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Abstract. The extended quasiparticle picture is adapted to non-Fermi systems by suggesting a Padé
approximation which interpolates between the known small scattering-rate expansion and the deviation
from the Fermi energy. The first two energy-weighted sum rules are shown to be fulfilled independent
of the interpolating function for any selfenergy. For various models of one-dimensional Fermions scatter-
ing with impurities the quality of the Padé approximation for the spectral function is demonstrated and
the reduced density matrix or momentum distribution is reproduced not possessing a jump at the Fermi
energy. Though the two-fold expansion is necessary to realize the spectral function and reduced density,
the extended quasiparticle approximation itself is sufficient for the description of transport properties due
to cancellation of divergent terms under integration. The T-matrix approximation leads to the delay time
as the time two particles spend in a correlated state. This contributes to the reduced density matrix and
to an additional part in the conductivity which is presented at zero and finite temperatures. Besides a
localization at certain impurity concentrations, the conductivity shows a maximum at small temperatures
interpreted as onset of superconducting behaviour triggered by impurities. The Tan contact reveals the
same universal behaviour as known from electron–electron scattering.

1 Introduction

One-dimensional interacting Fermions have been inves-
tigated intensively due to their unusual properties.
Examples of interacting one-dimensional systems range
from large-scale structures like crystalline ion beams
observed in high-energy storage rings [1,2] up to one-
dimensional quantum wires [3] experimentally found in
carbon nanotubes [4–7]. Also edge states in quantum
hall liquid [8–10], semiconducting nanowires [11,12],
cold atomic gases [13–15] and conducting molecules [16]
are one-dimensional quantum systems.

Due to these versatile applications, it is important to
understand the ground state and transport properties of
quantum wires. Frequently bosonization techniques in
[17,18] and out of [19] equilibrium are employed which
are based on the similar behaviour of long-distance cor-
relations of Fermi and Bose systems [20]. Exact solu-
tions are available for Luttinger [21–23], Tomonaga [24],
and Gaudin-Yang models [25] of contact interaction by
the Bethe ansatz [26,27]. The ground-state properties of
one-dimensional quantum wires have been analytically
and numerically investigated [28,29]. There the high-
density expansion [30] of the ground-state energy was
discussed in dependence on the width [31] of the wire.
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The weak coupling corresponds to the high-density
regime and the strong coupling regime to low densities
due to the peculiar density dependence of the kinetic
and interaction energy in one dimension [32].

Green functions allow to describe interacting models
beyond exactly solvable cases and in various approx-
imations [33,34]. Especially, the transition between
Tomonaga-Luttinger and Fermi liquids can be inves-
tigated [35,36]. For an overview about theoretical mod-
els, see [37–39]. With the help of the Green func-
tions transport properties of correlated systems have
been successfully described by the extended quasipar-
ticle picture which relies on small scattering rates. The
limit of small scattering rates was first introduced by
[40] for highly degenerated Fermi liquids, later used
in [41,42] for equilibrium nonideal plasmas. The same
approximation, but under the name of the generalised
Beth-Uhlenbeck approach, has been used by [43,44] in
nuclear matter studies of the correlated density or in
the kinetic equation for nonideal gases, [45]. The result-
ing quantum kinetic equation unifies the achievements
of transport in dense gases with the quantum trans-
port of dense Fermi systems [46–48]. In this kinetic
equation, the quasiparticle drift of Landau’s equation
is connected with a dissipation governed by a nonlo-
cal and non-instant scattering integral in the spirit of
Enskog corrections [49]. These corrections are expressed
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in terms of shifts in space and time which character-
ize the non-locality of the scattering process [50]. In
this way, quantum transport is possible to recast into
a quasi-classical picture. The nonequilibrium quantum
hydrodynamics resulting from this nonlocal kinetic the-
ory can be found in [48,51].

These successful perturbation approaches fail for one-
dimensional electron systems since the Fermi surface
disappears at T = 0 indicating the breakdown of single-
particle excitation turning them into collective ones
[52]. Quasiparticles are not developed at the [53] as seen
e.g. in Hubbard Hamiltonian near half filling [54]. Nev-
ertheless, such excitations can show up eventually at
the Luttinger surface where the Green functions have a
zero at zero energy [55]. Due to the absence of quasipar-
ticles, expansions are necessary beyond the quasiparti-
cle pole approximation. Unfortunately, the expansion
of small scattering rates relies on the finite behaviour
of the reduced density at the Fermi energy and fails for
non-Fermi liquids due to the divergence at the Fermi
energy. Here, we will suggest a twofold expansion as
possible solution and a Padé interpolation between both
expansions. This will reproduce the spectral function
and the reduced density or momentum distribution at
the Fermi energy.

The absence of Fermi surface is seen also in the
momentum distribution (reduced density) which shows
in one-dimensional Hubbard models [56,57], Gaudin-
Yang model [25], electron-impurity, and electron–phonon
systems [58] or Tomonaga models [59] a continuous
behaviour at the Fermi momentum controlled by the
Luttinger behaviour. This reduced density is accom-
panied by a universal momentum asymptotic of 1/p4

reported of both free and harmonically trapped atoms
for all values of the interaction strength [60]. We will
show that this continuous behaviour can be reproduced
if the extended quasiparticle approximation is accom-
panied by the regulator of the suggested Padé approx-
imation.

For transport properties as integrals over the reduced
density, we will see that contribution of the Padé
approximations related to the interpolating function
are negligible and the results of the extended quasi-
particle picture remains. In this way, the validity of the
extended quasiparticle picture is extended beyond the
originally derived perturbation of small scattering rates.

As illustration of this suggested Padé regularization,
we consider only scattering of electrons on impurities
and assume that any electron–electron interaction is
screened off. Similar models have been investigated in
second Born approximation in [58] with a screened
Debye potential. Here, we will even consider the sim-
pler case of contact interaction but will discuss the
Born and the T-matrix approximations [61]. The aim is
not to describe the system as exact as possible but to
illustrate the expansion scheme of the spectral function
and how a two-term Padé interpolation can reproduce

the spectral function and reduced density matrix. This
will repair the deficiency of the extended quasiparticle
approximation.

The exact Bethe ansatz solution shows that an
impurity is dressed up by surrounding particles and
in the strongly attractive limit, it forms a dimer
with inner Fermions in the Fermi sea [62] similar
to the highly imbalanced 1D Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) state [63,64]. In this respect, it
has been reported that quasi-one-dimensional super-
conductivity can be enhanced by disorder with screened
Coulomb interaction [65]. Various other model systems
have been found for quasi-one-dimensional supercon-
ductors [66–68]. Some synthesis and fluctuation prob-
lems are overcome by building superconductors from
inhomogeneous composites of nanofilaments [69]. We
will show the onset of superconductivity in a one-
dimensional electron system interacting with impuri-
ties at finite momentum. It will be seen further-on that
any approximation beyond Born, like e.g. the T-matrix
summation, requires the inclusion of the correlated den-
sity due to scattering delay. The latter one leads to a
correction of transport properties, e.g. the conductivity,
due to the two-particle correlations.

