
©2023 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or
lists, or reuse of any copyrighted component of this work in
other works. https://ieeexplore.ieee.org/document/10261130

Packet Too Big Detection
and its Integration into QUIC

Timo Völker
Dep. of Electrical Engineering and Computer Science

FH Münster University of Applied Sciences
Steinfurt, Germany

timo.voelker@fh-muenster.de

Michael Tüxen
Dep. of Electrical Engineering and Computer Science

FH Münster University of Applied Sciences
Steinfurt, Germany

tuexen@fh-muenster.de

Abstract—A communication over an Internet Protocol (IP)
based network fails if an endpoint sends packets that are too
big to reach their destination and if the sender is unable to
detect that. The node on the path that drops these packets
should respond with a Packet Too Big (PTB) message. However,
multiple scenarios exist in which the sender will not receive a PTB
message. Even if it does, it refrains from using the information in
case it suspects that a potential attacker forged the message. In
particular, we are not aware of any implementation of the secure
transport protocol QUIC (e.g., used by HTTP/3) that processes
PTB messages. In this paper, we present a novel parameterizable
PTB detection algorithm for reliable transport protocols that
does not depend on PTB messages. We further describe how
to integrate our algorithm into QUIC, present results from an
evaluation using the algorithm within a QUIC simulation model
and, based on these results, suggest concrete parameter values.

Index Terms—PMTUD, PTB, black hole, transport protocol,
QUIC, simulation

I. INTRODUCTION

To efficiently use a network path in an Internet Protocol (IP)
based network, a sender should know the packet size limit
of the network path. Without this knowledge, it might send
packets smaller than necessary which is inefficient. Or it might
send packets that are too big for the path in which case they
will not reach their destination1. The connection fails if the
sender is unable to detect that and continues to send oversized
packets.

The Maximum Transmission Unit (MTU) configured for
a network interface limits the size of outgoing IP packets.
The packet size limit for a network path is the Path MTU
(PMTU), i.e., the smallest MTU of all involved outgoing
network interfaces on a path.

A network node that drops a packet, because it is larger than
the MTU of its outgoing network interface, should respond
with a Packet Too Big (PTB) message (i.e., an Internet Control
Message Protocol (ICMP) Destination Unreachable Message
with code 4 [2] or an ICMP for IP version 6 (IPv6) Packet Too
Big Message [3]). PTB detection is simple for a sender if it
receives a PTB message and if it trusts the message. However,
because that is not necessarily the case, a PTB detection must
function even without a PTB message.

1With IP version 4 fragmentation, packets can reach their destination even
if they were sent too big. However, a sender should avoid IP fragmentation,
as it is considered harmful [1].

[4] describes multiple scenarios where an endpoint sending
packets that are too big receives no PTB messages, which
is known as PMTU black hole. Measurement results in [5],
[6], [7], [8] and [9] show that PMTU black holes exist in
the Internet. On the other hand, an attacker can forge a PTB
message to force an endpoint to send small packets. A sender
receiving a PTB message refrains from using the message
for PTB detection if it does not trust the information. As
an extreme case, a sender that trusts only cryptographically
secured information will not use PTB messages. For example,
we are not aware of any implementation of the secure transport
protocol QUIC [10] that processes PTB messages.

The IETF recently specified a PMTU Discovery (PMTUD)
for transport protocols in [11]. The idea is to prevent an
endpoint from unintentionally sending packets that are too big
by restricting their size using a PMTU estimation that is equal
or smaller than the actual PMTU. The discovery starts with
a PMTU search where it successively increases its estimation
towards the actual PMTU. A PTB message is not required for
this process. However, a PMTU can change. After a PMTU
decrease, an endpoint might end up sending packets that are
too big. [11] does not describe a way to detect that without a
PTB message.

In this paper, we present a novel parameterizable algorithm
for reliable transport protocols to detect when sending over-
sized packets without a PTB message. We choose QUIC [10]
as an example to describe how to integrate our algorithm
into a transport protocol and use a QUIC simulation model
to elaborate it with various parameter values.

After describing PMTUD and the complexity with PMTU
change in Section II, Section III presents our PTB detection
algorithm. Section IV introduces QUIC and presents results
from PMTUD tests with QUIC implementations. The section
further describes how to integrate the PTB detection algorithm
in QUIC and Section V describes our elaboration of the algo-
rithm with network simulations. Section VI gives a conclusion
and an outlook on future work.

II. PATH MTU DISCOVERY

The PMTUD as specified in [11] assumes a reliable trans-
port protocol that can choose the packet size and avoids IP
fragmentation. It estimates the PMTU with a value equal or

smaller than the actual PMTU. It sends packets larger than its
estimation to probe if the network path supports the size. On
acknowledgment of receipt of such a PMTU probe packet, it
increases its estimation.

A. Phases

The PMTUD consists of the following three main phases.
1) Base: In this initial phase, the PMTUD sets its esti-

mation to a base PMTU (e.g., 1280B). It then confirms its
estimation by sending a PMTU probe packet of this size. After
an acknowledgment for the probe packet, it starts the Search
phase.

2) Search: During the Search phase, the PMTUD sends
PMTU probe packets larger than its current estimation. It
increases its estimation when receiving an acknowledgment
for a probe packet. The search completes, if it increased its
PMTU estimation to the largest considered PMTU candidate
(e.g., as reported by a received PTB message) or if it receives
repeatedly no acknowledgment for a probe packet with a size
of the next larger PMTU candidate than the current PMTU
estimation.

3) Complete: After the best PMTU estimation has been
found, in the Complete phase, the task is to verify that the
current PMTU estimation is still the best one.

If the PMTUD assumes that its estimation is too small,
it switches to the Search phase with considering PMTU
candidates that are larger than the current estimation only. If
it assumes that its estimation is too large, it switches to the
Base phase with considering PMTU candidates that are equal
or smaller than its current estimation only.

