. While

previous investigations assumed a spatially uniform implementation of urine separation across the catchment area, the present study

focuses on an adapted stochastic wastewater generation model, which allows the simulation of various wastewater streams (e.g., urine)

on a household level. This enables the non-uniform separation of urine across a catchment area. The model is part of a holistic modelling

framework to determine the influence of targeted urine separation in catchments on the operation and emissions of central WWTPs,

which will be briefly introduced. The wastewater generation model is validated through an extensive sampling and measurement series.

Results based on observed and simulated wastewater quantity and quality for a catchment area of 366 residents for two dry weather

days indicate the suitability of the model for wastewater generation and transport modelling. Based on this, four scenarios for urine separ-

ation were defined. The results indicate a potential influence of spatial distribution on the peaks of total nitrogen and total phosphorus.
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HIGHLIGHTS

• A stochastic wastewater generation model has been introduced that enables the realistic simulation of non-uniform urine separation in a

catchment.

• The stochastic wastewater generation model has been successfully adapted to German conditions.

• Different spatial distributions of urine separation in a catchment seem to affect the peaks and troughs of total nitrogen concentrations.
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GRAPHICAL ABSTRACT

INTRODUCTION

Wastewater treatment plants (WWTPs) are facing increasing challenges in improving their sustainability. These include opti-

mizing resource efficiency, enhancing treatment performance, and implementing advanced micropollutant treatment
techniques. This is being driven by the ongoing revision of the European Union’s Urban Wastewater Treatment Directive
(Council Directive 91/271/EEC), which is promoting new standards to increase circularity, creating a circular water
sector, and minimizing water body pollution, micropollutant emissions, energy consumption, and greenhouse gas emissions.

The main carbon footprint determinants of WWTPs are the demand for electrical energy and the release of methane and
nitrous oxide emissions (Parravicini et al. 2016). WWTPs in Germany account for approximately 20% of municipal electrical
energy consumption, making them one of the primary energy consumers (Haberkern et al. 2008). The dominant factor con-

tributing to this phenomenon is aeration, which plays a critical role in both the nitrification and carbon removal processes.
Nitrous oxide emissions in WWTPs predominantly stem from nitrification or denitrification processes, which are primarily
caused by an excess of nitrogen in the influent (Kampschreur et al. 2009; Law et al. 2012). In addition, micropollutants
://iwaponline.com/wst/article-pdf/89/5/1312/1381267/wst089051312.pdf
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are often insufficiently removed by biological processes in WWTPs (WHO 2012), requiring the implementation of advanced

treatment processes and therefore additional energy input.
These challenges can be resolved by expanding or upgrading existing WWTPs. However, expanding WWTPs can be highly

expensive and may not always be feasible due to local constraints. Domestic wastewater comprises various partial flows, such

as greywater, flush water, toilet paper, faecal matter, and urine. The separation of urine using urine-diverting toilets and/or
urinals within the catchment area can be an alternative to the expansion of central WWTPs. Urine contains about 80% of the
nitrogen and about 50% of the phosphorus in wastewater but contributes only 1% to the total volume flow (Larsen & Gujer
1996; Meinzinger & Oldenburg 2009). Moreover, 64% of the pharmaceuticals’ active ingredients is excreted through urine

(Lienert et al. 2007). Therefore, the higher concentration of nutrients and pharmaceutical compounds in urine, compared
to domestic wastewater, allows for a more efficient recovery and treatment and reduces nitrogen loads to the WWTP. Nitro-
gen and phosphorus can partially or completely be recovered from urine using various treatment technologies (Larsen et al.
2021). Micropollutants in urine can be removed during treatment or recovery processes, for example, by using activated
carbon (VUNA process, www.vuna.ch).

Urine separation within the catchment area changes the nutrient composition and diurnal pattern of the WWTP influent

depending on the extent and spatial distribution of separation facilities and, thus, may have a significant impact on WWTP
operation.