The outline is as follows. In the next chapter, we
briefly give the many-body scheme with the focus on
the extended quasiparticle picture and discuss its fail-
ure due to the behaviour at the Fermi energy. This leads
to the suggestion of a twofold expansion interpolated by
a Padé formula. In chapter III, this twofold expansion
is derived and the two first energy-weighted sum rules
are proven to be completed independent on the inter-
polating function. In chapter IV, the Padé expression
is applied successively to higher-order approximations
starting first with a model of constant damping pro-
ceeding to a model of impurity scattering with contact
interaction in Born and T-matrix approximation. The
influence of the bound-state poles are illustrated in the
latter approximation. Two necessary amendments are
found, the correction of energy argument of the selfen-
ergy in order to reproduce the Fermi energy and the
correlated density besides the free density. The reason
of the latter is the delay time appearing in approxima-
tions with a dynamical vertex as two-particle correla-
tion which is explained in chapter V. The Tan contact
is given and compared to other approaches showing a
universal behaviour. In chapter VI, we discuss the effect
of the delay time to the conductivity and give the finite
temperature expression. It shows a localization at cer-
tain impurity densities and an enhancement at small
temperatures as a possible onset of superconducting
behaviour. Chapter VII summarizes and the appendix
gives the Euler expansion of the arctan function and the
proof of cancellation of interpolation-function related
terms for transport. This concludes the reasoning why
the extended quasi-particle picture works also for cor-
related one-dimensional systems.
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2 Many-body scheme

2.1 Extended quasiparticle approximation

The Dyson equation for the causal propagator G(1, 2) =
−i〈T a+

1 a2〉 with time ordering T reads

G(1, 2) = G0(1, 2) + G0(1, 3)Σ(3, 4)G(4, 2) (1)

in terms of the Hartree-Fock propagator

(
i

∂

∂t1
+

∇2
1

2m

)
G0(1, 2)−ΣHF (1, 3)G0(3, 2) = δ(1 − 2)

(2)

with the time-diagonal Hartree-Fock self energy

ΣHF (1, 2) =
[
V (x1−x2)G(2, 2+)−V (x1−x2)G(1, 2)

]
×δ(t1−t2), (3)

and the correlation selfenergy Σ(1, 2). It is integrated
about double occurring indices, 1 = (�x1, t1). The inter-
action potential is V and 2+ signs an infinitesimal later
time than t2.

Since we concentrate on equilibrium, all quanti-
ties are only dependent on the difference of coordi-
nates. One Fourier transforms these difference coordi-
nates into frequency/momentum. We will denote these
transformed quantities by small letters. Nonequilibrium
expressions can be found in [48].

The real part of the selfenergy is the Hilbert trans-
form

σ(ω, q) = Re σR(ω, q) =
∫

dω̄

2π

γ(q, ω̄)
ω − ω̄

(4)

of the selfenergy spectral function

γ = σ> + σ< = i(σR − σA) = −2Im σR. (5)

Both specifying the retarded selfenergy

σR(ω, k) = σ(ω, k) − i

2
γ(ω, k) =

∫
dω̄

2π

γ(ω̄, k)
ω − ω̄ + iη

.

(6)

The retarded propagator we obtain from (1) by Lan-
greth/Wilkins [70] rules leading to the same form of
equation which are easily solved in equilibrium as

gR(ω, k) =
1

ω − ε0k − σR(ω, k)
(7)

where we abbreviate in the following

ε0
k = εk + σHF

k . (8)

The spectral function follows

a(ω, k) = g> ± g< = i(gR − gA)

=
γ(ω, k)

[ω − ε0k − σ(ω, k)]2 + γ(ω,k)2

4

(9)

for Bose/Fermi particles. The poles of (9) at

εk = ε0
k + σ(εk, k) (10)

describe the quasiparticle excitations by the selfconsis-
tent energy εk and γ represents the quasiparticle damp-
ing. For question concerning the convergence of differ-
ent many body expansions see [71].

Within the extended quasiparticle picture, we expand
the spectral and correlation functions with respect to
the order of damping

aEQP(ω, k) =
2πδ(ω−εk)

1− ∂σ(ω,k)
∂ω

nεk
+γ(ω, k)

℘′

ω−εk
+o(γ2)

(11)

and correspondingly

g<(ω, k) =
2πδ(ω−εk)

1− ∂σ(ω,k)
∂ω

nεk
+σ<(ω, k)

℘′

ω−εk
+o(γ2)

(12)

with the derived principal value ℘′

ω = −∂ω
℘
ω and the

equilibrium distribution function nω, i.e. the Fermi- or
Bosefunction respectively. The form (12) was presented
with respect to small damping (scattering rate) expan-
sion and with quasiparticle energies under the name
of extended quasiparticle approximation in nonequilib-
rium [72,73] and used for transport in impurity systems
[74,75]. The nonlocal kinetic theory finally is based on
this expansion [46–48].

If we integrate (12) over the energy ω we get the con-
nection between the reduced density matrix ρ (momen-
tum distribution) and the free (quasiparticle) distribu-
tion nεk

as

ρ(k) = nεk
+

∫
dω

2π

℘′

ω−εk

[
σ<(ω, k) − γ(ω, k)nεk

]

= nεk
+

∫
dω

2π

℘′

ω−εk
γ(ω, k) [nω − nεk

] . (13)

The quasiparticle distribution nεk
is to be taken at the

pole ω = εk of the spectral function (10) and the sec-
ond line of (13) is valid in equilibrium where we have
σ<(ω, k) = nωγ(ω, k).

For Fermions in the ground state, nε = Θ(εF − ε),
observing that

nω−nε = Θ(ε−εF )Θ(εF − ω)−Θ(εF −ε)Θ(ω−εF )
(14)
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we can further rewrite (13) into

ρ(k) = Θ(εF − εk) + Θ(εk−εF )

εF∫
−∞

dω

2π

℘′

ω−εk
γ(ω, k)

−Θ(εF −εk)

∞∫
εF

dω

2π

℘′

ω−εk
γ(ω, k). (15)

This shows that if we approach the Fermi energy from
above εk = εF +0, we have the value of the second term
in (15)

z+ =

0∫
−∞

dω

2π

℘′

ω
γ(ω + εF , kF ) (16)

and approaching from below εk = εF − 0 the step func-
tion is reduced by a factor given by the third term in
(15)

z− = 1 −
∞∫
0

dω

2π

℘′

ω
γ(ω + εF , kF ). (17)

Together one sees a jump at the Fermi energy of

z− − z+ = 1 −
∞∫

−∞

dω

2π

℘′

ω
γ(ω + εF , kF )

= 1 + ∂ωσ(ω, kF )|ω=εF
(18)

i.e. just the wave-function renormalization as the factor
of the pole in (11). This typical Fermi-liquid behaviour
is present as long as the imaginary part of selfenergy,
the damping γ of the quasiparticles, vanishes at the
Fermi surface

lim
ω→0

γ(ω + εF , kF ) = 0 (19)

in order to render (16) and (17) finite as necessary con-
dition. If this requirement is not fulfilled then the inte-
grals diverge and the perturbation theory breaks down.
This we explore in the following section.