B. PMTU Change

The PMTU can change when the path changes. The In-
ternet, for example, is a complex network that may provide
multiple paths from one endpoint to another. This is known
as path diversity [12]. Routers decide which path packets use.
Usually, they use the same path for packets that belong to
a flow [13] (e.g., a transport protocol connection). However,
routers sometimes decide to change the path, for example, due
to a path outage [14].

1) Increase: A PMTU increase provides the ability to send
larger packets. Other than that, it does not affect a data
transmission. To detect an increase, [11] suggests using a timer
to regularly check if the PMTU has increased by sending a
probe packet. [11], and other PMTUD related specifications
[15], [16] and [17], recommend a period of ten minutes.

2) Decrease: A PMTU decrease is more severe than an
increase. It leads to packet loss for packets larger than the new
PMTU. If the network node that drops the packets responds
with a PTB message and if the sender processes this message,
the detection is simple. Without a PTB message, the detection
becomes more complex. In this case, [11] suggests using
packet loss as an indication without describing further details.

This paper addresses the question of how to realize a PTB
detection in a transport protocol without relying on a PTB
message.

III. PTB DETECTION

Detecting when sending packets that are too big for the
network path becomes challenging without a PTB message.
We developed a transport protocol agnostic algorithm for that.
The key indication for the algorithm is packet loss.

A. Problem

The size of a packet is only one possible reason for its loss.
The problem is when to conclude that a packet loss happened
due to its size.

The more packets with a specific size or larger get lost,
the more likely it becomes that the PMTU is smaller than this
size. Finding the right time to conclude that the current PMTU
estimation is too large is a trade-off. Conclusions made too
early increase the number of false positives. Each false positive
unnecessarily reduces the PMTU estimation and produces
extra load to the network by sending probe packets. Late
conclusions increase the time with a wrong PMTU estimation,
during which an endpoint might send packets that are too big
for the network path. Consequently, the network drops more
packets, which reduces the performance.

B. Algorithm

This algorithm starts after the PMTU search. The main
indication is the number of lost packets, but the algorithm does
not use all lost packets. It checks which lost packets qualify
for the PTB detection.

1) Qualified Lost Packets: The algorithm ignores lost pack-
ets sent smaller than a specified minimum PMTU, because
the assumption is that each network path at least supports this
packet size. It also ignores lost packets sent larger than the
current PMTU estimation (e.g., a probe packet), because their
loss is an expected result.

After receiving an acknowledgement of receipt for a sent
packet, the algorithm considers all packets sent earlier with
a size equal or smaller than the acknowledged packet as
irrelevant. It does not use these losses to conclude that the
PMTU estimation is too large.

The algorithm counts the number of qualified lost packets
and uses the parameter n as threshold.

2) Time Distance: Situations in the network may lead to
multiple lost packets in a short time (e.g., temporarily path
outage). To avoid the potential false conclusion that these lost
packets were sent too big, the algorithm uses the time distance
of lost packets.

With n > 1 qualified lost packets, the algorithm measures
the time between the first and last lost packet and uses the
parameter t as threshold.

3) Congestion Window Reset: Transport protocols like
Transmission Control Protocol (TCP) [18], Stream Control
Transmission Protocol (SCTP) [19] or QUIC [20] reset their
congestion window (cwnd) to a small value on an event with
packet loss (i.e., retransmission timeout or persistent conges-
tion). Since these cwnd-reset events indicate a problem in the
network that might relate to the packet size, the algorithm
uses them. However, it ignores a cwnd-reset event (and all

previous ones) if a received acknowledgment acknowledges a
packet sent after the start of the event with a size of the current
PMTU estimation (or larger).

The algorithm counts the number of consecutive cwnd-reset
events (e.g., a following cwnd-reset event that resets the cwnd
before it has been increased) and uses the parameter c as
threshold.

4) Size Reduction: Transport protocols fill packets as large
as their PMTU estimation. This leads to continuous packet loss
without receiving an acknowledgment if the PMTU estimation
is larger than the actual PMTU. However, acknowledgements
help transport protocols to declare sent packets as lost.

To trigger acknowledgments even when the PMTU estima-
tion is too large, the algorithm restricts the size of outgoing
packets to base PMTU. It starts reducing the size if a sent
packet that exceeds base PMTU and triggers an acknowledg-
ment left unacknowledged for a period of at least the time
r with no acknowledgement received for a later sent packet.
Then, the algorithm reduces the size of outgoing packets until
a received acknowledgement acknowledges this or a later sent
packet.

Summary: As described in the last section, the algorithm
reduces the size of outgoing packets based on the time period
r. But it concludes that the current PMTU estimation is too
large and, therewith, restarts the PMTU search only if it counts
n qualified lost packets, where one of these were sent at least
a period t later than another one, or if it counts c consecutive
cwnd-reset events without a signal that the network path still
supports the current PMTU estimation.

Clearly, the smaller the values for r, n, t and c the faster the
algorithm assumes that packets were sent too big. However,
choosing larger values prevents false positives.

C. Implementation

Counting the number of qualified lost packets and their
time distance seems to us to be the most complex part of the
algorithm. For that, we suggest maintaining two lists with the
size and sent time of packets.

One list contains acknowledged packets to determine the
largest size of an acknowledged packet since a specific time.
For this purpose, the algorithm adds newly acknowledged
packets to the list only if it contains no larger packet sent later.
Consequently, when the algorithm adds a newly acknowledged
packet, it removes all equal or smaller packets sent earlier.

The other list contains lost packets. On a newly acknowl-
edged packet, the algorithm removes all equal or smaller
packets sent earlier, since their loss become irrelevant for the
PTB detection. When the transport protocol declares one or
more packets as lost, the algorithm adds each one to the list
that is not a PMTU probe packet, larger than minimum PMTU
and larger than the largest acknowledged packet since its sent
time. After that, the algorithm checks the PTB criterion using
both lists.

