
Review Article
Medium-Chain Triglycerides (MCTs) for the Symptomatic
Treatment of Dementia-Related Diseases: A Systematic Review

Nike Meer and Tobias Fischer

FH Muenster-University of Applied Sciences, Department of Food, Nutrition, and Facilities, Corrensstraße 25,
Muenster 48149, Germany

Correspondence should be addressed to Tobias Fischer; tobias.fscher@fh-muenster.de

Received 17 November 2023; Revised 13 March 2024; Accepted 25 March 2024; Published 12 April 2024

Academic Editor: Toshikazu Suzuki

Copyright © 2024 Nike Meer and Tobias Fischer. Tis is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Pathomechanisms of dementias involve increasing damage to neuronal energy metabolism, resulting in degeneration-related
insulin resistance and glucose hypometabolism. In this case, ketone bodies can provide an alternative energy source. Supple-
mentation with medium-chain triglycerides (MCTs), which can induce ketogenesis, may alleviate brain energy defcits and
improve neuronal function. Tis review aims to determine the efectiveness of MCT as a symptomatic treatment approach. Te
systematic literature search was conducted in April 2023 following the Cochrane Handbook and PRISMA guidelines. A total of 21
studies were included, comprising eight uncontrolled trials and 13 RCTs investigating the efects of MCTon Alzheimer’s disease
(AD) and mild cognitive impairment (MCI). A substantial increase in plasma ketone levels and brain metabolic rates was
observed. Cognitive assessments showed only occasional or domain-specifc performance improvements. Te efects on
functional abilities or psychological outcomes have been inadequately studied. Besides gastrointestinal side efects, no harmful
efects were observed. However, the evidence was severely weakened by heterogeneous and poorly designed study protocols, bias,
and conficts of interest. In conclusion, the ketogenic properties of MCTs may have benefcial efects on brain metabolism in AD
and MCI but do not always result in measurable clinical improvement. Current evidence is insufcient to recommend MCT as
a comparable symptomatic treatment option.

1. Introduction

Dementia is a global problem that currently afects more
than 55 million people, with nearly ten million new cases
each year. Te global cost of dementia and its impact on
those around them, such as family caregivers, is approxi-
mately more than US$1 trillion worldwide [1, 2]. TeWorld
Health Organization (WHO) estimates that the number of
people with dementia will continue to rise, and by 2030,
there will be approximately 78 million people with dementia
worldwide [1].

Dementias include a variety of diferent clinical syn-
dromes that all involve a loss of cognitive function. Te
origins of dementias are diverse and can be divided into
proteinopathic diseases, such as Alzheimer’s disease (AD),
frontotemporal dementia, and Lewy body diseases, or brain

damage caused by underlying vascular diseases, like vascular
dementia [3]. Te most common is AD, which accounts for
60–70% of all cases. Te prevalence of dementia is higher in
women than in men over the age of 65 years [2], possibly due
to diferences in biological particularities, exposure to risk
and protective factors, longer life expectancy, etc. [4]. Te
clinical picture of the diferent forms of dementia diseases
depends on the location of the afected neurons [5]. In the
early stages, the impairments are often subtle and can be
compensated for by the person through behavioural adap-
tation. As the disease progresses, there are increasing dis-
turbances in temporal-spatial orientation, communication,
mobility, and ultimately often considerable impairments of
everyday competence, leading to complete helplessness and
even death [6, 7].Te development of dementia is infuenced
by many factors. In addition to the main factor of age,
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multiple genetic, socioeconomic, environmental, and life-
style factors, such as diet and exercise, infuence the overall
risk of the disease [8].

Te molecular pathological basis of neurodegenerative
diseases is formed by processes of degeneration of synapses,
mitochondrial dysfunction, impaired intracellular repair sys-
tems, and the accumulation of abnormal intra- and extra-
neuronal deposits known as plaques and neurofbrillary
tangles, which consist ofmisfolded and aggregated proteins [9].
Tese changes can afect the structure and function of nerve
cells, leading to impaired neuronal information transmission
but also to an impaired supply of molecules and nutrients to
synapses. Te best known are aggregates of tau proteins,
β-amyloids (Aβ), and α-synucleins, which are usually resistant
to proteolytic degradation. It should be noted that the presence
of such deposits is not an exclusive or specifc phenomenon of
neurodegenerative diseases, although they contribute signif-
cantly to the patho-neurological mechanisms in almost all of
them. Plaques are also found, albeit in limited quantities, in the
brains of most healthy ageing people [5, 10]. Although the
formation and presence of said aggregates is still considered
a major histopathological hallmark of tauopathies, ongoing
research suggests that intermediate products of deposition are
more likely to be responsible for disease pathogenesis than the
fnal aggregates themselves. Prior to their formation, soluble
oligomeric structures are formed, and studies suggest that these
play a major role in the development of neuronal dysfunction
[10, 11].Te treatment of dementia can be divided into disease-
modifying and symptomatic therapies [12]. However, there is
currently no cure available. Te causes of many of the path-
ological processes involved in disease development remain
unexplored and misunderstood, making research very difcult
[13]. A large proportion of clinical trials for new drugs are
abandoned in the early stages of testing due to signifcant side
efects [14]. In the United States, for example, before the last
two drugs (aducanumab and lecanemab) were approved by the
U.S. Food and Drug Administration (FDA) in 2021 and fnally
in January this year [6, 15], a total of 450 clinical trials
failed [13].

