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A B S T R A C T

Local and regional energy systems are becoming increasingly entangled. Therefore, models for optimizing
these energy systems are becoming more and more complex and the required computing resources (run-time
and random access memory usage) are increasing rapidly. The computational requirements can basically be
reduced solver-based (mathematical optimization of the solving process) or model-based (simplification of
the real-world problem in the model). This paper deals with identifying how the required computational
requirements for solving optimization models of multi-energy systems with high spatial resolution change
with increasing model complexity and which model-based approaches enable to reduce the requirements with
the lowest possible model deviations.

A total of 12 temporal model reductions (reduction of the number of modeled time steps), nine techno-
spatial model reductions (reduction of possible solutions), and five combined reduction schemes were
theoretically analyzed and practically applied to a test case. The improvement in reducing the usage of
computational resources and the impact on the quality of the results were quantified by comparing the results
with a non-simplified reference case.

The results show, that the run-time to solve a model increases quadratically and memory usage increases
linearly with increasing model complexity. The application of various model adaption methods have enabled
a reduction of the run-time by over 99% and the memory usage by up to 88%. At the same time, however,
some of the methods led to significant deviations of the model results. Other methods require a profound prior
knowledge and understanding of the investigated energy systems to be applied.

In order to reduce the run-time and memory requirements for investment optimization, while maintaining
good quality results, we recommend the application of (1) a pre-model that is used to (1a) perform
technological pre-selection and (1b) define reasonable technological boundaries, (2) spatial sub-modeling along
network nodes, and 3) temporal simplification by only modeling every 𝑛th day (temporal slicing), where at least
20% of the original time steps are modeled. Further simplifications such as spatial clustering or larger temporal
simplification can further reduce the computational effort, but also result in significant model deviations.
1. Introduction

A total restructuring of energy systems are required as response
to radical reduction of greenhouse gas emissions [1]. Thereby, local
and regional energy systems are becoming more complex due to the
introduction of renewable energies with hardly predictable and volatile
production, of energy storage systems, as well as due to sector coupling
and sectors with increasing relevance such as the e-mobility and the
hydrogen fuel sectors. Traditionally, individual parts of energy systems,
e.g., individual consumption sectors, energy sectors, or spatial regions,
are individually planned [2]. The increasing entanglement and com-
plexity of overall energy systems [3] make it necessary to carry out

∗ Corresponding author at: Department of Energy, Building Services and Environmental Engineering, Münster University of Applied Sciences, Steinfurt, Germany.
E-mail address: christian.klemm@fh-muenster.de (C. Klemm).

holistic planning [2]. This is the only way to fully exploit the potential
for achieving various transformation goals of integrated energy systems
[4]. Tools that utilize the multi-energy system (MES) approach [4] are
suitable instruments for investment and dispatch optimization [5,6],
as they take into account the complexity and interaction of different
energy sectors.

The increase in system complexity leads to a rapid increase of
required computing resources for energy system models. This applies
in particular to the run-time and the required random access memory
(RAM, hereafter referred to as memory) for solving the model. Conse-
quently, modelers must compromise between the computational effort
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on the one hand and the accuracy of the results on the other hand by
creating simplified models [7,8].

This paper deals with the challenge on reducing the computing
resources required to solve high-spatial-resolution models of mixed-use
MES without significant loss of quality of the results. Such reductions
can basically be achieved by solver-based or by model-based meth-
ods [9]. While solver-based approaches deal with the mathematical
optimization of the solving algorithm, model-based approaches are
concerned with simplifying the real-world problem in the model [9].

Improving solvers which are tailored to be applicable to a wide
variety of models from different domains is often out of the expertise
of modelers. Instead, modelers should make use of their deep under-
standing of the structure of energy systems when modeling a real-world
scenario. At this point, model-based adaptations can be incorporated in
order to minimize the run-time on a given computer. This contribution
investigates such model-based approaches.

Some research has been made on model-based run-time and mem-
ory reduction methods for energy system models. Several publications
provide an overview of existing approaches to model adaptation [9–12]
or focus on simplifying certain types of energy systems, e.g., power
systems [13]. Temporal model adaptions are addressed by some pub-
ications in general [14–16] or for specific use cases, e.g., storage
lanning [17,18] or long time series of wind power and photovoltaic
pv) systems [19]. Others deal with specific methods, such as temporal
lustering [7,20–22], heuristic selection [23–29], multiple time grids [30],
veraging [29], or variable time steps [31]. Similarly, some articles deal
ith techno-spatial model adaptions more generally [32] and others are

elated to specific methods, such as spatial clustering [33], or specific
se cases, such as urban energy systems [34].

However, most of the literature focuses on either temporal model
daptions (e.g., [14,15]) or techno-spatial model adaptions (e.g., [32,
3]), but does not compare the two. Further, most studies either deal
ith only one energy sector (electricity, e.g., [17,19,28], or heat, e.g.,

24]) or with very large-scale spatial energy systems and correspond-
ngly low spatial and technological resolutions (e.g., [9,29]). Since
odel results are affected by different effects depending on the energy

ectors considered and on the spatial and technological resolutions
e.g., by the interaction of individual buildings), we suspect that model
eduction methods may also affect different types of energy system
odels differently. For the case of spatially high-resolution multi-

nergy system models, it is therefore necessary to find out which
arameters have a particularly large influence on the computing re-
uirements. These can be, for example, the number of simulated time
teps or the number of (binary) investment decisions. Furthermore,
uitable methods of model reduction must be identified and their
nfluence on the quality of results quantified. This paper aims to fill
his gap. Several approaches are evaluated and categorized in Section 2,
nd new ones will be proposed. Subsequently, suitable approaches will
e implemented in practice and examined using a practical example.

. Overview of run-time and memory reduction methods

Run-time and memory usage reduction methods may be grouped
n various categories as shown in Fig. 1. The categories of solver and
odel-based approaches, as mentioned above, can be subdivided into

urther categories.
Model-based methods aim at reducing the size of the system of

quations to be solved by the solver. They can be divided into temporal
odel adaptions as well as technological and spatial model adaptions.
echnological and spatial measures cannot always be clearly separated
rom each other and are combined in the category of techno-spatial
odel adaptions. Within those sub-categories further distinctions be-

ween model reduction methods (systematic reduction of the model
omplexity [10]) and decomposition methods (breaking up of the
2

odel and subsequent solving and coupling of the sub-models’ results
[10]) can be made [9]. In model reduction, the overall model is re-
duced in size, which reduces run-time and memory requirements. With
decomposition, the overall size of the model can be retained, but the
sub-models may have lower individual memory requirements. Further
run-time improvements can be enabled by solving the individual sub-
models in parallel. However, parallelization techniques are not the
focus of this study.

Whether the individual model adaption methods can be transferred
to a model without coding effort depends strongly on the modeling
tool used. In some tools, e.g., downsampling can be applied by simply
adjusting the models temporal resolution, whereas in others it is not
possible. Also, clustering approaches (temporal or techno-spatial) can
be implemented by adjusting the input data; on the other hand, auto-
mated adjustment of the input data requires coding effort or the use of
external clustering tools.

2.1. Temporal model adaptions

Temporal model simplifications can be realized through model re-
ductions or through decomposition. Model reductions include sampling
(‘‘reducing number of time steps by aggregating consecutive steps or
by defining typical [periods]’’ [13]) and the adaption of the model
structure (e.g., temporal resolution or time horizon). When using sam-
pling methods, the applied modeling methodology must either be able
to model specific time slices or time periods. Alternatively, the sample
periods can be combined to a new shorter time series. In this case, as
with the use of averaging , the modeling methodology must allow the
use of a shorter time horizon.