Figures 1 and 2 show pseudo code to maintain the lists
on packet acknowledgment or loss. Figure 3 shows pseudo
code to check the conditions using both lists. If the conditions

function onPacketAcked(sentTime, size)
delEarlierAndSmaller(lostList, sentTime, size)
if not existsLaterAndLarger(ackedList, sentTime, size)
then

delEarlierAndSmaller(ackedList, sentTime, size)
ackedList.add([sentTime, size])

end if
end function

Figure 1. Pseudo-code that updates the lists of lost and acknowledged packets
on a newly acknowledged packet with the given sent time and size

function onNonPmtuProbePacketLost(sentTime, size)
if not (size ≤ minPmtu or

size ≤ largestAckedSince(sentTime)) then
lostList.add([sentTime, size])

end if
end function

Figure 2. Pseudo-code that updates the list of lost packets on a packet newly
declared lost with the given sent time and size

are true, the code indicates how to report which size the path
probably still supports. A following PMTU search can use this
information to find the new PMTU estimation faster.

D. False Positives

Detecting a PMTU estimation as being too large when
it does not exceed the actual PMTU is a false positive.
Consequently, the PMTUD reduces the PMTU estimation to
base PMTU, sends a probe packet for this size and restarts
the PMTU search. In case the algorithm reported a packet
size still supported by the network path that is equal or larger
than base PMTU, PMTUD can skip sending a probe packet
for this size and restart PMTU search directly. The PMTU
search can use the former PMTU estimation as upper bound
of potential PMTU candidates.

function checkPtbDetectionCriterion
for each first in lostList do

firstAt ← first.sentTime
largestAcked ← largestAckedSince(firstAt)
latestAt ← firstAt
count ← 0
for each next in lostList do

if next.sentTime ≥ first.sentTime and
next.size > largestAcked then

count ← count+1
if next.sentTime > latestAt then

latestAt ← next.sentTime
end if

end if
end for
if count ≥ n and (latestAt-firstAt) ≥ t then

return true (path supports at least largestAcked)
end if

end for
return false

end function

Figure 3. Pseudo-code that checks a PTB detection criterion using the lists
of lost and acknowledged packets

We consider a search algorithm that starts with probing the
upper bound of candidates. With that, the PMTU search starts
by sending a probe packet for the former PMTU estimation.
In case of a false positive and no further loss of probe packets
or their acknowledgements, PMTUD can repair the mistake
with one probe packet, or two if it needs to probe for base
PMTU first. Thus, it takes about one or two round trip times
(RTT).

The negative consequence of one false positive are the extra
probe packets and the smaller outgoing non-probe-packets
during the time with a smaller PMTU estimation. Note, with
further packet loss, the PMTU search may take longer and
need to send more probe packets.

IV. CASE STUDY WITH QUIC

To investigate the PTB detection we need to consider the
context, i.e., the transport protocol. We choose QUIC because
of its relevance (e.g., as transport protocol for HTTP/3 [21])
and its end-to-end encryption. Conceptionally, the encryption
makes it more difficult to use not cryptographically secured
information like PTB messages.

A. Specification

[10] specifies QUIC’s base protocol and [20] its loss detec-
tion and congestion control.

1) Packet: A QUIC packet contains a QUIC header fol-
lowed by one or more QUIC frames. Multiple types of frames
exist. With the STREAM frame, a QUIC sender transmits data
in a byte-stream oriented way.

The QUIC header contains a packet number. A sender sets
this field. It assigns to each outgoing packet a monotonic in-
creasing number. A receiver acknowledges packets by sending
a QUIC packet with an ACK frame that lists the acknowledged
packets by its numbers.

QUIC calls packets that trigger an acknowledgment ack-
eliciting. For example, a packet containing a STREAM frame
is ack-eliciting. A packet containing only ACK frames is
not. A receiver sends an acknowledgment for a received
ack-eliciting packet immediately if it receives the packet
out of order. For an ack-eliciting packet received in order,
a receiver delays the acknowledgment until a second ack-
eliciting packet arrives, but not longer than the maximum
acknowledgment delay (max ack delay). [10] recommends
setting max ack delay = 25ms. A receiver may further
delay the acknowledgment for non-ack-eliciting packets.

2) Loss Detection: QUIC uses an acknowledgment-based
loss detection. To know when an acknowledgment to expect,
QUIC measures the RTT and calculates a smoothed RTT
(SRTT) and an RTT variance (RTTVAR). It combines these
values in the formula E = SRTT +max (G, 4 ·RTTVAR)+
max ack delay , where G is the timer granularity.

If a sender receives no acknowledgment for a period of E
after the last ack-eliciting packet sent, its probe timer expires
(i.e., a probe timeout or PTO). On PTO, it sends a loss probe
packet containing a STREAM frame with unsent or, if not
available, sent but unacknowledged (a.k.a. in flight) data to

Bandwidth: 1 Mbit/s
Delay: 10 ms

MTU: 1500 B 1300 B

1 Gbit/s 1 Gbit/s

MTU: 1500 B MTU: 1500 B

FreeBSD 13.1
RouterUbuntu 22.04

Sender (Server)
Ubuntu 22.04

Receiver (Client)

FreeBSD 13.1
Router

Figure 4. Test Network for QUIC implementations

trigger an acknowledgment. It repeats this, each time with a
doubled period (i.e., 2 ·E, 4 ·E and so on), until it receives an
acknowledgment, or its idle timer expires, on which it silently
closes the connection.

A sender declares an unacknowledged packet as lost af-
ter it receives an acknowledgment for a packet sent 3 ·
max (SRTT , latest rtt) later or sent with a packet number
equal or larger than 3 + u, where u is the number of the
unacknowledged packet. A sender that declares a packet with
STREAM frames as lost, marks the contained data as not in
flight (if not still in flight in another packet). When able to
send a STREAM frame in a new packet, it selects the oldest
data that are not in flight.