Due to the high prevalence and limited therapeutic
options, it is not surprising that the number of studies in-
vestigating nutritional factors in dementia is increasing [14].
Tese include a variety of mono- and multinutrient ap-
proaches that may improve symptoms through the bio-
chemical links between specifc macro- and micronutrients
and neurons. However, to date, none of these studies have
been able to provide sufcient evidence to make specifc
dietary recommendations [8]. One potential approach in-
volves the use of medium-chain triglycerides, or medium-
chain fatty acids, which are usually defned as fatty acids with
a chain length of six to ten or twelve carbon atoms. Tese
include caproic acid (C6), caprylic acid (C8), capric acid
(C10), and, under certain circumstances, lauric acid (C12)
[16, 17]. Te background to their therapeutic application is
based on fndings of considerable impairments in glucose
metabolism in the brains of patients with dementia [17]. In
Alzheimer’s disease, β-amyloids are thought to damage
mitochondrial electron transporters and enzyme complexes,
increasing the loss of free electrons and promoting the

formation of radical oxygen species (ROS), which are known
to negatively afect membrane-bound glucose transporters
and insulin receptors. In addition to the general age-related
decrease in insulin uptake across the blood-brain barrier,
this ultimately leads to the development of insulin resistance
and glucose hypometabolism, which is also known as type III
diabetes mellitus [18, 19]. What was initially thought to only
be a by-product of synaptic dysfunction is now known to be
a major driver of disease progression, as this signifcant
energy gap can lead to neuronal cell malfunction long before
clinical symptoms appear. Fortunately, this fnding allows
promising approaches to brain energy rescue strategies that
focus on alternative metabolic pathways to improve neu-
ronal energy supply and functionality in AD [20].

One alternative way to provide energy to the brain could
be through the utilization of ketone bodies to avoid dys-
function and cell death [21, 22]. Tis can be achieved by
a ketogenic dietary therapy, the administration of exogenous
ketone esters, or the use of MCTs and medium-chain fatty
acids (MCFAs) [17, 23]. Both ketones and MCFAs can cross
the blood-brain barrier in a transporter-mediated manner.
Ketone bodies of hepatic origin can be processed by ketolysis
in brain cells for energy production, but MCFAs may also
have other anaplerotic efects in addition to local keto-
genesis. Neurons show a preference for ketone body
metabolism, whereas astrocytes preferentially metabolize
MCFAs. Diferences in the metabolic efects of C8 and C10
are also evident: treatment of astrocytes with C8 primarily
stimulates ketogenesis, whereas incubation with C10 leads to
up to 50% increased glycolysis and the formation of lactate,
the preferred energy source of neurons. Tis connection is
also known as the astrocyte-neuron lactate shuttle (ANLS)
[24]. Furthermore, research has identifed other indirect
ways, in which MCFAs may benefcially modulate energy
metabolism in the brain, for example, by positively afecting
aspects of dementia-related mitochondrial dysfunction [16].
Cell lines from AD mouse models incubated with C10
showed signifcant positive efects on the mitochondrial
respiratory chain, enzyme activity, and an overall increase in
mitochondrial number. C10 can upregulate certain meta-
bolically relevant regulatory proteins, such as the peroxi-
some proliferator-activated receptors [22, 25]. By acting as
a ligand for these receptors, binding of C10 leads to in-
creased transcription of nuclear and mitochondrial genes,
increasing the total number of mitochondria and thus
allowing higher rates of cellular energy production [21]. In
addition, C10 may also increase the enzymatic activity of the
protein sirtuin 1, which also acts as a master regulator of
mitochondrial biogenesis and oxidative phosphorylation
[22, 26]. In terms of potential modulatory properties, it
should be noted that there are signifcant genetically me-
diated diferences in cellular substrate uptake and cytosolic
metabolism of both glucose and ketones between diferent
apolipoprotein E (APOE) genotypes in AD [26, 27].

Numerous studies in animal models or cell-based sys-
tems have shown positive efects of MCTs, such as anti-
infammatory and antioxidant properties, reduced amyloid
secretion, or even direct amyloid degradation through
stimulation of insulysin [15, 22–24]. Tus, based on the
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study results from in vitro and animal models and the in-
creasing number of human studies, there is promising ev-
idence for a potential procognitive efect of MCT, MCFAs,
and their metabolites on dementia. Te aim of this sys-
tematic review is to provide an overview of the current state
of research on the efects of MCTs and MCFAs on dementia
based on human trials.

2. Materials and Methods

Tis systematic review was conducted in accordance with the
guidelines of PRISMA (Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses) guidelines and used
methodological recommendations from the Cochrane
Handbook [28, 29].

2.1. Search Strategy. Te literature search was performed
from April to May 2023 on electronic bibliographic data-
bases such as PubMed/MEDLINE (NLM), Web of Science
(Clarivate Analytics), LIVIVO (ZBMED), and the Cochrane
Central Register of Controlled Clinical Trials (CENTRAL) of
the Cochrane Library (Wiley). Te search strategy was based
on a clear and careful selection of keywords and terms.
Terefore, combinations of the keywords “medium-chain
triglycerides,” “coconut,” and “dementia” were chosen for
the literature search. Te entered search strings are reported
in Supplementary Material (Supplementary Table S1). Te
search flter was set on human studies, and the languages
were restricted to English and German.Te publication date
was not limited to a specifc period.

2.2. Inclusion and Exclusion Criteria. Te inclusion and
exclusion criteria were defned according to the PICO
(Population, Intervention, Comparison, and Outcomes)
scheme with the addition of study types (Table 1) [30].

2.3. Screening. In accordance with the Cochrane Handbook
[31], the search records were exported to the literature
management program Citavi (version 6.15) and merged.
After automatic and manual screening for duplicates, the
remaining articles were screened for relevance to the re-
search topic and document type using the title and abstract.
Two reviewers (N.M. and T.F.) independently assessed the
titles and abstracts of all studies identifed in the search.
Publications not meeting the eligibility criteria (Table 1)
were eliminated.Te remaining documents were retrieved in
full and, if not accessible, were requested from the authors
using ResearchGate. A response time of three weeks was set
for full-text requests. Registered trials were checked for
publication status; unfnished or discontinued trials were
excluded. Finally, the full texts were examined in detail to
determine whether they met the defned criteria. Any dis-
crepancies were discussed between the two authors.

2.4.DataExtraction. Data were extracted in Microsoft Excel
(Microsoft 365 MSO, version 2307) according to the rec-
ommendations of the Cochrane Handbook: general

information (author, title, location, year); study design
(study type, randomization, blinding); participants (pop-
ulation, number, age, sex, drop-outs, APOE status, medi-
cation); intervention (product, dose, MCTcontent, control if
applicable); statistical analysis methods, outcomes, and re-
sults sorted by their domain; and authors’ conclusion,
limitations, and conficts of interest/funding [32].