Several studies have shown that urine separation reduces the energy consumption of WWTPs, its emissions into water

bodies, coagulant requirements, and potentially nitrous oxide emissions (e.g., Wilsenach & van Loosdrecht 2003; Bisinella
de Faria et al. 2015; Jimenez et al. 2015). However, in these studies, the impact of urine separation was simulated by
evenly reducing the inflow loads to WWTPs, which is comparable to a spatially uniform implementation across the catch-
ment area, although partial separation is much more realistic (Jimenez et al. 2015). Only by considering the spatial

variability of urine separation, the impact on the inflow rate and loads can be investigated in their daily dynamic course.
Therefore, it is necessary to model wastewater generation, particularly urine production, at the household level for imple-

menting spatial variability. There are various methods for generating wastewater at the household level. Penn et al. (2013)
examined the effects of on-site greywater reuse and low-flush toilets on wastewater flow and composition in a sewer network.
They used resident-specific diurnal hydrographs and pollutographs for different greywater reuse scenarios. Hydrographs and
pollutographs can vary regionally, may show significant differences due to various local contextual factors such as lifestyles

(Butler et al. 1995), and are therefore not easily transferable to other countries. Rauch et al. (2003) applied a stochastic model
to simulate urine production. The approach was used to virtually investigate the storage and controlled release of urine to
reduce nitrogen peaks and manage nitrogen loads to WWTPs. Several approaches to model wastewater generation are
based on the stochastic drinking water demand model by Blokker (2010). Bailey et al. (2020) investigated the effects of

water conservation on wastewater flow and composition in a sewer network. The stochastic appliance-specific approach
based on Blokker (2010) is used for wastewater generation, allowing for the discharge from each appliance to be manipulated.
This approach was also used by Wärff et al. (2020) to investigate the potential for heat recovery from wastewater in buildings.

Hence, the stochastic approach is considered a promising and flexible method, especially in terms of transferability to other
regions. This is because local behavioural patterns can be easily taken into account, even when applied to different countries.

The study presents a wastewater generation model as part of a holistic modelling framework, its calibration and validation

process, and its application in a case study. Additionally, possible urine separation scenarios of the case study are presented.
The study aims to demonstrate the suitability of the model for wastewater production and to illustrate the impact of urine
separation, particularly spatially variable urine separation, on wastewater composition.

METHODS

The wastewater generation model is embedded in a holistic modelling framework to predict the impacts of urine separation
on WWTPs. To provide context for modelling wastewater generation and transport, the underlying comprehensive method-

ology will be briefly outlined.

Modelling framework

The modelling framework represents the entire path from wastewater generation through transport to treatment including
scenario development and evaluation (cf. Figure 1). The framework includes an adapted stochastic wastewater generation
model, the Stormwater Management Model (SWMM) developed by the United States Environmental Protection Agency
om http://iwaponline.com/wst/article-pdf/89/5/1312/1381267/wst089051312.pdf
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Figure 1 | Wastewater discharge and transport modelling (red) within the modelling framework.
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(US-EPA) and a plantwide WWTP model using Activated Sludge Model No. 3 (ASM3-BioP, Rieger et al. 2001) implemented

in SIMBA# software by ifak e. V. (Magdeburg/Germany). The ASM3-BioP was further adapted to align with German WWTP
design standards (Alex et al. 2015). The entire application is embedded in the R programming language. The wastewater gen-
eration model is implemented as an R package and can be shared on request. Flow rates and loads are assigned to individual
nodes in the SWMM, while sewer flow rate and load transport are modelled using the R interface SWMMR (Leutnant et al.
2019). WWTP simulations are performed and evaluated using SIMBA#-API (Ahnert & Hurzlmeier 2022). The sustainability
assessment of each urine separation scenario is carried out through a simplified life cycle assessment using the SAmpSONS2
software (Schütze et al. 2019). The dynamic WWTP model is utilized to analyse the operation and derive scenarios for tar-

geted urine separation (e.g., to reduce nitrogen peaks in the influent).
Wastewater generation model