3) Congestion Control: QUIC uses a NewReno congestion
control [20]. It counts the number of bytes of all packets
in flight that contain frames other than ACK frames. The
congestion window (cwnd) restricts the number of bytes in
flight. The congestion control prohibits sending a packet if the
bytes in flight with the packet would exceed the cwnd. As an
exception for the loss detection, the congestion control never
prohibits sending loss probe packets or packets containing only
ACK frames.

A congestion-control-limited sender sends packets clocked
by the acknowledgments from the receiver. Each received
acknowledgment frees up the cwnd and allows the sender to
send further packets.

4) Persistent Congestion: As specified in [20], a sender
establishes persistent congestion if it declares all packets
sent during a period of at least 3 · E as lost. On persistent
congestion, it resets its cwnd to the size of two full-sized
packets.

5) PMTUD: A QUIC sender must not use IP fragmentation
and has to avoid its use by setting the Don’t Fragment bit in
the IPv4 header. To determine the PMTU, the [10] suggests
using PMTUD as described in [11].

B. Implementations

To understand the current state of PMTUD in QUIC,
we run tests, especially for the PTB detection, with QUIC
implementations. By the time of writing, [22] lists 25 different
implementations.

1) Tested Implementations: For our tests, we choose the
QUIC implementations picoquic [23] (last commit from 2023-
03-23), lsquic [24] (Version 4.0.0), msquic [25] (Version
2.1.8), and s2n-quic [26] (Version 1.17.1). As far as we are
aware, only these send packets larger than 1280B. Hence, we
expect a PTB detection only in these implementations.

2) Test Setup: To test the PTB detection in QUIC imple-
mentations, we create a small test network, shown in Figure
4. The network consists of a sender and a receiver running
Ubuntu 22.04. Each is directly connected by a 1Gbit/s
link with different routers, which both run FreeBSD 13.1-
RELEASE. The routers are directly connected. We use dum-
mynet [27] to emulate a 1Mbit/s link with 10ms delay
between them.

Initially, we set the MTU for all network interfaces to
1500B. We establish a QUIC connection between the sender
and the receiver and let the sender send 1GB of data. During
transmission we change the MTU of the router’s interfaces
towards the other router to 1300B.

3) Result: All tested implementations were able to find the
initial PMTU of 1500B. None of the tested implementations
process a PTB message. They ignore the PTB messages the
router returns. Only picoquic and lsquic were able to reduce
the packet size based on packet loss. The connections of
msquic and s2n-quic timed out.

Both, picoquic and lsquic reduce the packet size to 1280B.
picoquic does so after eleven full-sized lost packets. However,
other than specified for QUIC, picoquic declares a packet
as lost based on a timeout without waiting for an acknowl-
edgment of a later sent packet. lsquic sends two loss probe
packets. After that, it also deviates from the specification by
starting a retransmission timer. If this timer expires, it reduces
the packet size.

Due to the deviations in the loss detection their PTB
detections do not describe a solution for a QUIC conform
implementation.

C. Simulation Model

To examine the PTB detection algorithm described in Sec-
tion III, we integrated it in a QUIC simulation model [28].

1) PMTU Search: To determine the PMTU, the QUIC
model sends PMTU probe packets in an optimistic binary
sequence as described in [29]. It uses 1280B as minimum
and base PMTU.

With the optimistic binary sequence, the search starts by
sending a probe packet for the largest PMTU candidate. If it
receives no acknowledgment for this probe packet, it selects
the PMTU candidates for the following probe packets as with
a binary search.

2) Lost Packets: A sender counts the number of qualified
lost packets, measures their time distance and compares it to
n and t, respectively, as described in Section III-C.

Note, a QUIC sender that keeps sending oversized packets
will not receive acknowledgments from the remote endpoint
and is, therefore, unable to declare packets as lost.

3) Packet Size: Generally, a sender builds packets as large
as the current PMTU estimation but restricts the size to base
PMTU in two cases. If the packet is not ack-eliciting or if an
ack-eliciting packet sent before at least a period of r without
receiving an acknowledgment for this or a later sent packet
(as described in Section III-B4).

Bandwidth: 100 Mbit/s
Delay: d

Loss Rate: p
MTU: PMTU

1 Gbit/s 1 Gbit/s

MTU: 1500 B MTU: 1500 B

Sender (Client)
Send Rate: s

Receiver
(Discard Server)

R1 R2

Figure 5. Network in simulation

Since QUIC waits for a period of E for an acknowledgment
of an ack-eliciting packet, we set r ≥ E. With r = E, a sender
restricts the size of the first loss probe packet. However, the
reduced packet is not necessarily a loss probe packet, since the
sender restarts the probe timer when sending an ack-eliciting
packet. With a send rate of E/2, for example, it restricts the
size of the third packet, when receiving no acknowledgment.

Since QUIC cannot estimate the time when to receive
an acknowledgment for a non-ack-eliciting packet, a sender
reduces the packet size based on an outstanding ack-eliciting
packet only. Consequently, it restricts the size of non-ack-
eliciting packets by base PMTU.

4) Congestion Window Reset: A sender counts the number
of consecutive persistent congestions and compares it to the
parameter c. However, to establish a persistent congestion
a sender needs to receive an acknowledgment. It ignores a
persistent congestion (and all previous ones) for the PTB de-
tection if it receives an acknowledgment for a later sent packet
whose size corresponds to the current PMTU estimation.

Note, with r ≤ 3 · E, a sender will not establish persistent
congestion if packet loss only happens when sending packets
larger than base PMTU.

V. SIMULATION

We use simulations to investigate the behavior of our PTB
detection algorithm in QUIC and to determine adequate values
for r, n, t and c.