2.5. Data Synthesis. Study results were categorized into (1)
cognitive, functional, and psychological outcomes; (2) data
on ketone body metabolism; and (3) secondary aspects of
tolerability, compliance, and safety. Interventions were
considered efective if there was a signifcant increase in
plasma ketones and signifcant within-group, or preferably
between-group, results on neuropsychological tests. In the
absence of percentage data on drop-out, sex distribution,
and medication adherence, a calculation was made. For
missing population mean values for age and baseline
cognitive characteristics, a weighted mean was calculated if
appropriate information on group size was provided.
Intervention dose data and outcome parameters were
standardized in their units of measurement where nec-
essary. Volumes (mL) of dose characteristics were con-
verted to weights (g) by their densities (coconut
oil � 0.92 g/mL [20°C] [33] and MCT oils � 0.95 g/mL
[34, 35]). If not stated by the authors, the total MCT
content and the fatty acid pattern (C8/C10) of the products
used were obtained by Internet research or estimated.
Plasma ketone body concentrations were uniformly con-
verted to mmol/L.

2.6. Quality Assessment. Due to the heterogeneity of the
study designs, diferent methods were used to assess the
quality of the studies and the potential for bias. For con-
trolled randomized trials (RCTs), the “Revised Cochrane
risk-of-bias tool for randomized trials,” in short “RoB-II,”
was used to assess the degree of bias [36]. Te domains
“efect of assignment to intervention” and “efect of adhering
to intervention” were included in the analysis. Cohort
studies were assessed using a modifed version of the
Newcastle‒Ottawa scale [37]. In addition, all included
studies were assessed for potential conficts of interest using
a classifcation into three diferent risk levels (low� no
confict of interest; moderate� sponsored by, working with
or for a company; high� additional involvement of com-
panies in outcome collection, analysis, or publication pro-
cesses).Te strength of evidence was then classifed using the
four-level classifcation system of the American Academy of
Neurology (AAN) Classifcation of Evidence framework for
therapeutic intervention studies [32].

2.7. Data Analysis. Because of the high heterogeneity of the
studies and interventions, a meta-analysis was not possible,
and a narrative synthesis was performed, concentrating on
the general characteristics of the included studies, partici-
pants, intervention type, study quality, evidence, and the
reported efects of the interventions on dementia.
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3. Results

3.1. Study Selection. Te electronic database and register
search yielded a total of 570 references after removing
duplicates. Title and abstract screening resulted in the ex-
clusion of 535 records. In addition, a total of 15 articles were
not retrieved (ongoing trial, foreign language, and poster
abstract), and the full-text screening led to a further ex-
clusion of three records. Reference list screening identifed
four additional articles, resulting in a fnal number of 21
publications included in this review (Figure 1).

3.2. Study Characteristics. Te publication period of the
included studies was between 2009 and 2022, with half of the
studies being published within the last fve years. Geo-
graphically, the majority, a total of 15 (∼70%) studies, took
place in North America, followed by (South) East Asian
countries. Only two studies (∼10%) were conducted in
Europe. Tere were eight uncontrolled intervention studies,
including three case studies, one retrospective cohort study,
one prospective open-label study, and two pre-post study
designs. All the remaining studies (n� 13; ∼60%) could be
identifed as RCTs, including two larger multicentre trials.
Four of the RCTs used a crossover design.

Te total number of study participants was 1193, of
whom approximately 58% were female (missing data in
Reger et al. [39]).Temean age ranged from 58 to 79.9 years.
Te number of participants varied widely, from n� 1 in the
case studies to n� 413 in the largest randomized
controlled trial.

Te intervention duration of trials regarding chronic
MCT consumption ranged from a minimum of three weeks
to a maximum of six months, while the case studies reported
individual cases of up to two years of use [40, 41]. Te
majority of studies (n� 13) used a dose-adaptation phase of
one to two weeks to reduce MCT-associated tolerance
problems. Only Ohnuma et al. and Juby et al. were the
running-in period preceded by the intervention period and
not part of the intervention [42, 43].

Apart from the studies of Reger et al., Rebello et al., and
the four BENEFIC (Brain Energy, Functional Imaging, and
Cognition) trials of Fortier et al. and Roy et al., which in-
cluded mild cognitive impairment (MCI), all other studies
involved people with AD. Te majority of the AD diagnoses
were based on the NINCDS-ADRDA (National Institute of
Neurological and Communicative Diseases and Stroke/
Alzheimer’s Disease and Related Disorders Association),
DSM-IV criteria, whereas MCI was predominantly defned
by the Peterson criteria. Chan et al. did not provide a detailed
description of the diagnostic procedure, but it can be as-
sumed that the diagnostic was appropriate based on the
cognitive assessment used in the study. Te same is true for
the studies by Farah et al., Maynard et al., Newport et al., and
de la Rubia Ort́ı et al., which used subjects from specialized
dementia centres.

At baseline, the Mini-Mental Status Exam (MMSE; 30
points� unrestricted cognition; 0 points� severely impaired
cognition [44]) scores of the AD population in the studies

ranged from mild to moderate severity (10.4 [45] to
a maximum of 23 points [46]). Studies based on MCI
showed higher scores and a much narrower range (27.2
[47]–27.5 points [48]). Overall, APOE genotyping was
performed in only 16 of the included studies andmostly only
in a subset of the study population. Approximately 75% of
those screened were identifed as APOE positive (APOE+)
and had at least one of the ε4 alleles in their genotype.

3.3. Interventions and Controls. Most of the included trials
included interventions based on MCTsupplements (n� 17),
including oils (n� 10), powders (n� 5), or gels (n� 1). Te
type of MCT formulation used by Ota et al. was not defned.
It was usually administered as a mixture or emulsifcation
with water or dairy products (n� 14). Ingestion was partly
with (n� 7), immediately before (n� 1), or after meals
(n� 3). Fasting was only used in single-dose interventions
[39, 49, 50]. In eight trials, the duration of intake was not
defned. Tree studies included interventions containing
coconut oil [45, 51, 52]. Only Newport et al. used a com-
bination of MCTand coconut oil [41]. Almost all controlled
study designs used organoleptically matched vegetable oil-
based supplements as a placebo (n� 11). Chan et al. chose
a water-containing control product, and de la Rubia Ort́ı and
Reger et al. compared the efects of MCTs with a nonfortifed
baseline diet or a carrier solution (cream), respectively
[39, 51, 52]. Both the content of MCT (11.7–132 g) and the
fatty acid profle (C8 7.5–100%/C10 0–40%) of the products
used varied widely. Eight studies used almost exclusively C8
supplements and oils, with intakes ranging from 20 to 42.8 g
caprylic acid per day. Te daily intake was predominantly
(n� 11) divided into two to three portions per day. An
overview of the study characteristics, interventions, and
controls is shown in the Supplementary Material (Tables S2
and S3).