The stochastic wastewater generation model applied in this study is based on a stochastic drinking water demand model
(Blokker 2010), which was further adjusted by Pieterse-Quirijns et al. (2012) to generate wastewater discharge profiles.
Bailey et al. (2020) incorporated user-specific loads into the model. Input variables for the final model include statistical infor-

mation on household size and composition (number and age of persons), personal behaviour (time of getting up, leaving
home, and returning home), water use patterns (e.g., frequency and duration of showers), and wastewater flow rates and
loads (COD: chemical oxygen demand; TN: total nitrogen; TP: total phosphorus). Most data are obtained from census

records or literature. The city of Münster provided data on household sizes and compositions within the catchment area. Stat-
istics on personal behaviour and penetration rates are taken from Blokker (2010). Water-using behaviour and use-specific
loads are obtained from Bailey et al. (2020) and Pieterse-Quirijns et al. (2012). To comply with European standards, the phos-

phorus (TP) content of dishwasher and washing machine detergents is adjusted to 90% of the limits set by the European
Regulation on Detergents (No. 648/2004 amended by Regulation No. 259/2012). The model simulates the penetration
rate, frequency, duration, flow rate, and loads (i.e., mass flow rates) of each end-use, generating wastewater flow rates and

loads on a household level in a high temporal resolution of 5 min. A detailed description of the underlying model can be
found in Blokker (2010).

For each household, a random number of inhabitants with random frequency, time, and duration of end-uses (toilet flush-
ing, washing machine, etc.) derived from specific probability distributions is simulated. Some end-uses are person-dependent

(e.g., shower), while others are household-dependent (e.g., washing machine). To realistically represent wastewater flow rates
and loads deriving from toilets, toilet usage is differentiated into urination-only and urination-and-defaecation, with the time
of defaecation determined using a probability distribution based on Heaton et al. (1992) and specific loads assigned for each

type of toilet usage (urination-only: 1.52 g COD/use, 1.49 g TN/use, 0.126 g TP/use; defaecation-only: 54.78 g COD/use,
1.29 g TN/use, 0.378 g TP/use). By further adjusting the toilet loads by removing typical urine loads, urine separation can
be effectively simulated. The model’s small spatial scale allows for its application in catchment areas of varying sizes.
://iwaponline.com/wst/article-pdf/89/5/1312/1381267/wst089051312.pdf
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Catchment area

The catchment area of the Münster-Hiltrup WWTP is in the southern part of the city of Münster and includes a population of
25,602 residents and an industrial wastewater discharge of 1,398 population equivalents (PEs), i.e., in total 27,000 PE (MUNV

NRW 2023). Most of the wastewater is directed to the Münster-Hiltrup WWTP via a separate sewer system, thus making the
catchment particularly suitable for modelling domestic wastewater discharge. The catchment area includes various pumping
stations serving as wastewater collection points.

Data collection

The model was validated through three extensive sampling and measurement series. These series were conducted to collect
water quality data (COD, TN, and TP), along with the flow rate and/or water level data, with a high temporal resolution of 2 h

over 1 week each. Time-proportional sampling was applied. Sampling and measurement series were carried out in February,
June, and October 2023 to account for annual variations in infiltration water.

Two pumping stations serving (i) 366 and (ii) 5,280 residents, respectively, and (iii) the WWTP serving 27,000 PEs are
selected for monitoring wastewater quantity and quality. Samples are taken in the pump sump (i), in the pumping station

inlet manhole (ii), and between the screen and the aerated grit chamber of the WWTP (iii), respectively. The WWTP and
pumping stations cover three magnitudes of catchment sizes (approximately 10², 10³, and 104 residents), ensuring a high
spatial resolution and thus being key locations for the sampling.

Case study and calibration

The catchment area of the Böttcherstraße pumping station (366 PEs, 0.049 km²) is selected for this simulation study. Two dry

weather days in February 2023 are simulated. Figure 2 provides an overview of the entire calibration process, starting with
input data preparation for the wastewater generation model and proceeding with the calibration of both wastewater gener-
ation and transport. The probability distribution function (PDF) parameters, such as the average shower duration or the
average shower intensity, are used for calibration.