We start with simulations to measure the time the PTB
detection needs to detect a PMTU decrease. Then, we run
simulations to measure side effects of the PTB detection with
the number of additional sent packets.

A. Setup

The QUIC simulation model (see Section IV-C) operates
within the INET network simulation model suite [30] that uses
the OMNeT++ simulation library [31].

1) Network: For all simulation runs, we use the network
shown in Figure 5. In the network, the links between the
hosts and the routers have a bandwidth of 1Gbit/s without
propagation delay. The link between the routers R1 and R2
is the bottleneck link. For the bottleneck link, we choose a
bandwidth of 100Mbit/s and a one-way propagation delay of
d. The routers use a drop tail queue with a size equal to the
bandwidth-delay-product 100Mbit/s · 2 · d. This bounds the
queuing delay to 2 · d. Depending on the queueing delay, the
RTT from one endpoint to the other is between 2 · d and 4 · d.

We configure the MTU of each network interface with
1500B. However, we reduce the MTU of the router interfaces

0 10 20 30 40 50
0

1

2

3

PT
B

D
et

ec
tio

n
Ti

m
e

[s
]

r = E

t = 2 ·d
t = 6 ·d + a
t = 10 ·d + 2 ·a

0 10 20 30 40 50
Bottleneck Delay d [ms]

r = 2 ·E
t = 4 ·d + a
t = 12 ·d + 4 ·a
t = 20 ·d + 7 ·a

0 10 20 30 40 50

r = 4 ·E
t = 8 ·d + 3 ·a∨ c = 1
t = 24 ·d + 10 ·a∧ c> 1
t = 40 ·d + 17 ·a∧ c> 1

Figure 6. PTB detection time for a congestion-control-limited sender where a denotes max ack delay = 25ms

towards the bottleneck link as required to modify the MTU of
the path between sender and receiver. The routers drop packets
larger than the MTU of the outgoing interface. We configure
the endpoints to ignore PTB messages.

2) Transmissions: The sender starts the QUIC connection
and directly searches for the PMTU by sending probe packets.

After the PMTU of 1500B has been found, the application
on the sender starts sending data. The send rate and the
size of the packets are relevant factors for the PTB detection
algorithm. We examine different cases.

• Congestion-control-limited. The application provides
enough data. The sender sends full-sized packets as fast
as the congestion control permits.

• Application-limited. The application sends messages with
a rate s that is slower than QUIC can send packets.
Thus, the message size influences the IP packet size (e.g.,
because it is equal to the message size plus the size of
headers). We use different message sizes.

– Fixed-sized. The application sends fixed-sized mes-
sages. We examine message sizes of 1400B, 1500B
and 3000B. With a PMTU estimation of 1500B,
these result in sending one packet, one full-sized
packet and one small packet and two full-sized
packets and one small packet, respectively.

– Variable-sized. The application sends messages with
a variable size. For each message, it randomly
chooses a size between 1042B and 1442B. With a
PMTU estimation of 1500B, this results in sending
one IP packet that is either smaller or larger than the
base PMTU of 1280B,

We set the send rate s by configuring the time distance
between two messages. Since the exact time when the sender
sends a packet might influence a result, instead of using a
constant distance, we use an exponentially distributed random
distance with 1/s as mean of the distribution.

To simulate packet loss, the bottleneck link drops packets
with a rate p. If p > 0, the simulation randomly selects the
packet to drop with a universal distribution.

To compensate random effects, we repeat the simulations
for each parameter set 1000 times. We present the result with
the mean and a 95% confidence interval (shown by vertical
error bars).

B. Detection Time

At first, we use the simulation to measure the time the
sender needs to detect that it sent packets that are too big.
For this, we set p = 0 and reduce the PMTU from 1500B to
1300B while the sender transmits data.

In the following, we present the times it takes the sender to
detect this PMTU decrease beginning from its first transmis-
sion of a packet that is too big.

1) Congestion-Control-Limited: The sender sends packets
for about 50 RTTs before the PMTU reduces. We configure
the simulation to reduce the PMTU randomly after a period
between 49 and 51 RTTs.

Since the sender sends full-sized packets only, after the
PMTU decrease, router R1 drops all packets from the sender.
The sender’s packet send rate is clocked by the acknowledg-
ments from the receiver until one RTT after the decrease. Then,
due to missing acknowledgments for the packets sent after the
decrease, the congestion control prohibits sending packets. On
PTO, the sender sends the loss probe packet. If r > RTT+E,
it sends a full-sized packet and must wait for the next PTO.
Otherwise, it sends a packet with a size of base PMTU,
which reaches the receiver and triggers an acknowledgment.
When the sender receives the acknowledgement, it declares all
outstanding full-sized packets as lost. For t ≤ 2 · d ≤ RTT ,
the PTB detection resets the PMTU estimation to base PMTU
and restarts the PMTU search. Thus, the sender resends the
lost data in packets whose size does not exceed the PMTU.
For a larger t, the sender keeps sending packets that are too
big and the procedure repeats.

Figure 6 shows the result for bottleneck link delays d from
1 to 50ms. The PTB detection time depends on when the
sender reduces the packet size (as specified by r) and whether
the time distance of lost packets is sufficient (i.e., at least t).
We plot PTB detection times for a sender that reduces the
packet size with the first (r = E), second (r = 2 ·E) or third
(r = 4 · E) loss probe packet. For each case, we set three
approximately upper limits for t, such that the sender detects
that it sent oversized packets on an acknowledgement after the
first, second and third reduced loss probe packet. With r = E,
for example, choosing a t < 2 · d yields to the same PTB
detection time as the blue line shows. We omit the variable n,
because we measured the same time for all n ≤ 20.