3.4. Risk-of-Bias Assessment. Te risk-of-bias assessment
showed substantial design-related issues in most of the
randomized intervention studies. According to the RoB-II
assessment, the “overall risk of bias” of almost two-thirds of
the publications had to be assessed as “high risk” because of
at least one high-risk domain. In the uncontrolled studies,
a high risk of bias could already be assumed due to the lack of
a control group. In the present RCTs, the causes were mainly
found in the areas of blinding, methods of analysis to detect
intervention efects, allocation, and/or adherence to the
respective study group. A common problem in the assess-
ment of study quality was insufcient explanation or non-
transparency of the methods used by the authors. An
overview of the results of the risk-of-bias assessment for
parallel study designs is shown in Table 2, and that for
crossover studies is shown in Table 3.

3.5. Conficts of Interest. Only three trials (14%) had no
apparent conficts of interest with manufacturers of the
intervention products (see Table 4). Very often, there was
not only an involvement of paid staf and fnancial support
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but also the involvement of the companies in data collection
and analysis of the results (high risk). In addition, some
authors had various conficts of interest due to company
afliations and fnancial benefts. In a few cases, information
on patent rights was available at the time of publication, e.g.,
for the use of MCT oils in neurological diseases.

3.6. Strength of Evidence. Uncontrolled study designs were
classifed as AAN class IV. Only Henderson et al. [55], Xu
et al., and the BENEFIC trials by Roy et al. corresponded to
a class I RCT design; all others were class II/III due to too
many primary outcomes, too high drop-out rates, and/or
missing data on baseline characteristics.

3.7. Efect of Interventions

3.7.1. Ketone Bodies. Ketone body concentrations were
measured in 12/21 studies, with two diferent methods of
measurement: fasting (preprandial vs. preprandial; n� 4)
and postprandial (preprandial vs. postprandial; n� 10). All
data were derived from laboratory plasma analyses. Te

postprandial increase in ß-hydroxybutyrate (ßHB) ranged
from +105% to +1250% with measured concentrations of
0.250mmol/L to 0.902mmol/L. In studies with a control
group, a signifcant between-group efect was consistently
demonstrated (see Table 5). Te same was true for all
acetoacetate (AcAc) concentration data. An exception in
both cases was the C8- and C10-containing interventions by
Croteau et al., which showed no signifcant intra- or in-
tergroup efects. When only fasting ketones were measured,
no signifcant intra- or intergroup efect was found in any of
the studies [43, 49, 54, 55].

3.7.2. Cerebral Metabolic Rate (CMR). In 4/21 studies, ce-
rebral metabolic rates (CMRs) of ketones and glucose were
measured by positron emission tomography (PET) scans
and magnetic resonance imaging (MRI) [47, 56–58]. For the
clustered CMR of ßHB and AcAc (CMRketones) in the whole
brain, Croteau et al. and Fortier et al. reported a signifcant
increase (130–144%) from baseline in the intervention
groups. All areas of the brain analysed benefted equally
from the intervention, with signifcant results in the
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Table 2: Visualization of the RoB-II tool for parallel study designs (modifed from [53]).
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comparison between groups (p< 0.001) [56, 57]. Similarly,
Roy et al. reported mean increases of approximately 116%
and 122% in CMRAcAc across all fascicles and brain areas
studied [47]. While the C8C10 intervention of Croteau et al.
was also able to produce signifcant positive efects in the
selected areas (whole brain +180% CMRAcAc), the C8 in-
tervention product was unable to produce any improvement
in the cerebellum or parietal lobe, although CMRAcAc in the
whole brain was doubled [56]. In the follow-up study by Roy
et al., signifcant between-group efects were also found in
the dorsal frontotemporal network and in the frontal, oc-
cipital, temporal, and parietal lobes [58].

CMRglucose remained unchanged in all fascicles and
brain areas compared to those at baseline and in the
control group [48, 56, 57]. Te only exception was an 8%
increase (p � 0.039) in glucose metabolism in white brain
matter in Roy et al., which was not present in the control
group [58]. No diferences in brain volume, cortical

thickness, or cerebral blood fow were observed with the
MCT intervention. Te extent of neural connectivity also
remained unchanged in both groups compared to baseline
[56, 57].

3.7.3. Mental and Cognitive Assessments. A total of 17/21
trials used tests to assess cognition. Tere was a high degree
of heterogeneity in the choice of tests. Te MMSE was most
commonly used pre- and postintervention (10/21). Only one
trial and two case reports found signifcant improvements in
MMSE scores ([41, 46, 55]; see Table 6). According to
Henderson et al. [55], the APOE-negative intervention
group performed signifcantly worse than the placebo group
(−0.6/+0.1 points; p � 0.041).

Compared to the MMSE, the Alzheimer’s Disease As-
sessment Scale-Cognitive Subscale (ADAS-Cog; scale scores
between 0 and 70; higher score�more severe cognitive

Table 5: Plasma concentration of β-hydroxybutyrate (mmol/L) in the intervention groups.