To prepare the input of the wastewater generation model, the distributions of water consumption, as well as COD, TN, and
TP loads for each individual end-use, are matched to typical German averages by adapting average durations and loads of
end-uses (cf. Table 1). Using the average intensities and durations from Bailey et al. (2020), an end-use flow rate distribution

is obtained that closely resembles the average German drinking water demand (BDEW 2023), excluding the water demand
from small businesses and garden irrigation. This exclusion is justified because no wastewater is discharged from these
sources. Kitchen tap COD and TN loads from Bailey et al. (2020) are reduced by 50% to 3.74 and 0.175 g per use to fit
Figure 2 | Calibration procedure of wastewater generation and transport (PDF: probability distribution function).
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Table 1 | Relative flow rate and load distribution of the German average and the wastewater generation model for WC, kitchen greywater and
bathroom greywater (GW)

WCa WCb GW (kitchen)a GW (kitchen)b GW (bathroom)a GW (bathroom)b

Flow (%) 33 35 7 7 59 58

COD (%) 60 59 20 20 20 21

TN (%) 92 87 5 9 2 4

TP (%) 75 90 20 10 5 0

aBDEW (2023) and WSWU & DWA (2016).
bWastewater generation model.
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with typical German loads (WSWU & DWA 2016). Relative TP load distribution shows differences for water closet (WC),
kitchen greywater, and bathroom greywater of þ15, �10, and �5%, respectively. TP loads have been reduced by legislation
in the European Union since 2017 (EU Regulation No. 259/2012), which may have led to a shift in the contribution from

washing machines and dishwashers (kitchen and bathroom greywater). As the loads from urine and faeces remain constant,
their relative contributions increase proportionally.

The infiltration water is determined from the measured data using the overnight minimum method (DWA-M 182 2012),
resulting in a 0.199 L/s flow rate. For each simulation, random households with diurnal flow rates and load patterns are gen-

erated and assigned to their respective catchments as nodes in the SWMM. Where several households are connected to one
node, their flow rate and load patterns are aggregated and allocated to the corresponding node. The infiltration flow rate is
equally distributed among nodes.

Each simulation run consists of 500 individual simulations, allowing for the determination of a statistically robust average
flow rate and concentration, and corresponding standard deviations. The arithmetic mean was used to evaluate the mass bal-
ance, flow rate, and concentration profiles. Mismatching results in adapting the corresponding PDF input parameters.

Adjusting the PDF input parameters must consistently generate realistic end-use concentrations corresponding to values
found in relevant literature.

Model results and calibration quality are evaluated based on statistical metrics such as Nash–Sutcliffe coefficient (NS; Nash

& Sutcliffe 1970), root mean square error (RMSE), and mean absolute error (MAE). Furthermore, mass and flow balance
analyses are conducted.

Urine separation

For the simulation of urine separation, the calibrated model of the case study is used as a baseline (scenario S000). As pre-
viously described, all households in the catchment area are assigned to their respective nodes. For the urine separation
scenarios, the catchment is divided into nodes with and without households with urine separation. For each household, a

random household with diurnal flow rate and load patterns is generated. Households with urine separation are simulated
by reducing COD, TN, and TP loads from toilet usage (urination-only) to zero. The efficiency of the diverting toilets is
assumed to be 100%. The flow remains the same as the flush water is still fully discharged into the sewer system.

A total of four urine separation scenarios are investigated, with three different separation levels: 23% (S023f, S023c), 50%
(S050), and 100% (S100). Scenarios S023f and S023c differ in the spatial distribution of urine separation in the catchment
area. In S023f, the nodes and associated households selected for urine separation are located at the periphery of the catch-

ment area, whereas in S023c the households with urine separation are located close to the pumping station. The pumping
station is situated at the western end of the catchment area. Figure 3 displays the spatial distribution of urine separation in
the catchment area for various scenarios.