2.2 Problems with the extended quasiparticle
approximation for non-Fermi liquids

2.2.1 Model of constant quasiparticle damping

The problem of the perturbation expansion and result-
ing extended quasiparticle picture is best understood by
a model of constant quasiparticle damping γ(ω, k) = γ
and consequently σ = 0 and εk = εk due to (4). The
exact reduced density matrix reads

Fig. 1 The reduced density matrix (20) (thick) together
with the extended quasiparticle picture (dashed) and the
Euler expansion (23) (dotted) and the Padé interpolation
(24) (thin red line) visibly not distinguishable from the exact
reduced density matrix

ρ(k) =

∞∫
−∞

dω

2π
a(ω, k)nω =

εF∫
−∞

dω

2π

γ

(ω − εk)2 + γ2

4

=
1
2

+
1
π

arctan
εF − εk

γ/2
. (20)

The extended quasiparticle approximation as the expan-
sion with respect to γ of (15) would be

ρ(k) = Θ(εF − εk) − γ
℘

εF − εk
(21)

and shows a divergence at the Fermi energy. This puz-
zling failure can be seen from the exact expression (20).
The arctan has a cut such that the expansion near the
Fermi energy, which means at small values of εF − ε, is
different from the expansion of small damping γ,

arctan(x) =
{

x + o(x2)
π
2 sig(x) − 1

x + o( 1
x2 ) (22)

which explains why the expansion diverges at x =
2(εF − εk)/γ → 0, seen in Fig. 1.

A somewhat better expansion which does not diverge
at the Fermi energy was found by Euler in 1755, see
appendix A,

arctan(x) =
{ x

1+x2 + o(x2)
π
2 sig(x) − x

1+x2 + o( 1
x2 ) (23)

which does not diverge at x = 0 but remains discontin-
uous as seen in Fig. 1.

This problem of the cut cannot be circumvented. A
solution could be to use the Euler-expansion (23) and
to interpolate between both expansions

arctan(x) =
x

1+x2
f(x)

+
[
π

2
sig(x)− x

1+x2

]
[1−f(x)] (24)
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with a Padé function f(x) approaching 1 for small x
and 0 for large x. We choose here f(x) = 1/(1 + x2)2
which gives an excellent agreement with the exact result
as seen in Fig. 1. Using Θ(x) = [1+ sig(x)]/2, the Padé
interpolation (24) translates into the reduced density
matrix for (20)

ρPade(k) =
(

1
2

+
1
π

x

1+x2

)
f(x)

+
(
Θ(x)− 1

π

x

1+x2

)
[1−f(x)] (25)

with x = 2(εF − εk)/γ.

3 Padé approximation for the spectral
function

3.1 Twofold expansion of spectral function

The obviously working idea of Padé approximation of
the last chapter we derive now by a systematic expan-
sion of the spectral function. For this purpose, we
observe that the Euler formula (23) is obtained if we
replace formally the standard Taylor expansion by a
finite value form

g(x) ≈ g(0) + g′(0)x −→ g(x) ≈ g(0) + g′(x)x
(26)

with g(x) = arctan(x).
In the spectral function (9), we have now two expan-

sions, one with respect to small γ and one with respect
to deviations from the Fermi level εk − εF with εk the
quasiparticle energy as solution of (10). Both expan-
sions have to be interpolated according to (24) due to
the cut. We translate now this expansion for (20) into
an expansion for the spectral function in such a way to
reproduce (24). Applying the rule (26) for both expan-
sions, γ and εk − εF , we suggest

a(ω, k) ≈ aPade(ω, k) = af(ω, k) f(x)+a1−f(ω, k) [1−f(x)]

(27)

with x = 2(εF − εk)/γ(εF , k). The small scattering-
rate expansion of the standard extended quasiparticle
approximation (11) is denoted as

a1−f(ω, k) = 2πδ[ω−εk−σ(ω)]

−γ(ω, k)∂ω
ω−εk

(ω−εk)2+ γ2(εk,k)
4

.

(28)

Here, we have extended the last term by the damping
according to (26). The additional part in (27)

af(ω, k) =
γ(εF , k)

(ω − εF )2+ γ2(εF ,k)
4

−(εk−εF )∂ω
γ(εF , k)

(ω − εF )2+ γ2(εF ,k)
4

(29)

describes now the expansion with respect to the devia-
tion from the Fermi energy. The subtle difference has to
be noted in the pre-factor of the second term being the
deviation of the Hartree-Fock energy εk − εF from the
Fermi energy and not the quasiparticle energy εk − εF .
This is not visible from the constant model so far where
both expressions are identical. That this extension is
correct we will convince ourselves now by various sum
rules and the comparison with the reduced density (25)
for successively more complicated models in chapter IV.

3.2 Reduced density matrix

First, it is instructive to see how the reduced density
matrix (13) appears from the Padé approximation (27).
One has as exact spectral expression

ρ(k)=

∞∫
−∞

dω

2π
a(ω, k)nω =

εF∫
−∞

dω

2π
a(ω, k). (30)

The integral over the δ-function as first part in (28)
reads

0∫

−∞
dω̄δ[ω̄+εF −εk−σ(ω̄+εF )] =

0∫

−∞
dω̄

δ(ω̄−ε̄k)

1−∂ω̄σ

≈Θ(εF − εk)

[
1+

∫
dω

2π
γ(ω, k)∂ω

ω−εk

(ω−εk)2 + γ2(εk,k)
4

]

(31)

where we used (4). The approximation includes the
expansion of the denominator in accordance with first-
order damping and the subsequent extension of the
principal value by the damping according to (26). This
combines now with the second part of (28) to yield

ρ1−f(k) =

εF∫
−∞

dω

2π
a1−f(ω, k)=Θ(εF − εk)

+
∫

dω

2π
γ(ω, k) [Θ(εF −εk)−Θ(εF −ω)] ∂ω b̃(ω, k)

(32)
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where the last line can be rewritten with the help of
(14)

⎛
⎝Θ(εF −εk)

∞∫
εF

dω

2π
−Θ(εk−εF )

εF∫
−∞

dω

2π

⎞
⎠γ(ω, k)∂ω b̃(ω, k)

(33)

with the abbreviation

b̃(ω, k) =
ω−εk

(ω−εk)2+ γ2(εk,k)
4

. (34)

For the additional part (29), we can perform the fre-
quency integral to get

ρf (k) =

εF∫

−∞

dω

2π
af (ω, k)

=

⎡
⎣ 1

π
arctan

ω − εF

γ(εF )
− (εk − εF )

2π

γ(εk)

(ω − εF )2 +
γ(εF )2

4

⎤
⎦

ω=εF

−∞
(35)

where the above and below integration limits have to
be inserted depending on the damping which might be
zero.