Preintervention Postintervention Diference (%) p

β-hydroxybutyrate (mmol/L)
Preprandial vs. postprandial
CroteauC8 [56] 0.220 ± 0.180 0.570 ± 0.270 +159 0.075
CroteauC8C10 [56] 0.200± 0.150 0.460± 0.190 +130 0.021
Fortier et al. [57] 0.207± 0.133 0.543± 0.321 +162 0.001∗∗
Fortier et al. [48] 0.149± 0.134 0.401± 0.303 +169 —∗∗
Henderson et al. [54] ∼0.090∗ 0.390 +333 —∗∗
Henderson et al. [55] 0.122 ± 0.11 0.250 ± 0.142 +105 —
Ohnuma et al. [42] 0.081 ± 0.799 0.250 ± 0.206 +209 —
OtaRCT [49] 0.065± 0.059 0.471± 0.293 +625 <0.05∗∗
Roy et al. [47] 0.210± 0.136 0.572± 0.325 +172 <0.001∗∗
Xu et al. [50] 0.393± 0.234 0.902± 0.746 +130 <0.01∗∗
Regere4− [39] 0.040± 0.020 0.540± 0.320 +1250 —∗∗
Regere4+ [39] 0.080± 0.080 0.680± 0.360 +750

Preprandial vs. preprandial
Juby et al. [43] 0.190 0.220 +16 a

Henderson et al. [54] ∼0.090∗ ∼0.100∗ +11 a†

Henderson et al. [55] 0.122 ± 0.110 0.128 ± 0.100 +5 —
OtaOLE [49] 0.068 ± 0.064 0.106 ± 0.157 +56 0.69

Acetoacetate (mmol/L)
Preprandial vs. postprandial
CroteauC8 [56] 0.140 ± 0.110 0.250 ± 0.070 +79 0.17 
CroteauC8C10 [56] 0.110± 0.080 0.210± 0.100 +91 0.014
Fortier et al. [57] 0.123± 0.056 0.272± 0.141 +121 0.001∗∗
Fortier et al. [48] 0.092± 0.062 0.205± 0.136 +123 —∗∗
Ohnuma et al. [42] 0.0 5 ± 0.027 0.079 ± 0.049 +126 —
OtaRCT [49] 0.031± 0.022 0.138± 0.069 +345 <0.05∗∗
Roy et al. [47] 0.124± 0.054 0.286± 0.142 +131 <0.001∗∗
Xu et al. [50] 0.137± 0.067 0.257± 0.150 +88 <0.01∗∗

Preprandial vs. preprandial
OtaOLE [49] 0.0  ± 0.024 0.04 ± 0.040 + 0 0.66

∗Estimated from fgure. ∗∗Signifcant between-group efect; values rounded to three decimals. Nonsignifcant between-group efects are shown in bold.
RCT�randomized controlled trial; OLE� open-label extension; C8� supplement containing only caprylic acid; C8C10� supplement containing caprylic and
capric acid.
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impairment [59]) showed more positive efects (see Table 7).
Gandotra et al. reported a decrease of 4.1 points (p< 0.001)
from baseline after only four weeks, which remained stable
until week six. In the study by Xu et al., the entire in-
tervention group also showed a signifcant intragroup im-
provement (−2.47; p< 0.01), but in the subanalysis, this
could only be attributed to the APOE-negative (−2.62;
p< 0.01) and not to the APOE-positive genotypes (−0.13;
p> 0.05). Te same applied to the study by Reger et al. (−1.6;
p � 0.04). Henderson et al. [54, 55] found signifcant efects
between intervention and control groups for certain
genotypes.

Other tests, such as the Montreal Cognitive Assessment
(MoCA), Stroop, 16-item Free and Cued Recall (RL-RI-16),
verbal fuency, trail-making test (TMT), clock-drawing test
(CDT), and others, showed a similar picture with more
nonsignifcant than signifcant results or diferences between
the groups.

Of the 17 studies, 12 (∼70.5%) concluded that MCT
intake can be considered efective in achieving procognitive
alterations, although not always in all domains or subgroups
investigated or with sufcient signifcance [39, 41,
43, 45, 46, 48–50, 52, 57, 60, 62]. In contrast, 30% (n� 5)
stated that no positive efect can be assumed
[40, 42, 51, 54, 55]. Some studies have found correlations
between the concentration of ketone bodies [39, 48, 54, 57]
or their metabolic rate in the brain [47, 57] and the outcomes
of cognitive tests.

3.7.4. Functional Assessments. Regarding the functional
abilities of daily living, no signifcant efects could be found.
In the before and after comparison, Newport et al. were able
to report a signifcant increase in the activities of daily living
(ADL) score (undefned, presumably Alzheimer’s Disease
Cooperative Study-ADL Scale; ADCS-ADL) of 14 points in
one individual case [41], but all the other studies were unable
to show any intra- or intergroup efects in the Physical Self-
Maintenance Scale (PSMS), Instrumental Activities of Daily
Living (IADL), or ADCS-ADL [50, 55, 62].

3.7.5. Psychological Assessments. Only two studies included
psychological assessments. Newport et al. reported a case-
related improvement in mood and personality traits [41],
whereas Chan et al. found no statistically signifcant efect on
the Neuropsychiatric Inventory Questionnaire (NPI-Q) in
the population [51].

3.7.6. Quality of Life. Surveys to measure changes in quality
of life were only conducted by Juby et al. and Henderson
et al. [43, 55]. No changes were found in the EQ-5D-5L,
whereas the patient-reported Quality of Life in Alzheimer’s
Disease (QoL-AD) showed a signifcant improvement in
subjective quality of life for APOE-positive participants in
the intervention group (+1.5/−0.0p, p � 0.042). Te efect
was absent in the caregiver assessment and generally in the
APOE-negative genotypes [43, 55].

Table 6: Intra- and intergroup efects of the MMSE.