For each scenario, 500 simulations are conducted over a period of 9 days. The mean flow rate and concentrations of the

fourth day are used for evaluation. Diurnal concentration patterns are analysed using statistical measures such as the mini-
mum, flow-weighted arithmetic mean, and maximum. Special attention is given to the maximum value as it significantly
characterizes possible peak shaving. Since the flow rate remains constant across all scenarios, it is not further evaluated

along with the loads. The loads are calculated based on the concentration and flow rate. Therefore, any statements about con-
centrations can be applied to mass flows. As the mean value is determined on a mass basis and the flow rate remains
unchanged, no mass balance is required. The statements regarding the individual scenarios for the mean concentration
://iwaponline.com/wst/article-pdf/89/5/1312/1381267/wst089051312.pdf



Figure 3 | Scenarios of sewerage system (black) and urine separation with the spatial distribution of catchment areas with urine separation
(grey) and without urine separation (white).
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are identical to those for total loads. The evaluation of all urine separation scenarios is in comparison with the baseline scen-

ario S000.
RESULTS AND DISCUSSION

Case study

The loads calculated from flow rates and concentration data indicate lower values than the common German statistics (cf.
Table 2). This discrepancy may be due to the lack of information on unknown absenteeism of persons or to possible systema-

tic errors in the measurement process. In addition, the observed flow rates without 76.7 L/PE/d infiltration water are
significantly lower than the German 2022 average of 101.3 L/PE/d (BDEW 2023; regarding only wastewater-producing
drinking water demand, such as toilets, and disregarding the demand from small businesses and the outdoor taps, which

is typically included in German statistics). This discrepancy could be due to shifts in the underlying statistical profiles of indi-
vidual end-users or changes in water consumption patterns. It is conceivable that the current prevalence of water-saving
technologies exceeds the prevalence observed in the studies used by Blokker (2010). Furthermore, the German average

does not consider regional differences, which may be substantial. Measurement uncertainties in flow rate measurements
may also lead to the underestimation of loads, as calculated loads heavily depend on the flow rate.

The model was calibrated by reducing the total flow rates and loads while keeping the previous flow rate and load distri-
butions of end-uses. This was achieved by reducing all end-use durations by 26.4%. However, dishwashers and washing

machines have individual probabilities and flow rate patterns. Since their water consumption is relatively low, its impact
is neglected. In addition, average end-use loads of COD, TN, and TP are reduced by 8.7, 12.1, and 26.6%, respectively.

Results of the simulated and observed flow rates, concentrations, and loads on Tuesday and Wednesday in February 2023

are given in Figure 4. It is important to note that the simulation results have a higher temporal resolution than the measured
data. To enable comparisons between the simulation results and the measured data, the simulated flow rates, concentrations,
and loads are averaged to 2-h values. Statistical metrics for the 2-h averaged values are illustrated in Table 3.

Subsequent to the calibration process, the mass balance is in equilibrium and in accordance with the expected flow rates
and loads. Compared to the measured data, the average concentrations derived from the simulation differ by �1.59% (TN) to
�2.17% (COD). Simulation shows good agreement of diurnal flow rate patterns (NSE¼ 0.71) and load patterns of TN

(NSE¼ 0.80) and TP (NSE¼ 0.85). The COD concentration and load patterns are also in relatively good agreement with
NSE values of 0.48 and 0.56, respectively. Decreased NSE values are due to differences in the morning peak. The morning
COD peak is considerably overestimated by the model. There are also significant differences in the morning TN and TP
Table 2 | Average person-specific daily flow rates and loads for 2 days in February at the Böttcherstraße pumping station compared to the
German average (DWA-A 198 2022; BDEW 2023)

Flow rate (L/PE/d) COD (g/PE/d) TN (g/PE/d) TP (g/PE/d)

Observed 76.7a 109.6 11.9 1.3

German average 101.3b 120.0c 12.5c 1.8c

Relative deviation �24.3% �8.7% �4.4% �27.8%

aExcluding 47.0 L/PE/d infiltration water (calculated from 0.199 L/s and 366 PE).
bBDEW (2023) (regarding only wastewater-producing drinking water demand).
cDWA-A 198 (2022).
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Figure 4 | Simulated and observed flow rates (a), concentrations of COD (b), TN (d), and TP (f), and loads of COD (c), TN (e), and TP (g) of a
catchment area with 366 inhabitants over 2 days.
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concentration patterns. The model shows substantially lower TN and TP concentrations and a less pronounced peak in the
night and morning. However, due to low flow rates during the night, the concentration deviation has a minor effect on the

loads.