Temporal model adaptions may lead to inaccuracies due to concur-
rency and continuity problems [19]. Concurrency arises when events
that meet or overlap in reality are not adequately represented by
the simplification in the model [19]. To avoid concurrency problems,
reduced time series should be self-consistent and include all important
events of the analyzed time series [19]. Continuity problems arise when
the temporal change (e.g., the state of charge of a storage) cannot be
adequately modeled because of the adapted time series [19]. This can
involve intra-day, intra-week, and seasonal balancing [18]. To avoid
continuity problems several consecutive days (e.g., weeks) rather than
single days should be used when selecting suitable sample periods
[19,25].

random sampling: In random sampling, a predetermined number of
random periods (e.g., days or weeks) are selected and used as repre-
sentative time periods [14].

averaging: In averaging, successive time periods (e.g., two consecutive
days) are averaged and combined into one segment [14].

slicing: In slicing, every 𝑛th period is selected (e.g., every second day
[14]) and subsequently recombined to a reduced time series.

k-clustering: The k-clustering algorithm divides a time series into a
given number of 𝑘 clusters so that the squared deviation of the cluster
centers of gravity is minimal. The procedure is well described by Green
et al. [7]. They also recommend using the time vector of a whole
day (e.g., the temperature trend) as cluster criterion. Representative
time periods can be extracted from the individual clusters by either
calculating the mean cluster-vector or by selecting the medians or
medoids of the cluster elements [20]. For energy system model time
series simplification, the k-clustering algorithm is mostly carried out
using mean values [18]. However, Helistö et al. rated k-medoids to be

more suitable than k-means [20].
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hierarchical clustering: In hierarchical clustering, similar time periods
(e.g., days or weeks) are grouped into clusters as well. In compari-
son to k-clustering, the number of periods per cluster varies, so that
only similar periods are in a cluster. An appropriately representative
period is then selected and weighted according to the cluster size [25].
Thus, the application of this method requires a modeling methodology
allowing the weighting of single time steps or periods. Hierarchical
clustering is more precise than k-clustering, but also involves more
effort [7]. In addition, a weight must be assigned to the representative
time periods, which cannot be easily implemented in every modeling
approach. The exact procedure of hierarchical clustering is described
in detail by Nahmacher et al. [25].

heuristic selection: In heuristic selection, representative time periods
of a time series are selected from certain selection criteria [19]. For
example, Poncelet et al. [23] propose a scheme to select between
two and 24 reference periods from a year. The selection is based on
seasons as well as extreme and average values of electricity demand,
wind power feed-in and pv feed-in. Time periods which have not been
selected are removed [19].

time horizon reduction: Depending on the length of the modeled time
horizon, it should be examined whether a shorter model period would
produce similar results, e.g., by modeling a single year instead of
several years.

downsampling: The temporal resolution of an entire time series is
changed. For example, the resolution can be changed from a 1-hourly
to a 3-hourly temporal resolution [19]. For application, the modeling
methodology used must allow the temporal resolution to be adjusted.

variable time steps: The variable time steps method defines critical time
eriods (as with heuristic selection) that are particularly important for

the design of the investigated energy system. For these critical periods
a high temporal resolution (e.g., hours) is used, for less important
ones a coarser [31]. This method can enable more realistic modeling,
3

especially with regard to energy storages [31]. For the application the n
applied modeling methodology must be able to use varying time steps
within one model.

rolling horizon: Rolling horizon is a decomposition method in which
the time series is divided into shorter intervals. Thus, several reduced
sub-models are obtained, which are solved one after the other [9].
Rolling horizons come with the disadvantage that each sub-model is
updated and coupled by a previous sub-model, so that parallelization
of the process is not possible [9].

temporal zooming: To overcome the problem of the rolling horizon
method to be incompatible with parallel solving, Cao et al. propose the
method of temporal zooming [9], which is a decomposition method as
well. Thereby, a model run with a reduced time series using downsam-
ling is carried out. Afterwards, as with the rolling horizon method,
everal time periods are defined. Time-linking information between
hose periods are obtained from the first model run, so that the individ-
al time periods can be modeled simultaneously. In contrast to rolling
orizon, an additional run is necessary, but run-time can be saved by
arallelizing the remaining runs [9].

ultiple time grids: With the decomposition method of multiple time
rids, the temporal resolution is varied for different model compo-
ents and modeled in separate time systems [14]. Therefore, the ap-
lied modeling methodology must allow the application of varying
ime steps. Kotzur et al. [18] propose, e.g., a two-layer system when
odeling seasonal storages. In the first layer, intra-day relationships

e.g., volatile production) are considered, while in the second, intra-
eason relationships (e.g., seasonal storage) are considered [14].

.2 Techno-spatial model adaptions

Techno-spatial methods aim at reducing the number of possible
ombinations of investment decisions. Technological and spatial resolu-
ion are strongly related and they are often reduced together. Although
he different methods described in the following usually have a tech-

ological or spatial focus (as the name often suggests), they may
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Fig. 2. Possible modeling error caused by spatial clustering. The fictional clustering of two sub-systems (A and B) with internal electricity production (e.g., by a pv system) and
demands (e.g., electricity) of different load profiles. By clustering the profiles, the sub-systems balance each other out, resulting in an incorrect balance of imports and exports.
With different system parameters (costs, emissions, …) for import and export, this leads to an overestimation of the share of own consumption and can lead to errors in investment
decisions.
also influence the other aspect in each case. For example, a coarser
sometimes unifies technologies with different technological parame-
ters (e.g., differently oriented pv systems or heating systems with
different efficiencies), while technological aggregation might combine
technologies with a location focus (e.g., pv systems with different
spatial references), in technological interactions between sub-systems
are neglected (e.g., exchange of energy between subsystems), and in
spatial parameters may be used for technological distinctions (e.g., spa-
tial location of heating networks). Therefore, the reduction of both is
combined in one category.

Techno-spatial model adaptions can be carried out by model reduc-
tion or decomposition (see Section 2). Model reduction can furthermore
be divided into the limitation of investment decisions (i.e., reduc-
tion of the decisions to be included within the solved model) and
adaptions of the model structure (e.g., coarsening of the spatial reso-
lution or adjustment of the mathematical approach by avoiding binary
decisions).

technological pre-selection: With the help of preliminary studies (e.g., so-
lar potential, geothermal cadastres, or pre-models) or with the modelers
deeper understanding of the investigated systems, non-profitable tech-
nologies can be identified with regard to the optimization criterion,
which will certainly not be considered in the optimized energy system
scenario. These technologies can be excluded from the model to reduce
the number of investment decisions. If technologies are removed from
the model due to of inaccurate or false assumptions, this automatically
leads to model errors.

technological aggregation: If there are model components that differ
only slightly from each other, they can be grouped together to reduce
the number of investment decisions. For example, pv systems that
supply for the same energy demand but have minor orientation (tilt
and azimuth angles) differences may be grouped together.

spatial clustering: If there are repetitive or highly similar functional
units in an energy system, the same investment and operational de-
cisions are being made multiple times by the model. Comparable units
(e.g., similar building types) may be clustered and aggregated into a
grouped unit. For urban energy systems, Zhang et al. [33] recommend
building clusters with a spatial diameter between 100 m and 1 km. If
sub-systems are clustered which have insufficiently similar load pro-
files, this can lead to significantly varying model outputs. Fig. 2 shows,
as an example, the fictional clustering of two sub-systems. To avoid this
error, only similar sub-systems should be aggregated. Suitable cluster
variables should be used [34], such as the year of construction, usage
type, renewable energy potential (e.g., solar power potential), energy
demand, and load characteristics [33,34].
4

linearization: As soon as an energy system model contains binary de-
cisions, it is a so-called non-convex model. Such systems are generally
harder to solve [35]. Therefore, modelers should aim to ‘‘stay convex
where possible’’ [10], by avoiding non-linearities [13]. This can be
done by ‘‘assuming linear relations or discrete steps’’ [13].

Linearizations can be applied to various aspects of the model, such
as cost structures and modes of operation. Fig. 3 shows an exemplary
linearization of binary investment decision between different pipe di-
ameters of a district heating output with non-linear cost progression
(black bars). Depending on which costs/pipe diameters are used as
reference points (dots), significantly different linearized cost functions
(red lines) may occur.