As an intermediate check, adding both terms (32)
and (35) yields exactly (25) with the Padé approxima-
tion (24) observing that here in this model we have
γ(ω, k) = const and σ = 0 and consequently εk = εk.

The form of Padé approximation suggested in (27)
has a general validity for more refined models, e.g. also
for electron–electron scattering since it relates to any
selfenergy. As illustration we restrict to impurity mod-
els in the next chapters. To convince ourselves about
the larger validity, we first proof that the sum rules are
completed independent of the used models.

3.3 Sum rules

We check the frequency sum rule valid for any model
of the selfenergy. We can perform the trivial frequency
integrals directly analogously to (32) and (35) but with
the upper integration limit up to infinity to obtain

∫
dω

2π
a1−f(ω, k) =

∫
dω

2π
af (ω, k) = 1 (36)

which means
∫

dω

2π
aPade(ω, k) = [1 − f(x)] + f(x) = 1 (37)

is completed independent of the interpolation function
f(x) where we abbreviated x = 2(εF −εk)/γ(εF , k).

Even the first energy-weighted sum rule is also ful-
filled which already the extended quasiparticle approx-
imation does [48]. To see this we consider the integrals

over (28) and (29) separately. Analogously to (32) we
get with abbreviation (34)

∫
dω

2π
ωa1−f(ω, k) = εk+

∫
dω

2π
[εk−ω] γ(ω, k) ∂ω b̃(ω, k)

≈ εk +
∫

dω

2π
(εk − ω)γ(ω, k)∂ω

1
ω−εk

+ o(γ3)

= εk +
∫

dω̄

2π

γ(ω, k)
ω̄ −εk

= εk − σ(εk). (38)

The integral over (29) reads

∫
dω

2π
ωaf(ω, k)

= εF −
∫

dω

2π
ω(εk−εF )∂ω

γ(εF , k)

(ω−εF )2 + γ2(εF .k)
4

= εF +
∫

dω

2π
(εk−εF )

γ(εF , k)

(ω−εF )2 + γ2(εF ,k)
4

= εk.

(39)

Adding both parts we obtain the correct first energy-
weighted sum rule

∫
dω

2π
ωaPade(ω, k)=(εk−σ)(1 − f(x))+εkf(x)=εk.

(40)

It is remarkable that both sum rules are fulfilled for any
interpolating function f [2(εF − εk)/γ(εF , k)] and any
model for the selfenergy. This suggests already that for
transport, i.e. integrated forms of the reduced density,
the extended quasiparticle term ρ1−f might be suffi-
cient which we will proof indeed in appendix B which
is valid for any approximation of self energy. Therefore
the Padé approximation presented here is also valid for
electron–electron scattering though only impurity scat-
tering examples are chose in the following for illustra-
tion.

4 Examples of application

Here, we will compare the reduced density matrix from
the integral over the spectral function (30) with the
analytical Padé approximations (27)–(29). This will
be illustrated on two different many-body models, the
Born and T-matrix approximation. For further models,
see e.g. [76].

4.1 Impurity scattering in Born approximation

4.1.1 Integrated spectral function

We will now test the Padé interpolation (27)–(29) with
an exactly integrable model of frequency-dependent
selfenergy. In Born approximation, the scattering of

123



Eur. Phys. J. B (2023) 96 :95 Page 7 of 17 95

particles with mass m on impurities of density ni inter-
acting by contact interaction Vq = V0 the imaginary
part of selfenergy or quasiparticle damping (5) reads

γ(ω) = nis

∫
dq

2π�
V 2

q 2πδ

(
ω − (k + q)2

2m

)

= g
Θ(ω)√

ω
(41)

with the interaction constants

g =
sniV

2
0 4m2

�k3
F

=
ni

nF

4s2

π
b

b =
�

2

k2
F a2

B

= r2
s

s4

π2
. (42)

In the following we understand all energies, ω, γ, σ etc,
in units of Fermi energy and the momenta k in units of
Fermi momentum given by the free-particle density nF

as kF = nF �π/s where we denote the spin-degeneracy
by s. The interaction strength we express in terms of
a Bohr-radius-equivalent V0 = �

2/maB which allows
to discuss charged and neutral impurities on the same
footing. The Bruckner parameter rs is the ratio of inter-
particle distance d = 1/ns to this Bohr radius rs =
d/aB .

In Born approximation, we have only a dependence
on the single parameter g. In T-matrix approximation
presented in the next chapter we will see the depen-
dence on both parameters g and b independently, i.e.
the interaction strength and the impurity density.

The corresponding real part of self-energy reads
according to (4)

σ(ω) = −g
Θ(−ω)
2
√

−ω
(43)

as it was used in Eq. 30 of [58] with Fermi liquid param-
eters. The spectral function (9) for this Born approx-
imation can then be written with (41) and (43) intro-
ducing in (7)

a(ω) =

⎧⎪⎨
⎪⎩

g√
ω

(ω−k2)2+ g2
4ω

ω > 0

2πδ(ω − k2 + g
2
√−ω

) = 2π δ(ω+q2
0)

2q0+
g

2q20

ω < 0

(44)

where q0 is the real solution of

q2
0 + k2 − g

2q0
= 0 (45)

and describes a sharp bound-state pole at negative
energies due to vanishing damping. The selfenergy (43)
results into the quasiparticle energy

εk =
{

k2 ω > 0
−q2

0 ω < 0 (46)

Fig. 2 The spectral function (9) in Born approximation
(44). The maxima at the quasiparticle energy (46) are indi-
cated in the ω−k area as green line. The sharp bound states
at negative energy are artificially broadened to make them
visible

Fig. 3 The frequency sum rule (37) (above) and the
energy-weighted sum rule (40) (below) for the impurity scat-
tering model in Born approximation (44) for two different
impurity couplings. The red area indicates the contribution
of the bound-state pole (45) at negative frequencies

and are the maxima of the spectral function as seen in
Fig. 2. They follow the quasiparticle ω = k2 line but
with a finite damping. In contrast, the negative bound-
state poles at ω = −q2

0 are sharp.
The sum rules (37) and (40) are illustrated in Fig. 3.

The substantial contribution of the bound-state pole to
complete the sum rules is visible.