0.01

0.1

1

10

.
r = E r = 2 ·E

1400
B

r = 4 ·E

0.01

0.1

1

10

1500
B

0.01

0.1

1

10

3000
B

0 20 40 60 80 100
0.01

0.1

1

10

0 20 40 60 80 100
Send Rate s [msg/s]

0 20 40 60 80 100

[1042,1442]B
PT

B
D

et
ec

tio
n

Ti
m

e
[s

]

n = 1
n = 2∧ t = 10 s∧ c = 1

n = 4∧ t = 0∧ c = ∞
n = 4∧ t = 100 ms∧ c = ∞
n = 4∧ t = 200 ms∧ c = ∞

n = 16∧ t = 0∧ c = ∞
n = 16∧ t = 1 s∧ c = ∞
n = 16∧ t = 2 s∧ c = ∞

Figure 7. PTB detection time for an application-limited sender

The sender establishes persistent congestion only with r =
4 · E and only on the acknowledgment for the first reduced
loss probe packet. Thus, with r = 4 ·E, setting t = 8 · d+3 ·
max ack delay or c = 1 yields to the same detection time
as the blue line shows. For r = E or r = 2 ·E the parameter
c is irrelevant.

2) Application-Limited: The sender sends messages slower
than QUIC can send packets. We configure the simulation to
reduce the PMTU after one second of sending packets.

Figure 7 shows the PTB detection time for r = E, r = 2 ·E
and r = 4 ·E and send rates s between 1 and 100 msg/s. We
set the bottleneck link delay to d = 10ms. For the plot, we
choose values for n, t and c to visualize their influence on the
detection time.

As with the congestion-control-limited sender, an applica-
tion-limited sender sending messages with 1400B sends only
packets that are too big after the PMTU decrease. Therewith,
with higher send rates s, the detection time converges faster to
the value measured with the congestion-control-limited sender.
With message size 1500B, the acknowledgment for the small
packet helps to declare the large packet as lost. This becomes

visible in the detection time for n = 1. We see the same effect
with message size 3000B, which further shows that the more
packets sent at once, the less relevant becomes the parameter
n for the detection time. With variable-sized messages, the
sender might send multiple messages smaller than the reduced
PMTU in a row, which delays the detection time.

The green line shows the detection time when using persis-
tent congestion as signal. Since the sender establishes not in
every simulation run a persistent congestion, we also set n = 2
and t = 10 s to bound the detection time at about 10 s. As the
result shows, the sender establishes no persistent congestion
with r = E and r = 2 ·E and, as visible by the error bars, in
some runs not even with r = 4 ·E. Therefore, using persistent
congestion as the only signal is not sufficient.

C. Side Effects
Here, we use the simulation to analyze the effects of the

PTB detection without sending packets that are too big. To
still trigger the PTB detection we configure random packet
loss by a lossy link (with p > 0). When triggered, the PTB de-
tection reduces the packet size of outgoing packets on missing
acknowledgments and, in case of a false positive, restarts the

w/o

+20

+40

.
r = E r = 2 ·E

1400
B

r = 4 ·E

w/o

+50

+100

+150

1500
B

-20

w/o

+20

+40

3000
B

0 100 200 300 400

w/o

+50

+100

+150

0 100 200 300 400
Send Rate s [msg/s]

0 100 200 300 400

[1042,1442]B
N

um
be

ro
fA

dd
iti

on
al

Se
nt

Pa
ck

et
s

without
n = 1

n = 2∧ t = 0
n = ∞

Figure 8. Additional sent packets per minute with PTB detection and a lossy link (p = 2%)

PMTU search. Both result in sending additional packets (e.g.,
two small packets instead of one large packet and PMTU probe
packets) that consume extra computing power on all network
devices involved. To measure the additional packets, we run
the simulations with and without PTB detection enabled and
compare the number of packets sent by the sender.

We omit the results for a congestion-control-limited sender
here, because they show no statistically relevant number of
additional sent packets (i.e., because an acknowledgment for
one of the full-sized packets disqualifies any previously sent
lost packet for the PTB detection). We considered packet loss
due to congestion (caused by other congestion-control-limited
senders that share the same bottleneck link) instead of a lossy
link. But in order to trigger the PTB detection the application
on the sender had to send with such a high rate that itself
quickly became congestion-control-limited.

1) Continuously Low Packet Loss: For a continuous packet
loss, we set p = 2% and let the sender send packets for one
minute.

Figure 8 shows the result. It shows the number of sent
packets relative to the mean number of sent packets with PTB

detection disabled. The grey area around the base line shows
the 95% confidence interval. With PTB detection enabled,
we choose an extreme case that avoids false positives (i.e.,
n = ∞) to measure the additional packets solely due to the
packet size reduction in case of missing acknowledgments.

Due to the low packet loss rate p, multiple lost packets in
a short time are improbable. Consequently, the result shows
a significant number of additional sent packets only in cases
where a single packet loss may trigger the PTB detection. That
is the case in the form of packet size reduction with r = E
and a sender that sends only one packet per message or in
the form of false positives with n = 1. Setting r ≥ 2 · E and
n > 1 is sufficient to prevent a statistically relevant number
of additional sent packets. The values of t and c are irrelevant
for that.

2) Temporarily High Packet Loss: For a temporarily high
packet loss, we set p from 0 to 50%, and after one second
back to 0. We identified 50% as a high packet loss rate that
still transmits enough acknowledgements so that the sender
can declare dropped packets as lost quickly which favors
false positives. However, with such a high packet loss rate,

w/o

+20

+40

.
r = E r = 2 ·E

1400
B

r = 4 ·E

w/o

+20

+40

1500
B

w/o

+20

+40

3000
B

10 100 1000 10000

w/o

+20

+40

10 100 1000 10000
Send Rate s [msg/s]

10 100 1000 10000

[1042,1442]B
N

um
be

ro
fA

dd
iti

on
al

Se
nt

Pa
ck

et
s

without
n = 1

n = 2∧ t = 0
n = 2∧ t = 20 ms

n = 2∧ t = 60 ms
n = 4∧ t = 0

n = ∞

Figure 9. Additional sent packets with PTB detection and a high packet loss rate (p = 50%) for one second

the congestion control quickly reduces its cwnd. To avoid
an instant congestion-control-limited sending behavior, which
prevents false positives, before increasing p, we let the sender
send a 50Mbit message to increase its cwnd. Even though,
the sender becomes congestion-control-limited during the one
second. Therefore, using a longer period does not result in
substantially more sent packets.