Fig. 3. Linearization of binary investment decisions: The choice of various reference
points for linearization can lead to significantly deviating results.

technological boundaries: In order to limit the solution space to be
investigated by the solver, boundaries (e.g., limits of possible plant
capacities) should be set as tightly as possible [36]. This includes, for
example, limiting the investment decision and not allowing any unre-
alistic investment decisions. This can improve the numerical behavior,
as well as the solving time [36]. Technological boundaries can be
defined based on preliminary studies, on pre-models or on the deeper
understanding of the investigated system. If investment boundaries are
defined to tight based on inaccurate or false assumptions, this may lead
to modeling errors or even non-solvability of a model.

spatial resolution: By adjusting the spatial resolution, the number of
sub-systems to be modeled can be reduced, just as with spatial clus-
tering . In contrast to spatial clustering, however, the approach is less
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structured and sub-systems are aggregated solely according to their spa-
tial location. Due to the spatial clustering error described above (Fig. 2),
the structured approach of spatial clustering is therefore preferable over
the simple adjustment of spatial resolution.

geographical coverage: Similar to the choice of the time horizon reduc-
tion, the geographical coverage of the model should be just as large as
necessary for the research question. For example, it is not necessary
to model an entire country for the design of a single building energy
system. Possibly, it can be useful to divide the spatial area into several
sub-models (see ).

spatial sub-modeling: If there are completely independent investment
decisions in the model, decomposition can be used to create spatial
sub-models that are easier to solve. This may be the case, for example,
if there is no technological connection between two spatial sub-areas.
Sub-models can be solved in parallel.

technological case distinction: If there are central binary decisions which
cannot be linearized, decomposition can be used to create technological
sub-models that are easier to solve. This can, for example, be applied for
the differentiation between centralized and decentralized heat supply.
Case distinctions can be particularly useful if the individual model runs
can be performed in a parallelized computing environment.

3 Materials and methods

3.1 Test case

The majority of the model simplifications described in Section 2
were applied to the test case area shown in Fig. 4. It is a real-
world system (except COM2, which was added so that at least two
non-residential are part of the system) which was selected to comply
with the structure of larger urban areas. It therefore contains different
buildings types (single-/two-family buildings, multi-family buildings,
commercial buildings, buildings without energy demand) and roof
orientations. Furthermore, the reference case of this system (model
without simplification methods) is solvable with the computing re-
sources available for this study with a run-time below 24 h and memory
usage below 64 GB.

This test case area has already been used in previous studies [37–40]
and has proven to be suitable for urban energy system modeling.

The modeled test case thus included a total of three semi-detached
buildings, two multi-family buildings, two commercial buildings, and
two garages. Only buildings that have an energy demand themselves
or have at least one roof surface with pv potential (regarding to [41])
are considered. The garages have pv system potential but no energy
demand of their own. All other buildings have both electricity and
heating demands. The goal of the applied model was to optimize the
financial costs of the systems’ energy supply. For this purpose, an
investment and dispatch optimization in different technologies of sector
coupled electricity and heat supply was performed.

3.2 Model description

The ‘‘Spreadsheet Energy System Model Generator’’ (SESMG) [42]
was utilized. The underlying ‘‘Open Energy Modeling Framework’’
(oemof) and its sub-modules have been widely validated [43,44]. The
gurobi solver [45] was used.

A bottom-up analytical approach and the mathematical approach of
(mixed-integer) linear programming ((MI)LP) were applied. Methods
of simulation as well as dispatch and investment optimization were
carried out. For the reference case, an hourly temporal resolution, a
temporal horizon of one year, and a building-sharp spatial resolution
were applied. A perfect foresight model is assumed, using weather data
from the nearest station (ID 1078) of the German Weather Service
(DWD) [46]. The year 2012 was considered, which was an average
5

Fig. 4. Test case area to which the model simplification methods were applied.

solar year [47]. The minimization of financial costs were applied
as optimization criterion. Therefore, the energy system configuration
which enables the lowest system costs, was to be identified for the test
case area.

The model included 79 linear and 20 binary investment decisions
(see Appendix A). As long as there was no technological limitation for
linear investment decisions, e.g., by available space, the model was
allowed to design energy-converting technologies (e.g., heat pumps and
gas heating systems) between 0 and 999 kW and storage technologies
between 0 and 9999 kWh. Binary decisions could either be made with
the predefined capacity or not at all.

There is area competition for the investment in pv and solar ther-
mal systems on building roofs. This was considered within the model
by using competition constraints. These allow investment in only pv
systems, only solar thermal systems, or proportionately, e.g., half and
half, yet no double investment for a specific area is allowed.

The investment costs for district heating pipes (−40%) and battery
storages (−65%) were artificially reduced. Otherwise their investments
would not have been considered in the reference case. This was neces-
sary in order to study the influence of the various model simplifications
on the use of these technologies in the model.

Furthermore, it is worth mentioning that the model included the
possibility to exchange electricity between the individual buildings in
exchange for grid fees and the like.

A complete description of the model, including the component
structure, as well as all used model parameters is given in Appendix B.
A Linux-operated computing cluster was used. The models were per-
formed on an isolated computing node with 24 physical cores (2.5 GHz)
and 64 GB of RAM. In this way, interactions with other processes on
the computer cluster were avoided.

3.3 Run-time reduction

First, a reference model-run without any adaptions was carried out
followed by several model simplifications. The results of these runs
were then compared with the reference case. The time required to
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solve the model, the required memory, the determined target value
(system costs) and the investment decisions made were compared as
benchmarks. For the run-time and the memory usage we focus on the
pure solving process, without pre-processing and post-processing, as the
processing part is usually the bottleneck of large energy system models
[9].

3.3.1 Temporal model adaptions
The methods described in Section 2.1 were applied to the test case.

For sampling methods, days (e.g., recommended by [26]) and weeks
(e.g., recommended by [27]) are tested for suitability as sampling
periods. The number of modeled time steps was reduced with each
method (as far as possible) reduced to 50%, 20%, 10%, 1.9% (only
for reference weeks, equals to one week), and 0.8% (only for reference
days, equals to one day) of the original time steps. The results were
evaluated in terms of which methods show a converging behavior to the
reference case with increasing number of time steps. For methods show-
ing converging behavior, more accurate results with increasing number
of modeled time steps can be expected. In contrast, for methods with
results varying around the reference case depending on the number
of time steps modeled, only certain configurations allow results with
certain quality.

random sampling: Random sampling was carried out using random
ays, as well as weeks as reference periods. The‘‘random’’-library [48]
as utilized for that purpose. To ensure reproducibility, a ‘‘seed’’ was
efined, so that with each run the same random period is selected. A
andom time series of, e.g., ten periods therefore automatically makes
p ten periods of a random time series of, e.g., 20 periods.

veraging: According to the above described degrees of reduction of
time steps numbers of consecutive days and weeks were averaged.

slicing: Slicing of several numbers of days and weeks was carried out
and applied. For the above described degrees of time step reduction,
every 𝑛th sample period (reduction of the time series by more than
50%) was included in the modeling. In addition, the number of time
steps modeled was reduced by only 25% by removing every fourth
sample period from the time series.

k-clustering: k-means-clustering as well as k-medoids-clustering were
carried out using the ‘‘scikit-learn’’ [49] and ‘‘scikit-learn-extra’’-librarie
[50]. Three different data types, for which the largest model influence
was assumed (1. temperature, 2. solar radiation, 3. electricity demand)
were applied as cluster criteria. The vectors of entire days, respectively
weeks, were applied as cluster-vectors. The air temperature impacts the
heat demand and investment decisions of the entire heat sector and thus
exerts a great impact on the overall system. The solar irradiation has
a strong impact on the performance of pv systems and the electricity
demand. By taking electricity demand into account, deviations in the
courses of the week and year can be mapped. Days and weeks were
tested as sample periods. The number of time steps was reduced in
each case by the degrees described above, with an exception for the k-
medoids algorithm. Since at least three sample periods were contained
in a cluster to form a medoid, the number was reduced by 67% instead
of 50%.

heuristic selection: Based on the approach of Poncelet et al. [23], a
heuristic selection scheme was carried out (see Table 1) considering
different numbers 𝑛 of reference periods. However, since they used
this approach for simplifying time series of renewable electric feed-
in, the selection criteria chosen there (1. total load, 2. wind load, 3.
pv load) were replaced by criteria more suitable for the context of
this study. Again, the criteria of 1. air temperature, 2. solar radiation
and 3. electricity demand were applied. Days and weeks were used as
reference periods. The number of time steps modeled differs from the
above mentioned degrees of reduction due to the chosen schemes.
time horizon reduction: The time horizon was shortened and several
time horizons (1/2 year, 1/4 year, 1/8 year) were applied.
6

t

Table 1
Heuristic selection scheme with up to three different selection criteria, based on
Poncelet et al. [23] (adapted).
𝑛 Season(s) Criterion 1 Criterion 2 Criterion 3

2 Year hp, lv – –
4 Year hp, lv ha, la –
8 Summer, winter hp, lv ha, la –
16 Winter, spring, summer, fall hp, lv ha, la –
24 Winter, spring, summer, fall hp, lv ha, la ha, la

Acronyms: hp = highest peak, lv = lowest valley, ha = highest average, la = lowest
average.

downsampling: Different multiples of the original 1-hour resolution
were applied and the number of modeled time steps reduced by the
degrees described above.