The reduced density matrix (30) can be obtained ana-
lytically though the integral about positive frequencies
is somewhat lengthy. In Fig. 4, we plot the reduced
density from spectral function (30) for two different
coupling constants and illustrate the influence of the
bound-state pole at negative frequencies. Its contribu-
tion is quite remarkable.
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Fig. 4 The reduced density matrix from the integral (30)
for the impurity scattering model in Born approximation
(44) for two different impurity couplings. The red area indi-
cates the contribution of the bound-state pole at negative
frequencies

4.1.2 Padé approximation

The Padé approximation (32) reads now for the impu-
rity model (43) and (41)

ρ1−f(k) = Θ(1 − k2)+

− g

2π

⎛
⎝Θ(1−k2)

∞∫
1

−Θ(k2−1)

1∫
0

⎞
⎠dq

q
∂q

q2−k2

(q2−k2)2+ g2

4q

(47)

with an elementary integral. The second part (35)
becomes

ρf(k) =
1

1 + g
4q3

0

+
1
π

arctan
2
g

− (k2 − 1)g
2π

[
1

(1 − k2)2 + g2

4

− 1

(k2)2 + g2

4

]

(48)

where we had to break the integration over frequency
into parts larger and smaller zero whereby the latter
one leads to the bound-state pole contribution.

In Fig. 5, we can see the reduced density matrix
from (44) together with the Padé approximation (27).
Though the contributing parts (47) and (48) are devi-
ating strongly out of the area of their expansion range,
the Padé-weighted form shows a good approximation
for different impurity couplings. Basically, the role of
the additional ρF is to cure the jump of ρ1−f at the
Fermi energy.

4.2 Impurity scattering in ladder approximation

4.2.1 Integrated spectral function

Next, we sum the ladder diagrams which means to solve
the equation for the retarded T -matrix [61]

TR(ω) = V + V

∫
dk

2π�

TR(ω)
ω − k2

2m + i0

=
�

2

maB

[
1 +

√
b

(
Θ(−ω)√

−ω
+ i

Θ(ω)√
ω

)]−1

(49)

Fig. 5 The reduced density matrix by integration of the
spectral function (30) in Born approximation (44) together
with its Padé approximation and the contributing parts (47)
and (48) for two different impurity couplings

with b of (42). The correlation part of the selfenergy
simplifies from two-particle scattering towards impurity
scattering used here

σ<(ω, k) = s
∑
p,q

|T R(ω+εi
p, k, p)|22πδ(ω+εi

p−εk+q−εi
p−q)

×nk+qn
i
p−q(1 − ni

p)

= nis
∑

q

|T R(ω)|22πδ(ω + εi
p − εq)nq

=
g√

ω + b√
ω

Θ(ω)Θ(εF − ω) (50)

and σ> is obtained by interchanging n ↔ 1 − n. The
resulting imaginary (5) and real (4) parts of the selfen-
ergy read

γ(ω) = σ> + Σ< = i(σR − ΣA) =
g√

ω + b√
ω

Θ(ω)

σ(ω) = −g(
√

b − Θ(−ω)
√

−ω)
2(b + ω)

(51)

and compared to the Born approximation (41) and (43)
they deviate by the parameter b given in (42). The
expressions for Born and noncrossing approximations
can be found in [77].

The spectral function (9) is plotted in Fig. 6. One
sees that the bound-state pole vanishes at a certain
momentum k0 and resolves into an additional peak in
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Fig. 6 The spectral function (9) in T-matrix approxima-
tion (51). The maxima/minima at the quasiparticle energy
(46) are indicated as thick line in the ω − k area and their
corresponding imaginary parts as dotted line. The zero of
the quasiparticle dispersion (53) is plotted as dashed line.
The sharp bound states at negative energy are artificially
broadened

the positive energy spectrum. This point can be found
considering the quasiparticle dispersion. For ω > 0, we
have two damped (γ 	= 0) solutions by

ω − εk − σ(ω) = 0 (52)

as

(εk)1,2 =
1
2
(k2 − b ±

√
(k2 + b)2 − 2g

√
b). (53)

For ω < 0 we have the bound-state pole ε = −q2
0 as

solution of

q3
0 +

√
bq2

0 + k2q0 + k2
√

b − g

2
= 0. (54)

It is easy to see that possible extreme points of this
polynomial are always at negative q0. Since the polyno-
mial increases with increasing q0, we have only a real
positive solution as a crossing of the polynomial with
the q0-axes if the value of the polynomial at q0 = 0 is
negative which translates into

k2 < k2
0 =

g

2
√

b
= rs

ni

nF

2s3

π2
(55)

which determines the critical k0 above which the bound-
state pole vanishes and resolves into the positive dis-
persion. This value coincides with the value where the
quasiparticle energy ε of (53) crosses zero as illustrated
in Fig. 7.

This turn-over of the bound-state pole from nega-
tive sharp values to positive damped values is accom-
panied by a sharp additional excitation as seen in Fig. 6.
Such a localization in momentum space is typically
for the onset of superconductivity as Bose conden-
sation of pairs. One, therefore, suspects that around
the momenta (55) one might have superconducting
behaviour for a 1D wire interacting solely with impuri-
ties. We will find this interpretation supported by the

Fig. 7 The solution of dispersion (53) (dashed) together
with the maximum of the spectral function (solid) and the
negative bound-state pole (thick) for three different param-
eter sets

temperature dependence of the conductivity in chap-
ter 6. Since this appears here with a finite momentum
off the Fermi momentum we might have the situation
similar to the FFLO state. Of course, any electron–
electron scattering will probably smooth out this effect.

The quasiparticle dispersion (53) has only real solu-
tions as long as

k2 > k2
c =

√
2g

√
b − b. (56)

One sees in Fig. 7 that as soon as the most left point
of this quasiparticle dispersion is turning from negative
to positive values which is at k2 = b, the spectral func-
tion develops two maxima which can be seen in the top
panel of Fig. 7. For higher momenta, the quasiparticle
dispersion and the points of maxima coincide. We have
no minimal value of quasiparticle dispersion if according
to (56) 2g < b3/2 which means as long as the impurity

123



95 Page 10 of 17 Eur. Phys. J. B (2023) 96 :95

Fig. 8 The frequency sum rule for the impurity scatter-
ing model in T-matrix approximation for different impurity
couplings. The red area indicates the contribution of the
bound-state pole (54) at negative frequencies

Fig. 9 The reduced density matrix (30) for the impurity
scattering model in T-matrix approximation for two differ-
ent impurity couplings corresponding to Fig. 8. The red area
indicates the contribution of the bound-state pole at nega-
tive frequencies

density does not exceed

ni <
1

8aB
(57)

which case is plotted in the bottom panel of Fig. 7.
It is quite remarkable that this limit does not depend
on the density of electrons but only on the strength of
interaction.

As long as we have an impurity concentration higher
than (57) the appearance of quasiparticle poles only
above a finite momentum (energy) describes an energy
gap. The same behaviour has been found as localized
states in a pseudogap [78]. We will see indeed in chap-
ter 6 that this leads to a minimum in the conductivity.

To complete the discussion, we illustrate again the
importance of the bound-state pole to the sum rule (37)
in Fig. 8. The corresponding reduced density matrix
(30) are plotted in Fig. 9 which again illuminates the
influence of the bound-state pole at negative frequen-
cies. Compared to the Born approximation in Figs. 3
and 4, the second parameter b of (42) creates different
shapes of the momentum dependence.