Study IG (pre) IG (post) IG diference p (pre-post) CG diference IG-CG
diference p IG-CG

Chan et al. [51] — — — >0.05 — — >0.05
Farah [46] case report 23 28 +5.00 a — — —
Fortier et al. [57] 27.7± 2.2 — — >0.1 — — —
Henderson et al. [54] 19.48± 4.37
ITT — — −0.206 — −0.299 +0.09 0.8397

APOE− — — −0.276 — +0.385 +0.66 0.3710
APOE+ — — −0.474 — −0.710 −0.24 0.7209

PP — — −0.261 — −0.178 +0.08 0.8925
APOE− — — −0.056 — +0.684 +0.74 0.4502
APOE+ — — −0.350 — −0.913 +0.56 0.5362

DC — — −0.136 — −0.271 +0.13 0.8275
APOE− — — −0.125 — +0.789 +0.9 0.3656
APOE+ — — −0.136 — −1.083 +0.95 0.2820

Henderson et al. [55] 20.8± 3.58
APOE− 21.2± 3.49 ∼20.6∗ −0.600 — +0.100 +0.70 0.041
APOE+ 19.8± 3.62 ∼18.8∗ −1.000 — −0.800 −0.2 0.695

Juby et al. [43]b

Group 1 23.8± 4.7 23.4± 5.5 −0.4∗ 0.05 — — —
Group 2 22.8± 6.4 20.1± 7.7 −2.7∗ — — —

Maynard and Gelblum [62] cohort
study 20.6± 3.0 20.1± 5.6 −0.480 0.5233 — — —

Maynard and Gelblum [40] case report 20.3 19 −0.640c — −1.34c +0.7 0.3735c

Newport et al. [41] case report 12 20 +8.00 — — — —
Ohnuma et al. [42] — — —
APOE− 19.1± 6.0 ∼19.17∗ ∼+0.07∗∗ >0.05 — — —
APOE+ 17.8± 4.9 ∼17.84∗ ∼+0.04∗∗ >0.05 — — —

∗Calculated from the data. ∗∗Estimated from fgure. aBayesian p values; before: signifcant deviation from norm; after: not signifcant. bResults after extension
phase 3; crossover study design with additional extension phase. cMean annual rates of decline. IG� intervention group; CG� control group; ITT� intention
to treat; PP� per protocol; DC� dosage compliant; APOE−/+�APOE positive/negative.
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3.7.7. General Blood Parameters. Eight trials measured
general blood lipids to assess the efects of MCT in-
tervention. Basal triglyceride levels remained unchanged
after the interventions [42, 43, 45, 48, 57]. Based on post-
prandial blood sampling, Croteau et al. reported an increase
in triglycerides to 1.4mmol/L after consumption (p< 0.05)
[56]. Chan et al. also reported a signifcant but undefned
increase in plasma concentrations (p � 0.01) [51]. Total
cholesterol remained largely unchanged [42, 43, 45,
48, 51, 56, 57]. Xu et al. reported a signifcant increase in total
cholesterol to 4.66mmol/l (p< 0.01) but only due to elevated
HDL cholesterol levels (1.4/1.6; p< 0.01) [50]. Fortier et al.
also showed a signifcant increase to 5.2mmol/L compared
to placebo (+0.4/−0.1; p � 0.013). LDL cholesterol always
remained unchanged in intra- and intergroup comparisons
[43, 45, 48, 51, 56].

Fasting plasma glucose [42, 43, 47, 51, 56–58, 60], insulin
levels [43, 60], kidney [42, 54], and liver parameters [42, 56]
remained unchanged with a few exceptions in aspartate
transaminase (AST; 22–24/21− 20; p � 0.03 [48]) and

alanine aminotransferase (ALAT; p � 0.027) [51]. Hen-
derson et al. reported generally no changes in laboratory or
vital parameters [54, 55].

3.7.8. Safety and Tolerability. Across all included studies,
a total of 243 people (20%) dropped out prematurely, of
whom approximately 65% were in the intervention groups
and approximately 35% were in the control groups. Ten
studies reported drop-out rates between groups ranging
from over 10% to as high as 60% in the intervention group
[40, 48, 49, 51, 54–57, 60, 62]. When the reason for dis-
continuation was reported, adverse events were the most
common, with gastrointestinal discomfort (diarrhoea,
nausea, vomiting, and/or abdominal pain) accounting for
the majority of adverse events in the intervention groups
[48, 49, 51, 54–57, 62]. Difculties in implementing the
intervention (n= 1 [45]) or explicitly reported non-
compliance [51, 54–56, 60] were rare. Gastrointestinal
discomfort and withdrawal due to adverse events occurred

Table 7: Intra- and intergroup efects of ADAS-Cog.

Study IG (pre) IG (post) IG diference p (pre-post) CG diference IG-CG diference p IG-CG
Gandotra and Kour [45] 51.3 + 14.8 47.2 + 16.3 −4.1 0.001 — — —
Henderson et al. [54]
ITT — — −0.313 — +1,227 +1.54 0.0767
APOE− — — −1.747 — +1.614 +3.36 0.0148
APOE+ — — +0.868 — +0.989 +0.12 0.9211

PP — — −0.563 — +0.956 +1.52 0.1923
APOE− — — −2.426 — +1.963 +4.39 0.0143
APOE+ — — +1.433 — +0.145 −1.29 0.4307

DC — — −1.182 — +1.076 +2.26 0.0641
APOE− — — −3.864 — +1.472 +5.33 0.0063
APOE+ — — +0.909 — +0.833 +0.08 0.9635

Henderson et al. [55]
APOE− 22.1 + 9.11 23.172∗ +1.072 — +0.311 −0.761 0.245
APOE+ — — +1.235 — +1.217 −0.018 0.987

Newport et al. [41] case report — — −6.0 — — — —
Ohnuma et al. [42] 22.4 + 13.2
APOE− 23.1 + 13.3 23.08∗ −0.02 >0.05 — — —
APOE+ 22.7 + 14.4 22.6∗ −0.10 >0.05 — — —

Rebello et al. [60]
APOE− 5 10 +5 — 0 5 —
APOE+ 18 14 −4 — −4 0 —

Reger et al. [39]
APOE− — — −1.6∗∗ 0.04 — — —
APOE+ — — +1.0∗∗ >0.05 — — —

Xu et al. [50] 22.23 + 10.80 18.77 + 8.74 −2.47 <0.01 +2.48 −4.95
APOE− 22.37 + 10.81 19.75 + 8.65 −2.62 <0.01 +2.57 −5.19 <0.01
APOE+ 20.23 + 12.69 20.10 + 12.34 −0.13 >0.5 +1.10 −1.23 >0.5

∗Calculated from the data. ∗∗Estimated from the fgure. IG� intervention group; CG� control group; ITT� intention to treat; PP� per protocol; DC� dosage
compliant; APOE−/+�APOE positive/negative.
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equally in studies with and without a gradual titration phase
to improve the tolerability of MCT. In the studies that used
methods to measure compliance, on average between 80%
and 100% of subjects were able to maintain an acceptable
level of intake, usually defned as a minimum intake of 80-
90% of the scheduled dose [42, 47, 48, 54–56, 58, 60, 62].
Reasons given for poor compliance included forgetting to
take the supplement, difculties when eating out, or im-
practicality in everyday life [42].