For the applied temporal model adaptions, the model needed to be
adjusted with respect to its temporal structure. To ensure the correct
relationship between variable and periodical (annual) costs in the case
of shortened time series, variable costs were multiplied by the variable
cost factor:

variable cost factor =
original number of time steps

new number of time steps (1)

Furthermore, the modeled time series was shortened under certain
conditions. For a time series’ adjustment, the simplification factor
should ideally be divisible by the length of the given time series without
remainder. For example, out of 365 days, every fifth day can be selected
via slicing without any problems (365∕5 = 73), but every tenth day
results in a remainder (365∕10 = 36.5). In order to simplify the time
series correctly in such cases, the given time series was shortened
to the end, so that the calculation became executable error-free. For
example, for slicing with every tenth day the time series would have
been shortened to 360 days (360/10 = 36). In sampling methods (see
Fig. 1), the selected periods were strung together and merged into a
new time series. The individual sample periods were partially assigned
new time stamps.

The methods of multiple time grids and variable time steps were not
tested, because the applied modeling methodology does not allow the
application of varying temporal resolutions within a single model run.
Furthermore, hierarchical clustering was not applied, because in the

odel structure chosen, it is not possible to assign different weightings
o individual time steps.

Within the rolling horizon method, investments are carried out based
n only a part of the time horizon. Since we assume a perfect foresight
odel (see Section 3.2) this leads to continuity and competition prob-

ems. For other model types such as dispatch optimization models (see,
.g., [51–54]) and models that do not assume perfect foresight, rolling
orizon can be useful.

Within the temporal zooming method, investment decisions are made
n the basis of the first (downsampled) model-run and therefore offers
o advantage over conventional downsampling for investment deci-
ions. Due to this lack of suitability for investment optimization, rolling
orizon and temporal zooming were neglected in the following parts of
his study.

.3.2 Techno-spatial model adaptions
The techno-spatial model adaptions described in Section 2.2 were

pplied to the test case. A full list of the applied techno-spatial model
daption schemes is listed in Appendix C.

echnological pre-selection: Technologies for which no investment deci-
ion had been carried out within the reference case were removed from

he model to reduce the number of investment decisions.
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technological aggregation: Technological aggregation was used when a
building had several differently oriented roof surfaces suitable for pv
and solar thermal use. In this case, multiple investment decisions of
pv or solar thermal systems were merged. Different model parameters
(azimuth, tilt) were weight-averaged according to capacity fractions. In
the test case, this applied to SDB2 and COM1 (see. Fig. 4).

spatial clustering: Sub-systems (buildings) were clustered according to
their usage type. In different model tests, either similar building types
(semi-detached buildings, multi-family buildings, commercial buildings
and garages, as scheme C1), or similar usage types (residential build-
ings, commercial buildings, garages, C2), or all buildings of the system
were clustered. For the building clusters, component types (e.g., pv
systems, C2) and associated investment decisions were aggregated. An
exception were the insulation measures, which could not be aggregated
with the applied modeling methodology. Solar thermal and pv systems
were aggregated into 45◦ groups according to their azimuth angle.

inearization: Within the reference case, district heating pipes were
arried out as binary investment decisions. In total, the district heat-
ng network contained 20 possible pipe sections, each containing one
inary investment decision. In five test runs, only the house connection
ipes (as scheme D1), only the distribution pipes (D2), respectively
ll pipes with different linearization reference pipes (D3 to D5) were
pplied.

echnological boundaries: The overwhelming share of linear investment
ecisions were considered with high investment caps (see Appendix A).
n order to limit the resulting large solution space of the model, those
nvestment caps were tightened, based on the results of the reference
ase. Unless there was a stricter restriction before (for pv systems and
olar thermal systems) the investment caps were set at 500% (as scheme
1), 200% (E2), 150% (E3), and 100% (E4) of the value determined in
he reference case. Binary decisions remained in the model as within
he reference case.

patial sub-modeling: The model was divided into two sub-models along
he heating network starting from the heat source. The first sub-model
as scheme F1) included the three semi-detached buildings and garages.
he second sub-model (F2) included the multi-family buildings and
ommercial buildings. The partial results were then combined. In the
ggregation of plant outputs, the two partial results were added up. The
entral heat source is included in both sub-models. This was taken into
ccount in the final consolidation of the results.

echnological case distinction: A distinction was made between a system
f centralized heat supply (G1) and a system of decentralized heat
upply (G2). The investment decisions were then taken from that model
un, for which the lower optimization value (system cost) had been
alculated.

No modification of the geographical coverage was tested. A reduction
f the spatial resolution was not reasonable due to the limited size of the
est case area.

.4 Combined model adaptions

After individual tests, the methods with the best results, i.e., those
hat allowed the best run-time/memory usage improvements with the
east result deviation, were combined. A total of five method combina-
ions were tested.

Results

.1 Reference case

The reference case model with cost-based optimization resulted in
he investment decisions listed in Table 2. Solving the model took
7

2:12:15 h and required a maximum of 12.24 GB of memory. The f
model results show, that only decentralized battery and thermal storage
systems were designed, but no centralized storage systems. While the
buildings connected to the district heating network (MFB1, MFB2,
COM1) were completely centrally supplied with heat, all other build-
ings were supplied with decentralized heat.

Table 2
Model results for investment decisions of the reference case and the resulting system
costs. Identical technologies in different sub-systems are aggregated in the presentation
of results.

Technology Model decision Unit

Photovoltaic systems 52.31 kW
Gas heating systems 72.79 kW
Ground coupled heat pumps 12.57 kW
Air source heat pumps 1.68 kW
Combined heat and power plant 29.63 kW
Central heating plant 66.73 kW
Battery storages 3.39 kWh
Thermal storages 413.80 kWh
District heating house connection pipes 3
District heating distribution pipes 5
Wall insulation 0 m2

Window insulation 0 m2

Roof insulation 0 m2

System costs 56 634 e/a

4.2 Temporal model adaptions

Fig. 5 shows the impact of the applied temporal model adaptions
on the model run-time (left) and memory requirements (right) as a
function of the number of time steps modeled. Note that only run-time
and memory usage of the solver is shown. For the entire modeling pro-
cess increased requirements may arise, depending on the computational
resource intensity of the pre-processing and post-processing.

run-time: The quadratic regression (𝑅2 = 0.80) of the individual model
uns shows that the run-time increased quadratically with an increas-
ng number of time steps. However, the correlation cannot be gen-
ralized, individual points clearly fall above (e.g., slicing) or below
e.g., downsampling) the regression curve.

emory usage: The relationship between memory usage and modeled
ime steps can be described by a linear regression (𝑅2 = 0.99).

For the sake of clarity, the detailed results of the individual runs
re only shown in the Appendix. In Appendix D all results are shown
n tabular form. In Appendix E, the deviations of the optimized system
osts and the aggregated investment decisions for different technologies
epending on the selected temporal model simplification are plotted for
he two most promising methods.

licing: Investment decisions and system costs tended to converge well
to the reference case with increasing temporal resolution. The choice of
days as a sampling period is preferable, since the deviations are slightly
smaller compared to the reference case than for weeks, especially as
the number of modeled time steps increases (see Appendix D). On the
other hand, in case of a very high temporal simplification (e.g., every
10th day or week), technologies that were designed in the reference
case are taken into account more quickly when reference weeks are
selected (e.g., Appendix E-5’). Useful results, i.e., no complete technol-
ogy changes within individual sub-systems and more than half of all
investment decisions with a deviation of less than 15%, occurred if at
least 20% of the reference time steps were modeled. However, note
that also in this case there are bigger deviations for some investment
decisions, e.g., for battery storages (−67%, by slicing days).