Urine separation

Figure 5 displays the flow rates, concentrations, and loads for both the baseline scenario and the urine separation scenarios.
As expected, the flow rate remains constant in all scenarios. The diurnal pattern of all concentrations and loads decreases
proportionally with the degree of separation.
://iwaponline.com/wst/article-pdf/89/5/1312/1381267/wst089051312.pdf



Table 3 | Statistical metrics for flow rate, concentrations, and loads for simulated and observed data of a catchment area with 366 inhabi-
tants over 2 days

Flow rate (L/s)

Concentration (mg/L) Loads (g/s)

COD TN TP COD TN TP

RMSE 0.11 177.19 21.99 2.37 0.156 0.010 0.001

MAE 0.09 130.68 16.44 1.93 0.108 0.008 0.001

NSE (–) 0.71 0.48 �0.51 �0.23 0.561 0.803 0.845

Deviation (%) þ0.49% �2.17%a �1.59%a �2.09%a �1.70% �1.11% �1.61%

aDeviation of mean concentration.
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Scenario evaluation is carried out in relation to the baseline scenario S000. The statistical metrics of the concentrations

of S000 and those related to S000 of the other scenarios are shown in Table 4. The deviations for all scenarios based on the
degree of separation are visualized in Figure 6. The following statements regarding the total loads are identical to those
regarding the mean concentrations, as previously stated. Similarly, the statements about the minimum, mean, and maxi-

mum concentrations are equivalent to those about the loads. Therefore, this discussion exclusively focuses on the
concentrations.

The statistical metrics show a decrease in concentrations as the degree of separation increases (cf. Table 4, Figure 6).

The separation of urine has a minimal impact on the COD concentration (�8%). However, it has the potential to
reduce mean TN concentrations by up to 76% (S100), and the mean TP concentrations are reduced by up to 57%
(S100). This refers to the typical proportion of urine loads in relation to the total amount of wastewater, as given

by WSWU & DWA (2016). Although the mean and maximum often remain very close to each other (for instance,
in S050, the average TN concentration is �37% and the maximum TN concentration is �35% when compared to
S000), larger differences emerge with the minimum (minimum TN concentration of S050 is �43% in relation to
S000). The lower minimum concentration is attributed to the constant infiltration water flow rate, which has a signifi-

cant impact during the night. With an increasing degree of separation, the impact of infiltration water becomes
disproportionately greater.

At 23% separation (S023f, S023c), the differences between the deviation of mean and maximum range from 0 to 2%. As the

degree of separation increases, the range also increases, reaching 2% (COD) to 8% (TP) at 100% separation. It appears that a
higher degree of separation results in a greater difference between the deviation of the mean and maximum concentrations
(cf. Figure 6). The decrease of the maximum deviation is less than the mean deviation.

Therefore, based on the previous assumptions, it can be concluded that the decrease in peaks is related to the overall
reduction in load and, as a result, to the level of urine separation. It should be noted that the peak diminishes to a lesser
extent as the degree of separation increases compared to the mean.

The scenarios S023f and S023c are conducted with a special focus on investigating the impact of a variable and tar-
geted implemented urine separation in the catchment area. No significant differences were found in the COD
concentrations across all statistical measures when both scenarios were compared to the baseline scenario. However,
a slight variation of þ1% at the minimum and �1% at the maximum was observed between S023c and S023f for TN con-

centrations (cf. Table 4). Similar trends were also observed for TP concentrations, with a variation of þ2% at the
minimum and �1% at the maximum. Urine separation closer to the pumping station (S023c) effectively reduces the over-
all peak compared to separation farther away (S023f). Upon closer examination of all TN concentration peaks and

troughs throughout the day in both separation scenarios, it is evident that there is a higher nocturnal peak in the case
of close separation, as shown in Figure 7. Generally, the scenario involving distant separation (S023f) exhibits higher
peaks and troughs, except for the nocturnal peak. This could be attributed to longer flow paths, resulting in variations