4.2.2 Padé approximation

The Padé approximation (32) reads now for the impu-
rity model in T-matrix approximation (51)

ρ1−f = Θ(1 − k2)

−

⎛
⎝Θ(1−k2)

∞∫
1

−Θ(k2−1)

1∫
0

⎞
⎠dq

2π

γ(q2)∂q
q2−εk

(q2−εk)2+ γ(εk)2

4

(58)

with an elementary integral due to (51). The second
part (35) becomes

ρf =
1

1 + g

4q0(
√

b+q0)2

+
1
π

arctan
2
γ

− (k2 − 1)
2π

[
γ

(1 − εk)2 + γ2

4

− γ

ε2
k + γ2

4

]

(59)

where γ = γ(εF ) and all energies are in terms of εF . We
had to break the integration over frequency again into
parts larger and smaller zero where the latter leads to
the bound-state pole contribution as the first part in
ρf .

If we compare this Padé approximation with the
reduced density matrix from the spectral function (30)
in Fig. 10 (above) we see a strong deviation. It is
instructive to reveal the missing parts in two steps.
a. Selfconsistent quasiparticles First, we have used

the quasiparticle energy at values of the free energy
εk = ε(k2). A selfconsistent solution of the quasipar-
ticle dispersion (10) would require a successive iter-
ation which means εk = ε(k2 + δ). We can deter-
mine this required shift δ by demanding that the Fermi
energy should be reproduced εF = ε(k2

F + δ). For the
quasiparticle approximation (53), one finds explicitly
δ = −σ(εF ). Including this shift leads to a smoothing
of the curve parallel to the spectral expression (30) as
seen in the middle panel of Fig. 10.
b. Correlated density Second, we recognize a paral-

lel shift between the spectral result (30) and the Padé
approximation in the middle panel of Fig. 10. This
comes from the fact that the T-matrix approximation
leads to time nonlocality in the scattering process given
by the delay time Δt = ∂ωΦ between in- and outgo-
ing scattering events with the phase of the T-matrix
TR = |T |eiΦ. As result a correlated density nc appears
besides the free (quasiparticle) density adding to the
total density n = nF + nc. It describes how much
particles are in the correlated state not available for
the Fermi momentum. Consequently, it diminishes the
Fermi momentum [74]

kF =
π�

s
nF =

π�

s

n

1 + nc

n

. (60)

This shift due to the time delay clearly violates the
Luttinger theorem stating that the Fermi momentum is
exclusively determined by the free (quasiparticle) den-
sity nF . Since the Luttinger theorem is valid only for
Fermi liquids, one should not be puzzled since we do
have a non-Fermi liquid. Collision delays describe the
correlations beyond Fermi liquids. Other examples of
non-Fermi liquids are the correlated density for systems
with short-living bound states (resonances) or pairing.

123



Eur. Phys. J. B (2023) 96 :95 Page 11 of 17 95

Fig. 10 The reduced density matrix in Padé approxima-
tion (thin red) compared with (30) (thick blue) and both
contributions entering the Padé approximations, ρ1−f of
(58) (dashed) and ρf of (59) (dotted). Above: without self-
consistent quasiparticle and without correlated density, mid-
dle: with selfconsistent quasiparticle and without correlated
density, below: with selfconsistent quasiparticle and corre-
lated density

Before presenting the explicit form we see already
in the bottom panel of Fig. 10 that the missing agree-
ment between the Padé T-matrix approximation and
the spectral expression of the reduced density (30) is
completed by this time delay respectively correlated
density. The comparison of the momentum distribu-
tion with results of other methods, e.q. by variation
technique with Fig. 4 in [62], can be done but is not
sensitive enough to distinguish the subtle differences.

5 Time delay and correlated density

5.1 Time delay and correlated density

As soon as the vertex, the T-matrix T = |T | exp iΦ,
has a frequency-dependent phase φ(ω) there appears a
finite duration of the collision process. The first-order
effect can be expressed (see Eq. 69 in [47]) as a time
delay Δt = ∂ωΦ correction to the selfenergy (50)

Δσ<(ω, k) = s
∑
p,q

|TR(ω+εi
p, k, p)|2Δt

×2πδ(ω+εi
p−εk+q−εi

p−q)

×(1 − ni
p)

∂

∂t
nk+qn

i
p−q.

(61)

We express now

|TR|2Δt = ImTA∂ωTR =
�

2

k2
F a2

B

√
bω

2(ω + b)2
(62)

and use the impurity limit 1 − np ≈ 1, np−q ≈ np to
find the additional contribution to the collision integral
I = (1 − nk)σ<(εk) − nkσ>(εk) to be

ΔI =
∂

∂t
nis

∑
q

ImTA∂ωTR2πδ(εk−εk+q)nk+q.

(63)

This means that in the balance equation for the density
we obtain with (62) an additional correlated density
contribution

nc = −nis
∑

q

ImTA∂ωTR2πδ(εk−εk+q)nk+q

= −ni
g

8s

1∫
−1

dq

√
b

(q2 + b)2
. (64)

For Born approximation b → 0, we do not have a phase
and the collision delay ∼

√
b is zero. Therefore, the

integral (64) should vanish. This is the case if we expand
the integrand into a Taylor series and get

1∫
−1

dq

√
b

(q2 + b)2
= −2

3

√
b +

4
5
b3/2 + · · · (65)

Unfortunately, the integral does not smoothly converge
which means the integration and expansion cannot be
interchanged. In fact, one gets formally

1∫
−1

dq

√
b

(q2 + b)2
=

1√
b(1 + b)

+
1
b
arctan

1√
b
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Fig. 11 The free and correlated density vs. Fermi energy
for increasing impurity densities aBni = 0.1 − 1.5 (from
bottom to top)

=
π

2b
− 2

3

√
b +

4
5
b3/2 + · · · (66)

which compared to (64) shows that the term π/2b
appears to be wrong in the sense of perturbation expan-
sion of the integrand which we demand as limit of T-
matrix towards Born approximation. Therefore, we sub-
tract this term which means we first expand and then
integrate and then resume again to get finally

nc = −ni
g

8s

[
1√

b(1 + b)
− 1

b
arctan

√
b

]
. (67)

This correlated density adds to the free density for
total density n = nF + nc and accordingly changes
the Fermi momentum since the latter one is determined
with respect to the free density (60). In Fig. 11, the free
density increases with the square of Fermi energy while
the correlated density decreases with increasing Fermi
energy dependent on the impurity density. This differ-
ent dependence will lead to localization effects in the
conductivity as we will see in chapter 6.