4. Discussion

Metabolically, the ketogenic efect of MCTs was confrmed
in AD and MCI patients, both when consumed chronically
and after a single dose, with no diference compared to the
healthy population [56]. A postprandial increase of at least
twofold and up to more than tenfold of the initial ßHB level
was observed in studies measuring ketone bodies. Plasma
levels in the control groups remained unchanged. Tis
signifcant between-group efect was also confrmed in re-
cent meta-analyses, with a mean diference between the
intervention and control groups of 0.355–0.726mmol/L
ßHB (I2 � 0%; p � 0.02) [63, 64]. However, the plasma levels
of ßHB remained below the ranges achieved with a ketogenic
diet (>1mmol/L) or administration of exogenous ketone
esters (>3mmol/L) [65–67]. When considering ketone body
levels, it is important to note that the interventions varied
widely, so the correlation between studies is very limited.

Te extent of the correlation between MCT intake and
the increase in plasma ketone body concentrations is un-
clear. While a linear dose-response relationship was initially
suggested [68], other studies in the low-dose range (10–20 g)
failed to fnd such a relationship [69]. Although a 20 g dose
of MCTs has a greater ketogenic efect than 10 g, it does not
necessarily double plasma ketones [70]. Te circumstances
of consumption are also important, as the ketogenic efect
varies whenMCTs are taken with or without a meal [71]. For
example, studies suggest that taking MCTs with carbohy-
drates may reduce the increase in ketone body concentration
[72, 73], reduce the AUC, or delay the peak plasma con-
centration [74]. Taking MCTs with a complex meal is un-
likely to afect intestinal absorption or blood MCT levels but
will slow and reduce their metabolic rate of conversion to
ketones by more than 50% [75]. Overall, a sufciently long
fast before taking MCT supplements is benefcial for ketone
body synthesis, and the longer the fast, the greater the ke-
togenic efect [76]. If a meal has already been consumed, this
efect also seems to be reproducible during the day if the
fasting duration is long enough [75]. A key point for the
metabolic efect is also the fatty acid pattern of the in-
tervention products. C8 has a signifcantly greater ketogenic
efect than C10 or C12 [70]. However, contrary to this,
Croteau et al. found no signifcant diferences in plasma
ketone curves between the C8 mono-product and the C8/
C10 product in their study population. Te authors de-
scribed the observed efect as unclear and assumed that it
could be explained by the disappearance of the ketogenicity
of C8 over a longer period, such as a month, or that it does
not occur in AD [56]. As C10 has also been suggested to play

a potentially important role in enhancing neuronal energy
metabolism, combined use could appear to be reasonable
[22]. Fillers and excipients, e.g., in powdered MCTproducts,
can have a negative efect on the ketogenic efect regardless
of the MCT composition [55].

Another aspect infuencing the ketogenic efect is ad-
ministration in emulsifed form, which can accelerate the
rise in ketone body concentration and increase the maxi-
mum achievable level [77]. Apart from the BENEFIC trial,
this only occurred in two other studies, all of which used an
emulsion with dairy products [39, 47, 48, 56–58]. However,
it is also important to note that dairy components such as
lactose can attenuate the ketogenic efect. A further critical
point in interpreting the results is that the times at which
blood samples were taken to measure plasma ketones were
often very diferent. For example, Henderson et al. were the
only ones to report that blood samples were taken one hour
after dosing and reported the lowest postprandial ketone
body concentration (0.25mmol/L [55]), whereas others took
measurements at least two hours later [48, 54, 56, 57].

Te results of the neuroimaging studies showed a clear
picture of the supportive infuence of MCT-induced ketone
body synthesis on impaired brain metabolism. Tere were
no diferences in ketone body metabolic capacity between
the diseased populations and cognitively healthy young
people [78]. Based on the confrmed strong correlation
between plasma ketones and the metabolic conversion rate
of ketones in the brain [56, 57], an increase in the brain’s
metabolic rate of approximately 3–5% could be assumed in
all studies based on the average plasma levels achieved [79].
Although a reduction in CMRglucose generally occurs in
healthy individuals on a ketogenic diet [78], it remained
predominantly unchanged in the populations studied
[47, 56–58]. A possible explanation for this is that in healthy
individuals, glucose metabolism is proportionally replaced
by ketone body metabolism, whereas, in patients with de-
mentia, only the supply gap is compensated and ketone
bodies only supplement glucose metabolism, not replace it.

Te results of the neuropsychological assessments
showed little evidence of positive efects on cross-domain
outcome parameters such as the MMSE [46, 55] and very
mixed efects in the intervention groups on the ADAS-Cog
[39, 54, 55]. In the case of the ADAS-Cog, it was striking that
the intervention group did not always show an improve-
ment, whereas the control groups almost always showed
a deterioration. Within the specifc cognitive domains,
MCT-induced improvements were observed in tests of
processing speed [48, 57], attention, episodic attention
[43, 48, 58], episodic and semantic memory [48, 52], tem-
poral orientation [52], and executive function and language
ability [48]. Te impact of interventions on daily living,
psychological development, and quality of life was examined
in only a few cases and was completely unmodifed, with the
exception of one case report with insufcient specifcation of
collection methods [41]. Several reasons for heterogeneity in
intervention efects can be considered, such as insufcient
recruitment to the study [55, 60] or even higher drop-out
rates than originally anticipated in the sample calculation
[48, 51, 57]. Subject characteristics at baseline may also have
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played a role: in isolated cases, higher initial cognitive
functionality (e.g., high MMSE score), younger age [43, 62],
female gender, and also lower disease severity [52] were
found to be positively correlated with the procognitive efect
as variables.Tis suggests that neuronal regeneration may be
better modulated when nerve damage is not too advanced
and that gender-related hormonal diferences may signif-
cantly infuence not only pathogenesis but also, presumably,
energy metabolism [80, 81].