veraging: The results tended to converge to the reference case with
ncreasing temporal resolution. Advantages in the sample period to
e averaged cannot be generalized. If days were chosen, the results

or system costs (Appendix E-1), gas heating systems (Appendix E-3)
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Fig. 5. Run-time and memory requirements depending on the number of time steps modeled. All values are also listed in Appendix D. The memory usage can be described by a
linear regression (𝑅2 = 0.99) depending on the modeled time steps. The run-time can be described by a quadratic regression (𝑅2 = 0.80). The lower coefficient of determination
hows that the run-time is also dependent on other parameters.
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nd central heating plant (Appendix E-7) converged faster or more
ccurately to the reference case. Weeks were more suitable for pv sys-
ems (Appendix E-2’), air source heat pumps (Appendix E-5’), and the
ombined heat and power (chp) plant (Appendix E-6). Useful results,
.e., no complete technology changes within individual sub-systems and
ore than half of all investment decisions with a deviation of less than
0%, occurred whenever at least 20% of the reference time steps were
sed. Note, that, also in this case, there are larger deviations for some
nvestment decisions, e.g., battery storages (−84%, by averaging days).

ownsampling: The downsampling result curves came closer to the
eference values with increasing temporal resolution. However, the
eviations from the reference case show significant deviations for the
esign of pv systems (−100% to +49%), chp plants (−31% to +376%)
nd district heating pipes (−20% to +133%) and for system costs (−1%
o +1102%) and battery storages (−100% to +57 331%) even the largest
eviations of all methods examined (see Appendix D).

andom sampling: With random sampling, investment decisions for
ome technologies converged to the results of the reference case with
ncreasing number of modeled time steps (e.g., thermal storages, dis-
rict heating pipes, see Appendix D). However, other investment de-
isions deviated steadily from the reference results or even fluctuated
round the reference values, regardless of the modeled number of time
teps, e.g., for the chp plant (−100% to +64%), central heating plant
−100% to +119%), battery storages (−91% to +2052%), and thermal
torages (−84% to +437%).

euristic selection: Heuristic selection allows, depending on the applied
cheme, for some investment decisions results with comparably small
eviations to the reference case even with a small number of simulated
ime steps, e.g., at 192 modeled time steps for system costs (−2 %) and
as heating systems (−25%). For the same schemes, other investment
ecisions, however, had large deviations, e.g., for the case of 192
odeled timesteps heat pumps (−100%), thermal storages (+306%)

nd solar thermal systems (no investment in the reference case, see
ppendix D). Overall, there are many outliers (e.g., thermal storage
8

apacities oversized by up to +578%) and fluctuations in the results.
-clustering: The results of k-clustering are, overall, noisy (see Ap-
endix D). In the k-means-clustering (temperature criterion) of days,
he investment decision of pv systems converged to the reference
ase; gas heating systems were about 80% under-designed and did
ot converge to the reference case. In the k-medoids clustering (solar
adiation criterion) of days, some technologies that were relevant in
he reference case were not considered at all (battery storage and
round coupled heat pumps (gchp)). In other schemes, decisions partly
luctuated around the reference decisions instead of converging to
hem. The clustering of weeks behaved somewhat more steady than
hat of days. Overall, for k-clustering no clear trend is discernible and
t is unclear under which setting a consistently converging behavior can
e expected.

ime horizon reduction: Shortening the time horizon, led to large model
eviations. In particular, if the time horizon was reduced by more
han half, the ratio of winter to summer days is significantly changed,
eading to undersizing of pv systems and related components, such
s battery storages and heat pumps (all −100% for a quarter of the
eference horizon). On the other hand other components are oversized,
uch as gas heating systems (+200%), thermal storage (+102%) and
he chp plant (+308%). System costs were also greatly overestimated

whenever the time horizon was shortened.

4.3 Techno-spatial model adaptions

The results show that the run-time depends largely on the number
of binary investment decisions (Fig. 6, left) and that the memory
depends largely on the sum of all investment decisions (Fig. 6, right).
The memory requirement can be well described by a linear regression
(𝑅2 = 0.74). The attempt to form a quadratic regression for the run-
time is quite inaccurate (𝑅2 = 0.31), so that it can be stated that
other parameters than the number of (binary) investment decisions play
important roles as well.

For methods consisting of multiple model runs (spatial sub-

modeling and technological case distinction), the run-time of all runs
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Fig. 6. Dependence of run-time on the number of binary investment decisions (left), as well as of the memory requirement on the number of total investment decisions (right)
for the applied techno-spatial model adaptations. The run-time can roughly be described by a quadratic regression (𝑅2 = 0.31) depending on the number of binary decisions. The
memory usage can be described by a linear regression (𝑅2 = 0.74) depending on the total number of investment decisions.
was added up for the consideration as benchmark, and the highest
memory requirement of the individual model runs was taken into
account. When balancing the number of investment decisions, the
higher value of the two model runs is considered.

Detailed results for the investment decisions for all applied techno-
spatial model adaptions are shown in Appendix F.

technological pre-selection: By technological pre-selection the number
of linear investment decisions had been drastically reduced by −61%
and the number of binary decisions by −50%. This led to a run-time
reduction of −99% and lowered memory requirements of −29% without
having impact on the modeling results.

technological aggregation: By aggregating the pv systems of individual
sub-systems, investment decisions for higher capacities of pv systems
(+5%), battery storage (+3%) and gchps (+3%) compared to the ref-
erence case were carried out. This can be explained by the fact that
plants were aggregated according to their surface orientation (see
Section 3.3.2). Within these aggregations, uniform angles were used. As
a result of this change in the modeled orientation, certain pv systems for
which an investment was not profitable with the original orientation in
the reference case, probably moved above the break-even point. In turn,
battery storages and heat pumps were dimensioned larger due to higher
pv yields. However, technological aggregation led to a significant in-
crease in computing time (+68%) and only a marginal reduction in
memory requirements (−2%). Overall, technological aggregation thus
led to a deterioration in computing performance.

spatial clustering: System costs were significantly underestimated be-
tween −44% and -64% compared to the reference run, within all
clustering schemes. This is because plant capacities are shared by sub-
systems and the modeled district heating distribution pipe lengths are
shorter. Clustering of similar building types (C1) and similar usage
types resulted in a lower configuration of central heat supply. This can
be explained by the fact that buildings that were centrally supplied in
the reference case (e.g., COM1) were partially clustered with buildings
that were decentrally supplied in the reference case (e.g., COM2). In the
fully clustered case (C3) there was a strong centralization. This can also
9

be explained by the consideration of fewer district heating distribution
pipe lengths and thus fewer costs taken into account. Spatial clustering,
however, allowed a significant saving of run-time (up to −99%) and the
largest reduction of memory (up to −64%), of all tested techno-spatial
model adaptations.

linearization: All linearization schemes led to large model deviations
compared to the reference case. The linearization increased the prof-
itability of district heating networks by the option to partially (non-
binary) design district heating pipe capacities. This led to a significant
centralization of the heating supply and to an underestimation of
the system costs within all linearization schemes. If linearization was
applied to house connection pipes alone (D1), the underestimate was
less yet also the run-time improvement (−58%) was lower than that of
the other schemes (up to −99%). All linearizations had no effect on the
memory requirements of the model.

technological boundaries: The application of appropriate technological
boundaries allowed significant run-time improvements (up to −77%)
while maintaining the same quality of results of the reference case.
The memory was not significantly affected. Note, that the tightest
technological boundaries (E4) led to smallest run-time savings. This
may be explained by the fact that the model solution could only be
approximated from one site due to particularly tight bounds. This
resulted in fewer solution paths for the solver, which could have led
to a higher run-time. Between the results with less tight technological
boundaries (E1 and E2), there is no significant impact on the run-time.

spatial sub-modeling: The decomposition into two spatial sub-models
affected the investment decisions of the pv systems, geothermal heat
pumps, and battery storage. This can be explained by the fact that the
electricity produced in each sub-model could no longer be delivered
to all sub-systems, but only to sub-systems within the same sub-model.
As a result, more battery storage capacities were required to use the
produced electricity in an economically viable way, and gchps were less
profitable because more electricity had to be imported at a higher price
to operate them. However, this effect will probably lose significance, if

the sub-models contain more sub-systems, which can exchange energy.
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technological case distinction: Within the technological case distinction,
the case of decentralized heat supply was evaluated to be more suitable
than the case of centralized heat supply. Accordingly, central heat sup-
ply components (chp, central heating plant and district heating pipes)
were not considered at all and more decentralized system capacity
(gas heating, heat pumps, wall insulation) was designed. However, also
pv systems and battery storage were dimensioned larger than in the
reference case, probably due to the increased demand for electricity
from the heat pumps. Overall, technological aggregation thus led to
large model deviations and is therefore less suitable for the test case.
However, technological case distinction allows a reduction of both
total run-time (−99%) and memory requirements (−22%) despite the
necessity to perform two model runs.