5.2 Tan contact and large momentum behaviour

The expansion at large momentum in the Padé approx-
imation only the term ρ1−f contributes as it is in the
extended quasiparticle approximation. From (53) and
(58), we obtain

lim
k→∞

ρ(k) =
Cn4

�
4

k4
(68)

with the Tan contact

C =
gk4

F

πn4
F �4

[√
b arccot

√
b − 1

]

=
4ni

nF
π2b

[√
b arccot

√
b − 1

]
(69)

Fig. 12 The large momentum expansion of the reduced
density ρ(k) ≈ C(n�)4/k4 versus coupling constant (42)

independent of the pole correction δ. The values for the
e-e model of contact interaction is compared in [25]. In
Fig. 12 we plot this contact (69) versus the coupling
constant b of (42). It is qualitatively very similar to the
e-e interaction considered in [60] where it had been con-
jectured its universal behaviour. This is quantitatively
supported when comparing with the result of Eq. 9 in
[62] where an impurity immersed in Fermions forms a
polaron. Reformulating for repulsive interaction their
result reads1

C =
1

2aBnF
π2b

[√
b arccot

√
b − 2

]
(70)

and compared to (69) we see that we have to replace in
our result the impurity density simply by ni = 1/8aB

to reproduce the result of [62]. Remarkably, this is just
coinciding with the limit of (57) where the spectral
function changes from one to two maxima and form-
ing a gap.

6 Nonlocal corrections to the conductivity

For any transport property, we have to consider momen-
tum integrals over the reduced density abbreviating
x = 2(εF −εk)/γ(εF , k)

ρPade(k) = ρEQP(k) + f(x)[ρf(k) − ρ1−f(k)] (71)

which presents the difference to the extended quasipar-
ticle part ρEQP = ρ1−f . In appendix B, we show that the
additional part is negligible under integration for most
regular cases of selfenergy. This means though we have
to use two-term Padé approximation to reproduce the
spectral function and the reduced density matrix at the
Fermi energy correctly, only the part of the extended
quasiparticle part matters under integrations. In other

1 The strange factor 2 in the subtraction instead of 1 with
our result might be a misprint.
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words, the divergence of the extended quasiparticle dis-
tribution function at the Fermi energy cancels under
integration.

The impurity scattering including averaged T-matrix
approximation contains the average about impurity
configurations and therefore reinforce spatial invari-
ance. We write the kinetic equation for homogeneous
systems in an electric field E

∂tnk−eE∂knk =nis

∞∫
−∞

dq

�2
|T (εk+q)|2δ(εk+q−εk)[nk+q−nk]

+ ΔI (72)

with the nonlocal corrections (63). When linearized
with respect to the electric field

n(k, t) = n0(|k|) + τ(|k|)eE∂kn0(|k|) (73)

one obtains the relaxation time

τ(|k|) = |k| h2

2mnisT 2(εk)
=

�

gεF

√
εk

εF

(
1 +

b

εk/εF

)

τ(kF ) =
�

εF

π

2s2

nF

ni

1 + b

b
. (74)

The energy dependence of this relaxation rate starts at
zero showing a maximum and vanishes for large ener-
gies. Coulomb interactions between the electrons just
lead to the opposite behaviour [79].

By integrating the kinetic equation (72) with momen-
tum weight, the balance for the current becomes

∂t(j + jc) = −eEnF (75)

and leads besides the standard current density

j = −eE

∫
dk

2π�

k

m
f = λ0E (76)

also to a current density due to two-particle correla-
tions

jc =enis

∞∫
−∞

dqdk

2π�2

k+q

m
ImTRTA δ(εk+q−εk)nk+q

= λcE. (77)

The corresponding conductivities are

λ0 =
nF e2τ(pF )

m
=

e2

ni�

π

2s4r2
s

(1+b) =
e2

2π�ni

1+b

b

λc = λ0
s

π

ni

nF

b3/2

(1 + b)2
(78)

where we used (42). The results for the density (67) and
total conductivity λ = λ0 + λc with (78) can be seen

Fig. 13 The total density versus Fermi energy (left) and
conductivity versus free density (right) for zero temperature
(78) with niaB = 0.1 − 1.5 from bottom to top (left) and
niaB = 1 − 3.5 from top to bottom (right)

in Fig. 13. One recognizes that both the total density
and the total conductivity lead to a development of a
minimum at small electron/impurity density ratios due
to the different behaviour of the free and correlated
density as seen in Fig. 11.

These minima lead now to a localization effect in the
conductivity when plotted versus total number of par-
ticles as done in Fig. 14. The minima appear as long as
niaB ≥ 1 which all lay on the curve

nmin
i aB =

niaB

2π
arccot

√√
niaB−1

−
(√

niaB

2π
− 1

π

) √√
niaB−1

λmin =
e2aB

π�
√

niaB
(79)

easily seen from (67) and (78).

6.1 Temperature dependence

Since the expressions for the conductivity are linear in
the distribution functions, we can calculate the finite
temperature T expressions observing the relation [80]

nk =

∞∫
0

dμ̄
Θ(μ̄ − εk)

4T cosh2 μ−μ̄
2T

(80)

to be applied to the zero-temperature expressions (78)

λ(0)=λ0(0)+λc(0)=
e2

2πni�

(
1+

k2
F a2

B

�2
+

niaB

1+ k2
F a2

B

�2

)

(81)

where the last term is the correlated conductivity. The
integral about the normal conductivity can be done
analytically to yield

λ0(T ) =
e2

2πni�

[
z

1 + z
+ 2

T

T0
ln(1 + z)

]
(82)
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Fig. 14 The conductivity versus total density for differ-
ent impurity densities and the Fermi energy as param-
eter denoted by the arrows. For niaB > 1, the curves
start at zero Fermi energy at (niaB/2, 1 + 1/niaB) and
develop a minimum at the energy εmin = (

√
niaB −1)/2 and

λmin = e2aB/π�
√

niaB when the Fermi energy is increasing.
Below niaB < 1, no such minima appears. The localization
of the minima are plotted as dotted line according to (79)

with the temperature scale and fugacity

T0 =
�

2

ma2
B

z = e
μ

kT (83)

where the last one determines the free density

nF aB = −
√

2T

πT0
Li1/2(z) (84)

by the poly-logarithm Lin(z) =
∑∞

k=1 zk/kn. The cor-
related conductivity remains as integral

λc(T ) =
e2aB

4π�

∞∫
0

dy(
1 + 2T

T0
y
)

[1 + cosh(y − ln z)]
.

(85)

It is remarkable that this expression becomes indepen-
dent on the impurity density and is only determined by
the interaction strength coded in the equivalent Bohr
radius aB according to V0 = �

2/maB and by the den-
sity of electrons. The effect of temperature is basically
to diminish the area of localization seen as shrinking
hysteresis in Fig. 15.

In the next Fig. 16, we plot the conductivity for
various temperatures versus the chemical potential.
One sees that for lower temperatures it develops a
peaked structure and a minimum. This is the behaviour

Fig. 15 The conductivity versus total density and inverse
temperature for an impurity density niaB = 20

Fig. 16 The conductivity versus chemical potential for
temperatures T = 0.3...2.5�

2/ma2
B (from top to bottom of

peak) and an impurity density niaB = 20

observed in Fig. 3 of [65]. Therefore, we interpret this as
the onset of a possible superconducting behaviour trig-
gered by impurities. Without the two-particle correla-
tions expressed by the delay time or correlated density,
this effect would be absent.