Figure 9 shows the result. Again, it shows the number of
sent packets relative to the mean of sent packets with PTB
detection disabled and contains the red line for the extreme
case with n = ∞ to show the number of additional packets
without a false positive. The figure shows the result with c =
∞. Setting c = 1 increases the number of additional sent
packets only marginal if at all.

The high packet loss rate p may lead to multiple lost packets
in a short time. With t = 0, this leads to an early false positive.
The earlier the false positive the longer needs the following
PMTU search in average due to the longer time with the high
packet loss rate. The result shows that setting t ≥ 2 · d =
20ms effectively postpones and, for higher send rates s, even
prevents a false positive.

D. Result

The simulation results confirm our intuition that the smaller
the values for r, n, t and c, the faster the PTB detection.
However, given the fact that a PMTU decrease during a
connection is a rare case, we believe that it is more important
to reduce side effects (e.g., false positives) while still having
an adequate detection time.

Based on the results shown in Figure 8, we recommend
setting r ≥ 2 ·E and n > 1 to avoid additional packets when
experience a continuously low packet loss rate. Based on the
results shown in Figure 9, we additionally recommend setting
t ≥ SRTT to reduce additional packets when experience a
short time with a high packet loss rate. Based on the results
shown in Figure 7, we suggest setting n ≤ 4 and, with r ≥
4 · E, setting c = 1 to achieve an adequate detection time.

As an example, we propose setting r = 4 · E, n = 3,
t = 3 · SRTT and c = 1. With that, we measured a detection
time of approximately one second or less only and measured
a statistically relevant number of additional sent packets only
in the case with a high packet loss rate, a large cwnd and an
application-limited-sender with a low send rate (see Figure 9).

VI. CONCLUSION AND OUTLOOK

In this paper we presented a novel parameterizable algo-
rithm for reliable transport protocols to detect when sending
packets that are too big for the network path (PTB detection)
without a PTB message. For a case study, we chose QUIC
and presented results from PMTUD tests with QUIC imple-
mentations. The results show that their PTB detection is either
not function or implemented in a not QUIC conform way. We
further described how to integrate our PTB detection algorithm
into QUIC and how we used a QUIC simulation model to
evaluate the algorithm.

The results from the simulations we presented show the
time the algorithm needs to detect that packets were sent too
big and the side effects in the number of additional packets
sent when packet loss happens independent of the packet size.
Based on these results we suggested concrete parameter values
for the algorithm with which we were not able to measure
a statistically relevant number of additional packets in most
cases while still having an adequate detection time.

We expect that the PTB detection algorithm is applicable for
other transport protocols, too. Future work is required to proof
that. Such an algorithm is especially needed when a sender
does not process PTB messages. For example, a sender using
SCTP over Datagram Transport Layer Security (DTLS) [32]
(as used by WebRTC data channels [33]) will receive no PTB
messages, because DTLS does not provide these messages.

REFERENCES

[1] C. A. Kent and J. C. Mogul, “Fragmentation Considered Harmful,”
in Proceedings of the ACM Workshop on Frontiers in Computer
Communications Technology, ser. SIGCOMM ’87. Association for
Computing Machinery, Aug. 1987, p. 390–401. [Online]. Available:
https://doi.org/10.1145/55482.55524

[2] J. Postel, “Internet Control Message Protocol,” RFC 792, Sep. 1981.
[Online]. Available: https://www.rfc-editor.org/info/rfc792

[3] M. Gupta and A. Conta, “Internet Control Message Protocol (ICMPv6)
for the Internet Protocol Version 6 (IPv6) Specification,” RFC 4443,
Mar. 2006. [Online]. Available: https://www.rfc-editor.org/info/rfc4443

[4] R. Bonica, F. Baker, G. Huston, B. Hinden, O. Trøan, and F. Gont, “IP
Fragmentation Considered Fragile,” RFC 8900, Sep. 2020. [Online].
Available: https://www.rfc-editor.org/info/rfc8900

[5] A. Medina, M. Allman, and S. Floyd, “Measuring the Evolution of
Transport Protocols in the Internet,” SIGCOMM Comput. Commun.
Rev., vol. 35, no. 2, p. 37–52, Apr. 2005. [Online]. Available:
https://doi.org/10.1145/1064413.1064418

[6] M. Luckie, K. Cho, and B. Owens, “Inferring and Debugging
Path MTU Discovery Failures,” in Internet Measurement
Conference 2005, ser. IMC ’05. USENIX Association, Oct.
2005. [Online]. Available: https://www.usenix.org/conference/imc-
05/inferring-and-debugging-path-mtu-discovery-failures

[7] M. Luckie and B. Stasiewicz, “Measuring Path MTU Discovery
Behaviour,” in Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement, ser. IMC ’10. Association
for Computing Machinery, Nov. 2010, p. 102–108. [Online]. Available:
https://doi.org/10.1145/1879141.1879155

[8] M. de Boer and J. Bosma, “Discovering Path MTU Black
Holes on the Internet Using the RIPE Atlas,” NLnet
Labs, Tech. Rep., Jul. 2012, accessed: 2023-05-09. [Online].
Available: https://www.nlnetlabs.nl/downloads/publications/pmtu-black-
holes-msc-thesis.pdf