4.4 Combined methods

A total of five schemes of combined model reduction methods were
applied (see Table 3). The following paragraphs refer to the results of
these combined runs shown in Fig. 7 and Appendix G.

The combination of technological pre-selection and technological
boundaries (X1) improved the run-time (−99.43%) and memory usage
(−29%) without causing any model deviations regarding investment
decisions and optimized system costs.

Building on scheme X1, temporal slicing of every second day (X2),
respectively spatial sub-modeling (X3) were added to the model re-
duction scheme. Compared to X1, both methods allowed significantly
greater memory usage savings (−62%, respectively −55%). X2 still
allowed a greater saving in computing time (−99.57%), X3 some-
what less (−99.31%) due to the additionally required model run of
the sub-modeling. Both schemes mainly influenced the design of heat
pumps and battery storages. The battery storages were partly under-
sized (−38%, X2) and partly oversized (+29%, X3).

By combining the previous schemes (X4), the incorrect battery
designs partially offset each other, but beyond that, similar model
deviations occur. However, the scheme allows greater run-time savings
(−99.70%) and memory usage (−77%) than before.

With the last scheme (X5) the temporal model reduction is increased
to temporal slicing of (every fourth day). This led to further run-time
(−99.89%) and memory savings (−88%), but also to significant model
deviations for the investment decisions of pv systems, heatpumps,
central heating plant and battery storages.
10
Table 3
Applied combined method schemes. For schemes consisting of several sub-models with
different values, both values are given.

Scheme Combined model adaptions inv. decisions Modeled

Linear Binary time steps

X1 Technological pre-selection 31 10 8 760
Technological boundaries (E2)

X2 Technological pre-selection 31 10 4 368
Technological boundaries (E2)
Temporal slicing (every second day)

X3 Technological pre-selection 16/15 0/10 8 760
Technological boundaries (E2)
Spatial sub-modeling

X4 Technological pre-selection 16/15 0/10 4 368
Technological boundaries (E2)
Temporal slicing (every second day)
Spatial sub-modeling

X5 Technological pre-selection 16/15 0/10 2 184
Technological boundaries (E2)
Temporal slicing (every fourth day)
Spatial sub-modeling

5 Discussion

Several temporal model adaptations and techno-spatial model adap-
tations, as well as five combined method schemes were applied to
a real-world test case. The evaluation of these methods showed that
model-based adaptations can significantly reduce run-time and random
access memory (RAM) requirements of mixed-used multi-energy system
models with high spatial resolution. At the same time, however, it
became clear that some of the methods led to significant deviations
of the model results. For the application of other methods, a pro-
found prior knowledge and understanding of the energy systems under
investigation is necessary.

The model reduction methods tested in this study were applied to
a mixed-use multi-energy system optimization model with the focus on
investment optimization. The test area with a total of nine buildings
was selected to correspond to the structure of larger urban areas (see
Section 3.1). We therefore assume that the results can also be applied
to larger urban energy systems with several hundreds of buildings and
similar multi-energy systems.

Interactions of the investigated methods to solver-based methods
(this includes, for example, the choice of a different solver) were
not investigated in this study. However, we assume that a similar
Fig. 7. Impact of the applied combined model reduction method schemes on the run-time (left) and the memory requirements (right).
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improvement will be enabled with solver-based methods applied in
parallel.

5.1 Temporal model adaptions

As expected in Section 1, the computing capacities required to solve
energy system optimization models increases rapidly with rising num-
ber of modeled time steps. The memory requirement increases linearly,
the run-time increases quadratically with a slightly lower coefficient
of determination of the regression (see Fig. 5). It can thus be stated
that the modeled number of time steps has a primary influence on
the computing resources. However, the application of temporal model
adaptations also causes model deviations in the investment decisions
with respect to these technologies:

• sector-coupling technologies: Particularly heat pumps are un-
dersized with decreasing number of modeled time steps.

• battery storages: The investments of battery storages are partic-
ularly vulnerable to (temporal) model simplifications. There is a
rising over- or undersizing of the battery storage capacities with
decreasing number of modeled time steps.

• (de)centralized heat supply: As the number of modeled time
steps decreases, technologies for decentralized heat supply (gas
heating systems, heat pumps) tend to be under-designed. Central
heat supply, conversely, increases.

Methods that do not sufficiently represent the load and weather
rofiles of the entire year cause large model deviations, which do not
onverge to the reference case even with an increasing number of
odeled time steps.

Further deviations may arise from the inappropriate ratio between
ays below and above the heating limit temperature. If the heating day
atio is too high, the model tends to consider investments into higher
hermal storage capacities and technologies with low variable but high
eriodical costs. This must be taken into account, for example, in the
hoice of heuristic selection schemes and the number of reference days
or slicing and averaging.

Overall, many deviations can thus be attributed largely to the
reviously discussed problems (see Section 2.1) of continuity (such as
nvestment behavior for battery storages) and concurrency (e.g., shift
etween (de)centralized heating supply). None of the tested methods of
emporal model reduction allowed a design without larger errors in the
nvestment decisions. In fact, there was always at least one technology
ith major design errors of at least 10% compared to the reference

ase (see Appendix D). All in all, slicing and averaging provide the
ost reliable results of the tested temporal model adaptions. Slicing

nd averaging converge most reliably to the reference case results as
he number of time steps modeled increases. Generally, useful results
an be expected from the consideration of every fifth day or the
veraging of a maximum of five days. Since slicing and averaging yield
ifferent model deviations for different technologies, one of the two
ethods should be selected depending on the application. Slicing is
ore reliable in the heat sector and for the design of storage systems,
hile averaging is more reliable for the design of sector-coupling

echnologies. This is probably due to the fact that maximum values
e.g., heat demand or pv production) are reduced in the course of
veraging. At the same time, however, averaging more reliably takes
nto account combinations of energy consumption and supply that do
ot occur regularly across sectors (e.g., pv production and heat demand
overed by heat pumps). In contrast to most of the other temporal
odel adaptations tested, slicing also allows only a slight reduction of

he time steps (e.g., by one third). Overall, there are fewer deviations
rom the reference case when applying slicing.

In some cases, the heuristic selection produces usable results even
ith a very small number of days. The least useful results were obtained
y time horizon reduction and downsampling. The least useful results
11

i

ith respect to investment decisions were obtained by time horizon
eduction and downsampling.

The choice of whether reference weeks or reference days should
e selected for temporal sampling also produces different results for
ifferent investment decisions. Reference days, for example, tend to
rovide a better cost estimate. Reference weeks, on the other hand,
etter reflect the design of thermal storage facilities, and are therefore
ore appropriate with respect to the continuity problem. However, in

he specific case of slicing, better convergence behavior occurs when
eference days are chosen, especially in the design of gchps, pv systems,
hp plants, central heating plant, and district heating networks.

The variable cost factor applied to all temporal model adaptions (see
ection 3.3.1) takes the ratio of periodical to variable costs well into
ccount. For most temporal model adaptions a larger deviation of the
odeled system costs is only recorded in the case of large temporal

implification. Only in the cases of downsampling, k-clustering (solar
adiation and electricity demand criteria), and time horizon reduction
he deviations were greater than 10%, as long as a minimum of 20%
f the original number of time steps were modeled (see Appendix D).

.2 Techno-spatial model adaptions

The tested techno-spatial model adaptions showed that the memory
equirement is linearly related to the number of investment decisions
see Fig. 6). The run-time depends among other things on the number
f binary investment decisions even though, the regression of this
elationship has only a low coefficient of determination.

Some of the tested methods allow a significant reduction of the
equired computing resources without causing model deviations at
ll. This applies to technological pre-selection and the definition of
ppropriate technological boundaries (run-time only). Technological
ub-modeling allows further improvements with, besides too high bat-
ery storage investments, negligible model deviations. Since the lack
f compensation possibilities between the sub-systems mainly causes
he undersizing of the battery storages, it can be assumed that this
ffect will become less important with increasing sub-system size. It is
ecommended to draw reasonable boundaries between the sub-models.
or example, locations of central heat generation or grid nodes are
articularly suitable for that purpose.