7 Summary

A two-fold expansion of the spectral function in inter-
acting quantum systems is presented. One expansion
with respect to small scattering rates is the known
extended quasiparticle picture. This expansion fails in
non-Fermi systems like one-dimensional Fermi gases
since it diverges at the Fermi energy. Therefore, a sec-
ond expansion is suggested around the Fermi energy.
Both expansions can be interpolated by a Padé expres-
sion. The advantage is that independent on the interpo-
lating function the first two energy-weighted sum rules
are completed as it is the case in the extended quasipar-
ticle picture. The validity of the approach is the same as
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the perturbation theory where the extended quasipar-
ticle picture is based on. With the help of the presented
Padé regularization, the divergence of the reduced den-
sity in perturbation theory is cured at the Fermi energy
independent on the used selfenergy approximation.

For models of electron-impurity scattering, the qual-
ity of this Padé approximation is demonstrated to
reproduce the spectral function and reduced density.
In this way, the divergence of the reduced density
in extended quasiparticle approximation at the Fermi
energy is corrected to a finite value. It is shown that the
divergence of the extended quasiparticle approximation
at the Fermi energy cancels under integration. Conse-
quently, in order to describe the reduced density and
spectral function a two-term Padé interpolation is nec-
essary while for transport processes the extended quasi-
particle approximation alone is sufficient. This extends
the validity of extended quasiparticle approximation
beyond the Fermi-liquids.

For the T-matrix approximation, one obtains delay
times resulting into a correlated density which describes
how much particles remain in a correlated state. Fur-
ther consequences are an additional contribution to the
conductivity which results into two effects. At certain
impurity densities, localization appears and a minimum
of conductivity develops for small temperatures depen-
dent on the impurity concentration which is interpreted
as a possible onset of superconductivity. The Tan con-
tact shows the same universal behaviour as found in
e–e scattering when we replace the impurity concentra-
tion by the value where the gap in the spectral function
vanishes.

The Padé expansion of the spectral function is
derived. Here it is illustrate on a simple exploratory
example on electron-impurity scattering. In a forthcom-
ing paper it will be demonstrated that it works equally
well for electron–electron correlations. The expectation
is that it might be fruitfully applicable also for other
non-Fermi systems.
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Appendix A: Derivation of Euler expansion

The expansion of arctan function found by Euler in 1755
reads

arctan x =

1∫

0

dt
x

1 + x2t2
=

π/2∫

0

du
x sin u

1 + x2 cos2 u

=

π/2∫

0

du
x sin u

1 + x2

1

1 − x2 sin2 u
1+x2

=

π/2∫

0

du

∞∑
n=0

x2n+1 sin2n+1 u

(1 + x2)n+1

=
∞∑

n=0

⎛
⎜⎝

π/2∫

0

du sin2n+1 u

⎞
⎟⎠ x2n+1

(1 + x2)n+1

=
∞∑

n=0

22n(n!)2

(2n + 1)!

x2n+1

(1 + x2)n+1

=
x

1 + x2
+

2

3

x3

(1 + x2)2
+ · · · (A1)

with obvious substitutions and using a geometric series.

Appendix B: Proof that interpolating terms
cancel under integrals

We want to show that the contribution in the Padé approx-
imation beyond the extended quasiparticle picture in (71)
is negligible. This means we consider

〈φ〉 =

∫
dkφkρPade(k) = 〈φ〉EQP

+

∫
dkφkf

[
εF − εk

γ(εF ,k)
2

] ∫
dω

2π
nω[af(ω, k) − a1−f(ω, k)].

(B1)

Since the interpolating function has the value f = 1 only in
a small limited neighborhood of the Fermi energy εk = εF

we can write the additional term

〈φ〉−〈φ〉EQP ≈φkF

∫
dω

2π
nω[af(ω, k)−a1−f(ω, k)]εk=εF .

(B2)

Similar to the steps leading to the frequency-weighted sum
rule (40) we make a partial integration observing εk = ε0k+σ
with (8) to have
∫

dω

2π
nωa1−f(ω, k) = nεk − σn′

εk

+

∫
dω

2π

γ(ω, k)(n′
ω−n′

εk
)+∂ωγ(ω, k)(nω−nεk)

ω−εk
+o(γ2)

(B3)
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where the prime denotes the derivative and abbreviating
γ = γ(εF , k)
∫

dω

2π
nωaf(ω, k) = nεF + (ε0k − εF )n′

εF

+

∫
dω

2π

γ

(ω−εF )2+ γ2

4

[
(nω−nεF )+(ε0k−εF )(n′

ω−n′
εF

)
]
.

(B4)

In the last expression we consider it as a first-order Taylor
expansion and write [...] ≈ nω+ε0

k
−εF

−nε0
k
. This expression

is integrated with the Lorentzian weight in the second term
of (B4) which peaks at ω ≈ εF where the expression van-
ishes. Therefore the second term of (B4) is zero up to orders
of o(γ(εF )2).

Needed in (B2) we have to subtract from (B3) at εk = εF

the term (B4). Since εk = ε0k + σ it remains only
∫

dω

2π
nω[af(ω, k)−a1−f(ω, k)]εk=εF

=

∫
dω

2π

γ(ω, k)(n′
ω − n′

εF
) + ∂ωγ(ω, k)(nω − nεF )

ω − εF
.

=

∫
dω

2π

γ(ω, k)

(ω − εF )2
[(nω − nεF ) − n′

εF
(ω − εF )] (B5)

where we used a partial integration to go to the third line.
Since the integral is peaked around ω ∼ εF we can expand
the first term in the [...] bracket up to first order which
cancels exactly and we can conclude that (B2) is vanishing.

References

1. T. Schätz, U. Schramm, D. Habs, Nature 412, 717
(2001)

2. U. Schramm, T. Schätz, M. Bussmann, D. Habs, Plasma
Phys. Control Fusion 44, B375 (2002)

3. M. Pagano, G. Mancini, G. Cappellini et al., Nat. Phys.
10, 198 (2014)

4. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical
Properties of Carbon Nanotubes (Imperial College Press,
London, 1998)

5. M. Bockrath et al., Nature 397, 598 (1999)
6. H. Ishii et al., Nature 426, 540 (2003)
7. M. Shiraishi, M. Ata, Sol. State Commun. 127, 215

(2003)
8. F.P. Milliken, C.P. Umbach, R.A. Webb, Sol. State

Commun. 97, 309 (1996)
9. S.S. Mandal, J.K. Jain, Sol. State Commun. 118, 503

(2001)
10. A.M. Chang, Rev. Mod. Phys. 75, 1449 (2003)
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