[9] A. Custura, G. Fairhurst, and I. Learmonth, “Exploring Usable Path
MTU in the Internet,” in 2018 Network Traffic Measurement and
Analysis Conference, ser. TMA ’18. IEEE, Oct. 2018, pp. 1–8.
[Online]. Available: https://doi.org/10.23919/TMA.2018.8506538

[10] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed
and Secure Transport,” RFC 9000, May 2021. [Online]. Available:
https://www.rfc-editor.org/info/rfc9000

[11] G. Fairhurst, T. Jones, M. Tüxen, I. Rüngeler, and T. Völker,
“Packetization Layer Path MTU Discovery for Datagram Transports,”
RFC 8899, Sep. 2020. [Online]. Available: https://www.rfc-
editor.org/info/rfc8899

[12] Y. Schwartz, Y. Shavitt, and U. Weinsberg, “On the
Diversity, Stability and Symmetry of End-to-End Internet Routes,”
in Conference on Computer Communications Workshops, ser.
INFOCOM ’10. IEEE, May 2010, pp. 1–6. [Online]. Available:
https://doi.org/10.1109/INFCOMW.2010.5466669

[13] R. Almeida, I. Cunha, R. Teixeira, D. Veitch, and C. Diot, “Classification
of Load Balancing in the Internet,” in Conference on Computer
Communications, ser. INFOCOM ’20. IEEE, Aug. 2020. [Online].
Available: https://doi.org/10.1109/INFOCOM41043.2020.9155387

[14] Í. Cunha, R. Teixeira, and C. Diot, “Measuring and Characterizing
End-to-End Route Dynamics in the Presence of Load Balancing,”
in Passive and Active Measurement, ser. PAM ’11. Springer
Berlin Heidelberg, Mar. 2011, pp. 235–244. [Online]. Available:
https://doi.org/10.1007/978-3-642-19260-9 24

[15] D. S. E. Deering and J. Mogul, “Path MTU discovery,” RFC 1191,
Nov. 1990. [Online]. Available: https://www.rfc-editor.org/info/rfc1191

[16] J. McCann, S. E. Deering, J. Mogul, and B. Hinden, “Path MTU
Discovery for IP version 6,” RFC 8201, Jul. 2017. [Online]. Available:
https://www.rfc-editor.org/info/rfc8201

[17] M. Mathis and J. Heffner, “Packetization Layer Path MTU
Discovery,” RFC 4821, Mar. 2007. [Online]. Available: https://www.rfc-
editor.org/info/rfc4821

[18] W. Eddy, “Transmission Control Protocol (TCP),” RFC 9293, Aug.
2022. [Online]. Available: https://www.rfc-editor.org/info/rfc9293

[19] R. R. Stewart, M. Tüxen, and K. Nielsen, “Stream Control
Transmission Protocol,” RFC 9260, Jun. 2022. [Online]. Available:
https://www.rfc-editor.org/info/rfc9260

[20] J. Iyengar and I. Swett, “QUIC Loss Detection and Congestion
Control,” RFC 9002, May 2021. [Online]. Available: https://www.rfc-
editor.org/info/rfc9002

[21] M. Bishop, “HTTP/3,” RFC 9114, Jun. 2022. [Online]. Available:
https://www.rfc-editor.org/info/rfc9114

[22] L. Pardue et al. QUIC Implementations. Accessed:
2023-05-09. [Online]. Available: https://github.com/quicwg/base-
drafts/wiki/Implementations

[23] C. Huitema et al. picoquic. Accessed: 2023-05-09. [Online]. Available:
https://github.com/private-octopus/picoquic

[24] D. Tikhonov et al. lsquic. Accessed: 2023-05-09. [Online]. Available:
https://github.com/litespeedtech/lsquic

[25] N. Banks et al. msquic. Accessed: 2023-05-09. [Online]. Available:
https://github.com/microsoft/msquic

[26] C. Bytheway et al. s2n-quic. Accessed: 2023-05-09. [Online]. Available:
https://github.com/aws/s2n-quic

[27] L. Rizzo, “Dummynet: a simple approach to the evaluation of network
protocols,” SIGCOMM Comput. Commun. Rev., vol. 27, no. 1, p. 31–41,
Jan. 1997. [Online]. Available: https://doi.org/10.1145/251007.251012

[28] T. Völker, E. Volodina, M. Tüxen, and E. P. Rathgeb, “A QUIC
Simulation Model for INET and its Application to the Acknowledgment
Ratio Issue,” in 2020 IFIP Networking Conference (Networking), ser.
IFIP ’20. IEEE, Jul. 2020, p. 737–742. [Online]. Available:
https://ieeexplore.ieee.org/document/9142723

[29] T. Völker, M. Tüxen, and E. P. Rathgeb, “The Search of the Path
MTU with QUIC,” in Proceedings of the 2021 Workshop on Evolution,
Performance and Interoperability of QUIC, ser. EPIQ ’21. Association
for Computing Machinery, Dec. 2021, p. 22–28. [Online]. Available:
https://doi.org/10.1145/3488660.3493805

[30] Z. Bojthe, L. Meszaros, G. Szászkő, R. Hornig, A. Varga,
and A. Török. INET Framework. Accessed: 2023-05-09. [Online].
Available: https://inet.omnetpp.org/

[31] OpenSim Ltd. OMNeT++. Accessed: 2023-05-09. [Online]. Available:
https://omnetpp.org/

[32] M. Tüxen, R. R. Stewart, R. Jesup, and S. Loreto, “Datagram Transport
Layer Security (DTLS) Encapsulation of SCTP Packets,” RFC 8261,
Nov. 2017. [Online]. Available: https://www.rfc-editor.org/info/rfc8261

[33] R. Jesup, S. Loreto, and M. Tüxen, “WebRTC Data Channels,”
RFC 8831, Jan. 2021. [Online]. Available: https://www.rfc-
editor.org/info/rfc8831