Spatial clustering, linearization and technological case distinction
ead to significant model deviations. The previously, theoretically as-
umed problems with spatial clustering (Fig. 2) and linearization
Fig. 3) are thus confirmed. In the reference case, technological ag-
regation led only to minor model deviations, but to an increase of
he run-time. The increase in run-time can be explained by the fact
hat systems with averaged parameters are closer to the profitability
imit. For example, in the modeled reference case, the pv systems
f building SDB1 were either fully designed (pv system 1 with 244◦

outh-west orientation) or not designed at all (pv system 2 with 66◦

orth-east orientation). This ‘‘all-or-nothing’’ decision indicates a clear
nd easily identifiable solution for the model. In the aggregated case,
he parameters of the two plants are weighted averaged (aggregated pv
ystem with 159◦ south-east orientation) and the investment decision
s only partially sized. This partial design indicates that the investment
ecision is close to the profitability limit and the optimal capacity is
arder to identify for the solution algorithm. Consequently, more run-
ime is required to solve the model. We therefore recommend not to
se these methods.

Technological pre-selection, technological boundaries and spatial
ub-modeling are suitable techno-spatial model adaptation methods to
ubstantially improve the computing resources. However, these meth-
ds require either preliminary carried out studies or a profound knowl-
dge and understanding of the energy system under investigation (see
ection 2.2). If preliminary decisions are made on the basis of inaccu-
ate or false assumptions, this will automatically lead to an inaccuracy

n the main model as well.
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5.3 Combined model adaptions

Before applying all the methods tested in this study, the conceptual
design of energy system models should always avoid to include non-
relevant system components and investment decisions that are not
relevant to the research questions. Particular focus should be put on
the avoidance of binary decisions.

A way to address lack of prior knowledge on the application of
technological pre-selection and application of technological boundaries
is the execution of a pre-model with temporal simplifications. Based on
the results of this pre-model, investment decisions that were not used at
all can be removed from the main model (technological pre-selection).
In contrast to the temporal zooming approach, the investment decisions
are thereby only limited within the pre-model, but the final decisions
(dispatch and investment) are made entirely in the main-model. To
ensure that no relevant technologies are mistakenly removed from the
model, the method for temporal simplifying the pre-model should be
chosen with care. The results of the applied case show that the short-
ening of the original time series by averaging each of ten consecutive
weeks would be very suitable. More or less the same technologies
were considered for investment decisions as in the reference case (see
Section 4.2). Although the capacities of these investment decisions do
not match those of the reference results, the decisions can be used
for technological pre-selection. In addition, the pre-results can be used
to reasonably constrain the technological investment limits. The test
case results show that setting them to about 500% of the pre-results is
appropriate. If subsequently the investment limits are fully utilized in
the main model, the values should be increased and the main model
repeated.

The application of pre-modeling with subsequent technological pre-
selection and application of technological boundaries thus corresponds
to the tested combined methods scheme X1 (see Table 3), which
enabled a significant reduction of computing resources without causing
model deviations.

The technological pre-selection considered manually in the model
could have been made on the basis of a temporally simplified pre-model
with averaging every 10th week (see Appendix D). Adding the solving
time of such a pre-model of 840 s (see Appendix D) still a total run-
time improvement of about −98% and a reduced memory requirements
of −29% (see Appendix G) can be expected compared to the reference
case.

Further savings of computing resources, especially memory usage,
are possible through further method combinations. Based on the tested
schemes, we recommend, the additional application of spatial sub-
modeling, and temporal slicing. Temporal slicing should be applied
only as much as absolutely necessary, because the model results deviate
increasingly from the reference case with decreasing number of mod-
eled time steps. Useful results with respect to the investment decisions
made can be expected if at least 20% of the original time steps are
modeled.

5.4 Evaluation of results

Although this study focuses on the specific case of reducing the
computational requirements of mixed-use multi-energy systems with
high spatial resolution through temporal and techno-spatial model
adjustments, the results can be partially compared with other studies
on run-time and memory reduction of energy system models.

Kotzur et al. [10] also recommend ‘‘a systematic reduction of the
size of the model’’ and that ‘‘binary variables should be avoided and
equations linearized where possible’’. In addition, they also see poten-
tial in spatial clustering and draw attention to the risks of accounting
mismatches.

In line with our results, Hoffmann et al. [14] came to the conclusion
that ‘‘temporal aggregation methods are always based on the complex-
12

ity reduction of not perfectly redundant input data and thus introduce
deviations from fully resolved models" and that these should only be
used if absolutely necessary.

Alimou et al. [28] analyzed a combination of heuristic selection and
downsampling to select seven typical days, which are divided into six
hourly time steps afterwards. Consistent with our results for heuristic
selection and downsampling, they arrived at the conclusion that this
procedure ‘‘tends to reduce the high variability of [...] wind and solar’’,
as well as to overestimate ‘‘the maximum load that must be supplied
by [...] thermal power plants’’.

Cao et al. [9] as well as Shirizadeh and Quirion [29] came to
results regarding the downsampling method for the cases of nation scale
models, which strongly differ from our results. They both identified
downsampling to be the ‘‘most efficient speed-up approach’’ [9] of the
time series simplification methods tested for their cases. The differences
in the results can be attributed to the differences in the spatial scale and
the technological and spatial resolution. We analyzed a comparatively
small area with high spatial and technological resolution. In such
areas, small-scale interactions between individual components and sub-
systems as well as the volatility of individual renewable energy plants
are highly relevant. These points are not well represented by downsam-
pling. However, these effects are less relevant for large energy system
models with lower spatial and technological resolution (Shirizadeh
and Quirion used only a single node). Accordingly, the weaknesses of
the downsampling method have less influence on the results of such
models. However, the different results underline how important it is
to use appropriate methods of time series reduction depending on the
application.

The methods considered in this study were applied to a real-world
energy system with a total of nine buildings. However, we assume that
the results can also be applied to other energy system models. The test
area was selected to correspond to the structure of larger urban energy
systems. We therefore assume that the results are transferable to urban
areas with several hundred buildings.

We further assume that the results are particularly applicable to
energy system models with a high level of technological detail and
high spatial resolution. For spatially very large models (e.g., national
scale) with low technological and spatial resolution, the results are not
transferable without further ado.

The results for temporal model adaptations are particularly charac-
terized by model deviations in the design of sector-coupling technolo-
gies, battery storage and the decision of (de)centralized heat supply (see
Section 5.1). The results are therefore especially transferable to models
that include such kind of technologies and decisions. For mono-sectoral
models, the transferability has to be confirmed first. Furthermore,
mainly short-term storages were considered within the test case, so that
we cannot state the influence of the different temporal simplifications
on long-term storages, which, e.g., have been described by Kotzur et al.
[18].

The recommended techno-spatial methods of technological pre-
selection and technological boundaries are expected to be highly trans-
ferable to most other types of energy systems, especially models with
a high number of binary decisions. Rather, the uncertainties of these
methods depend on the quality of the underlying preliminary investi-
gations.

Lastly, the results are transferable for models where the solving
process is the bottleneck of the whole modeling process. For models,
where pre-processing or post-processing may be predominant, other ap-
proaches, which are not in the focus of this study, should be conducted.

6 Conclusion

The model runs performed in this study have shown that the com-
putational requirements of run-time and (random access) memory us-
age to solve a model are influenced differently by increasing model
complexity. The run-time increases quadratically with increasing
model complexity. A correlation of the relationship with the number
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of time steps modeled proved to be particularly clear for the models
used in this study, showing a coefficient of determination of 𝑅2 = 0.80.
Furthermore, in particularly the number of binary investment decisions
had quadratic influence on the run-time, although this relationship
showed up to be less clear (𝑅2 = 0.31). In turn, the memory re-
quirement increases linearly with increasing model complexity.
Again, the correlation to the number of modeled time steps was found
to be particularly clear (𝑅2 = 0.99). Furthermore, the number of all
investment decisions also had linear impact (𝑅2 = 0.74) on the memory
requirement.

The application of model adaption methods can therefore signifi-
cantly reduce computing resources. In the investigated test case, the
run-time could be reduced by more than −99 % and the memory usage
by up to −88 %, by using a combination of technological pre-selection,
technological boundaries, temporal slicing (every fourth day), and
spatial sub-modeling (scheme X5, see Table 3).