in flow times. Concentration peaks from remote areas may already have been homogenized along the flow path. How-
ever, these statements should be interpreted with caution as the differences are marginal, and fluctuations may also
arise due to the stochastic nature of the model. While the number of simulations (n¼ 500) aims to minimize this, it
cannot guarantee complete exclusion. Additionally, it should be noted that all statements apply solely to this catchment

area, which is notably small.
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Figure 5 | Simulated flow rates (a), concentrations of COD (b), TN (d), and TP (f), and loads of COD (c), TN (e), and TP (g) for the baseline
scenario (S000) and four urine separation scenarios (S023c, S023f, S050, and S100).

Water Science & Technology Vol 89 No 5, 1321

Downloaded from http
by guest
on 30 April 2024
CONCLUSIONS

Urine separation can help meet the challenges for WWTPs to reduce environmental impact and increase circularity and sus-
tainability. This study presents a wastewater generation model that allows the simulation of targeted spatial urine separation
within a catchment area. The underlying modelling framework has been briefly introduced.

The proposed wastewater generation model is based on a stochastic approach and was calibrated to correspond with the
wastewater flow rate and load distribution of an average German household. By further calibrating the flow rates and loads,
the model accurately reflects the general course of the observed data over 2 days, indicating its suitability to capture the
://iwaponline.com/wst/article-pdf/89/5/1312/1381267/wst089051312.pdf



Table 4 | Statistical metrics for the concentrations of the baseline scenario (S000) and the relative deviation of the corresponding statistical
metrics of the urine separation scenarios

Parameter Statistic metrics
Concentration (mg/L)

Deviation from S000 (%)

S000 S023c S023f S050 S100

COD Minimum 248.6 �5% �5% �10% �21%
Mean 866.6 �2% �2% �4% �8%
Maximum 1,265.3 �2% �2% �4% �6%

TN Minimum 52.4 �20% �21% �43% �90%
Mean 95.0 �18% �18% �37% �76%
Maximum 112.2 �17% �16% �35% �70%

TP Minimum 4.9 �17% �19% �38% �81%
Mean 10.3 �13% �13% �27% �57%
Maximum 13.7 �13% �12% �25% �49%

Figure 6 | Relative deviation of statistic metrics for COD, TN, and TP concentrations for different degrees of separation in relation to the
baseline scenario S000.

Figure 7 | TN concentration peaks and troughs resulting from a urine separation of 23% in proximity to the pumping station (S023c) and at a
larger distance from the pumping station (S023f).
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overall trends and patterns of wastewater generation and transport. However, the study also reveals that the model overes-
timates the load morning peak and underestimates TN and TP morning concentrations. There are uncertainties due to the
small size of the catchment area, which can have a notable impact on the results. These uncertainties may include factors
om http://iwaponline.com/wst/article-pdf/89/5/1312/1381267/wst089051312.pdf
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such as absenteeism during the data collection period, variations in user behaviour, or the implementation of water-saving

technologies.
In the second step, various urine separation scenarios were proposed. The degree of separation shows a proportional

reduction of the loads, with peaks showing a slightly less pronounced reduction compared to average concentrations and

loads as the degree of separation increases. In particular, night-time minima show a significantly greater reduction than
mean or maximum concentrations. This is due to the disproportionately large effect of infiltration water.

The study also examines spatially variable urine separation and shows that peaks and troughs throughout the day become
more pronounced as the separation distance from the collection point increases. An exception is noted with a concentration

peak just after midnight. The reasons for the observed patterns may be an extended flow path and consequently longer flow
times, leading to associated equalizations. The results suggest that the spatial distribution of urine separation may play a role
in diurnal concentration patterns. However, these results should be interpreted with caution as the effects presented are

minor mainly due to the size of the catchment area.
Future work will encompass larger catchment sizes, long-term simulations, and integration of the WWTP model. This will

enable the demonstration of the specific impact of targeted urine separation on the WWTP’s operation.
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