When considering neuropsychiatric outcomes, it is
important to bear in mind that the corresponding in-
struments and data collection methods used may produce
biased results due to a lack of blinding, subjective ques-
tioning, or learning efects. A placebo efect cannot be ruled
out in dementia studies [82], especially as the blinding of
subjects was not always clearly stated in the selected studies
or was generally absent in open-label designs. Furthermore,
it must be taken into account that a statistically signifcant
improvement in a test score does not automatically translate
into a noticeable improvement for patients or family
members, and the clinical relevance of the results must be
questioned. In Alzheimer’s disease, a threshold of at least
a four-point improvement in ADAS-Cog within six months
is often used [83], which was only achieved in Gandotra et al.
and almost in the dose-compliant subgroup in Henderson
et al. [45, 54]. With regard to the particularities of the studies
concluding that MCTs are efective in achieving specifc
procognitive outcomes, despite their persistent heteroge-
neity, the following intervention characteristics can be
considered favourable to achieving efective results: chronic
use, distribution over several daily doses, preprandial in-
gestion, and use of mixed products containing C8 and C10
MCFAs in emulsifed or gel-based formulations.

Genotype has also been implicated in the efect of MCT
and other interventions on dementia. APOE-negative in-
dividuals are generally considered to be more responsive to
antidementia interventions such as intranasal insulin ther-
apy [84–86]. Possible causes include genetically determined
better functioning of mitochondrial enzymes in brain tissue
[27] and diferences in underlying insulin sensitivity [87],
which may also afect ketone body metabolism. Stronger
procognitive efects with lower plasma ßHB levels in APOE-
negative individuals also suggest that this genotypemay have
a better metabolism of ketone bodies in the brain [39, 60].
However, the results of the efect of the presented MCT
interventions on the genotypes were inhomogeneous. In
some cases, APOE-positive individuals benefted more from
the intervention [55], or no diference was found between
the genotypes [42, 43, 48, 57].

Some studies have shown correlations between plasma
ßHB levels and cognition [39, 48, 57] or brain ketone
metabolism [47]. Tis was also refected in the analysis
results of Henderson et al. who were able to show stronger
efects on ADAS-Cog in the analysis groups with higher
cumulative doses of the per-protocol and dose-compliant
population compared to the ITT, analogous to their higher
plasma levels [54]. Conversely, Ohnuma et al. and Hen-
derson et al. confrmed that the procognitive efect and the
correlation were also completely absent at insufciently

elevated plasma levels [42, 55]. Te above-mentioned cor-
relations strongly suggest that the association between ke-
togenic diets and improved cognition is primarily due to
a presumably high proportion of ketone bodies [8].

Compared with a strict ketogenic diet, which is char-
acterized by a restrictive selection of foods that are very low
in carbohydrates and high in fat and often requires regular
medical monitoring [88], a temporary but comparable ke-
togenic efect can also be achieved by adding MCTs [69, 75].
Tis is particularly benefcial given that people with de-
mentia often experience disease-related changes in food
preferences, particularly toward very sweet, carbohydrate-
rich foods [89], and eating abilities and habits often change
drastically [90]. Tese specifcities may be easier to address
in a purely supplemental approach than in a ketogenic diet.
Considering that on average, one-third of subjects took at
least 10–20% less than the expected dose and still achieved
signifcant results, intake errors or failures seem tolerable.
Te reason for practical difculties such as forgetting or
omitting dose units [42, 51, 60] could be that some products,
such as powders, needed additional preparation steps or had
to be taken in conjunction with a fxed meal pattern, which
may have made it difcult to use outside from home.

Although the data do not show a consistent positive
trend in cognitive parameters, at least no negative efect on
cognition through MCTconsumption can be demonstrated,
apart from a single case in APOE-negative subjects on the
MMSE [55].

Given the evidence for increased novo lipid synthesis
with MCT consumption and the potentially atherogenic
properties of diets high in saturated fatty acids, such as lauric
acid, the primary MCFA in coconut oil, cardiovascular risk
factors should also be considered in these types of in-
terventions [91, 92]. Considering the sporadically analysed
efects on other vital parameters, no health risk could be
detected even with chronic use of up to six months. Fur-
thermore, signifcant increases in blood lipids and liver
values as well as plasma insulin occurred in the intervention
groups, although these were often only short-term, post-
prandial increases that did not exceed clinical reference
values [93, 94]. However, there are animal studies that do
show potential concerning the efects of MCT on cardiac
safety in healthy mice [95]. Te impact of coconut oil on
cardiovascular health is still controversial, with insufcient
data on clinical relevance and some suggesting neutral or
even benefcial efects [92, 93].

Tis systematic review has some limitations, mainly due
to the high heterogeneity of the available studies. In addition
to the relatively small number of studies included, there was
a tendency for bias and conficts of interest or strong in-
dustry funding or collaboration, which may reduce the
validity of the studies. Furthermore, in addition to well-
designed RCTs, other study formats were included, such as
case studies, which can be classifed as of low quality. Te
overall approach can be justifed by the lack of studies. A
more rigorous selection of studies would have made it
difcult to reach a conclusion. Te assessment of the evi-
dence also clearly shows the shortcomings of the current
study situation, which afects the preparation of this review
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and its validity. Te heterogeneity of the available data also
made it impossible to carry out a high-quality meta-analysis,
which is why the format of a systematic review had to be
chosen.

5. Conclusions

Due to the high heterogeneity, limited study quality, and
existing conficts of interest of the currently available studies,
it is only possible to make a very limited statement about the
symptomatic efect of MCT in dementia. Based on the
available information, it can be assumed that MCT intake
can signifcantly stimulate ketogenesis and neuronal ketone
body metabolism in the brain, even at low doses, with
tolerable gastrointestinal side efects in AD and MCI pa-
tients. Tis ketogenic efect appears to correlate with neu-
ronal functionality but did not result in noticeable or
measurable cognitive gains or clinical improvements in all
cases. Overall, the current evidence is insufcient to rec-
ommend MCTs as a comparable symptomatic treatment
option. High-quality trials with standardized measurements
and interventions are urgently needed to fll this
knowledge gap.
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