Based on our analysis, we recommend the following general proce-
ure for the reduction of computing resources for multi-energy system
nvestment optimizations models. The proposed steps are sequential. To
void model inaccuracies, only as many steps as absolutely necessary
hould be applied:

1. keeping the model as simple as possible: All system compo-
nents that are not relevant for the purpose of the study should be
removed from the model. This applies in particular to (binary)
investment decisions.

2. pre-modeling: With the help of a time-simplified model (slic-
ing/averaging of every 10th week is recommended), preliminary
results can be obtained and incorporated into the main-model
(scheme X1, see Table 3):

(a) technological pre-selection: Technologies not consid-
ered within in the pre-modeling should be removed from
the main-model.

(b) technological boundaries: Investment limits can be rea-
sonably limited based on the pre-model results. We rec-
ommend technological boundaries of 500% of the pre-
model result investment values. If the investment lim-
its are fully used in the main-model, the technological
boundaries should be enlarged.

3. spatial sub-modeling: The model can be decomposed and the
results subsequently aggregated. The boundaries of sub-models
should be strategically aligned, for example at network nodes.
Especially for models without interaction between sub-systems
(i.e., without local energy markets or bi-directional heat net-
works), only small model deviations are to be expected (scheme
X3, see Table 3).

4. temporal simplification: We recommend temporal slicing, us-
ing days as sample periods. The degree of slicing should be as
low as necessary, with a maximum of every fifth day (scheme
X4 and X5, see Table 3).

5. further simplifications: If further model simplifications are
necessary, we recommend spatial clustering of sub-systems. The
clusters should be kept as small as possible.
13
Note that none of the tested methods of temporal model reduction
allowed simplifications without model deviations. In fact, there was
always at least one technology with major design errors of at least
10% compared to the reference case (see Appendix D). Due to large
model deviations, we especially recommend avoiding the use of tem-
poral downsampling, time horizon reduction, linearization and holistic
spatial clustering, if possible.

The proposed procedure was tested for an urban area with a total of
nine buildings. The test area was chosen to correspond to the structure
of larger urban areas. Therefore, we presume that the procedure is
also applicable to larger multi-energy systems, for example, of urban
districts with several hundreds of buildings. However, the transferabil-
ity still has to be finally confirmed in future research. In addition, we
recommend the development of concrete instructions for solver-based
methods and parallelization. In this way, the required computational
resources can be further reduced or the possible model complexity can
be increased while maintaining the same run-time and memory usage
requirements.
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Appendix A. Methods: Investment decision

A list of the investment decisions carried out in the test case is shown in Table 4.

Table 4
Investment decisions within the test case area. Unless otherwise indicated, the decisions are linear and the value to be determined can be between zero and the listed value.

Unit cent. SDB1 SDB2 SDB3 MFB1 MFB2 COM1 COM2 GAR1 GAR2

Central heating plant kW 999 – – – – – – – – –
Gas heating systems kW – 999 999 999 999 999 999 999 – –
Chp plant kW 999 – – – – – – – – –
gchp – 27.8 18.4 21.6 21.5 30.1 – – – –
Ashp kW 999 999 999 999 999 999 999 999 – –
Pv systems kW – 6.75 13.50a 7.02 14.04 7.29 14.96a 9.32 2.70 2.16
Battery storage kWh 9 999 9 999 9 999 9 999 9 999 9 999 9 999 9 999 – –
solar th. collectors kW – 27.71 55.42a 28.82 57.64 29.93 61.41a 38.27 – –
Thermal storage kWh 9 999 9 999 9 999 9 999 9 999 9 999 9 999 9 999 – –
Roof insulation m2 – 163 162 125 297 138 527 323 – –
Wall insulation m2 – 364 365 338 402 194 340 523 – –
Window insulation m2 – 60 59 47 103 48 211 131 – –

Dh network 20 pipe sections, each with a binary decisions of DN25 (max. 87 kW) for house connection pipes and DN35 (max. 165 kW) for
distribution network pipes.

Acronyms: ashp = air source heat pump, cent. = central, chp = combined heat and power, dh = district heat, gchp = ground coupled heat pump, ng = natural gas, pv =
hotovoltaic, th. = thermal.
Aggregated capacity of two partial plants.

ppendix B. Methods: Model parameters

All parameters used for the modeling including sources and derivations are stored in the following directories:

• SESMG scenario-files: https://doi.org/10.5281/zenodo.6997372
• Model and parameter documentation: https://doi.org/10.5281/zenodo.6997547

ppendix C. Methods: Techno-spatial model adaptions

A list of the applied techno-spatial model adaptions is shown in Table 5.

Table 5
Applied techno-spatial adaptions.
ID Method Specification Investment decisions

Linear Binary

Ref. Reference case 79 20

A1 Technological pre-selection 31 10

B1 Technological aggregation 75 20

C1 Spatial clustering Similar building types (4 clusters) 50 14
C2 Spatial clustering Similar usage types (3 clusters) 43 12
C3 Spatial clustering All buildings of the system (1 cluster) 37 8

D1 Linearization House connection pipes, reference value: DN25 86 13
D2 Linearization Distribution pipes, reference value: DN32 92 7
D3 Linearization All pipes, reference value: DN25 99 0
D4 Linearization All pipes, reference value: DN32 99 0
D5 Linearization All pipes, reference value: DN25 & DN32 99 0

E1 Technological boundaries 500% reference investments 79 20
E2 Technological boundaries 200% of reference investments 79 20
E3 Technological boundaries 150% of reference investments 79 20
E4 Technological boundaries 100% of reference investments 79 20

F1 Sub-modeling Sub-model 1 (SDB1-3, GAR1-2) 39 8
F2 Sub-modeling Sub-model 2 (MFB1-2, COM 1-2) 45 13

G1 Technological case distinction Centralized heat supply 43 20
G2 Technological case distinction Decentralized heat supply 75 0
14
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Appendix D. Results: Temporal model adaptions
Deviations of temporal simplified models from the reference case are shown in Table 6.

Table 6
Deviations of temporal simplified models from the reference case. Green cells indicate a model improvement, respectively low model errors, red cells indicate negative deviations from the reference case, blue positive deviations.
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Averaging (days) 72 −99.98% −97% −27% −23% −89% −100% −100% 53% −100% 238% 120% 100% 60% – – – –
Averaging (days) 864 −98.67% −88% −6% −8% −33% 17% −100% 3% −40% −92% 154% 0% 0% – – – –
Averaging (days) 4368 −75.64% −48% −1% −1% −1% 2% 4% 2% −2% −52% −3% 0% 0% – – – –
Averaging (days) 1752 −96.38% −77% −3% −3% −12% 28% −29% 12% −16% −84% 11% 0% 0% – – – –
Averaging (weeks) 840 −99.03% −86% −17% 0% −47% 7% −100% −2% −55% −85% −39% 0% 0% – – – –
Averaging (weeks) 4368 −80.63% −49% −2% 2% −6% 9% −3% 2% −8% −47% −2% 0% 0% – – – –
Averaging (weeks) 168 −99.91% −91% −33% −18% −91% −100% −100% 49% −97% 876% −64% 100% 60% – – – –
Averaging (weeks) 1680 −96.67% −77% −16% 0% −45% 19% −17% −3% −49% −71% −26% 0% 0% – – – –
Downsampling (days) 88 −99.99% −97% 1102% 49% −100% −100% −100% 376% −100% 57 331% −100% 133% 120% a a – –
Downsampling (days) 876 −99.69% −87% 113% 49% −100% −100% −100% 255% −37% 5409% 5% 133% 120% – a – –
Downsampling (days) 4380 −90.79% −47% 20% 49% −69% −100% 35% 65% 9% 1131% −15% 100% 60% – a – –
Downsampling (days) 1752 −98.94% −77% 57% 49% −100% −100% −100% 191% −9% 2501% −16% 133% 120% – a – –
Downsampling (days) 2920 −89.44% −61% −1% −100% −67% −100% −100% 64% 61% −100% −56% 100% 60% – – – –
Downsampling (days) 2190 −91.61% −64% −1% −91% 10% −100% −100% −31% −45% −100% −42% 0% −20% – a – –
Heuristic selection (days) 48 −99.99% −97% 0% 12% −73% −100% −100% 163% −100% 1201% 398% 100% 60% – – – –
Heuristic selection (days) 96 −99.98% −97% −4% −32% −78% −100% −100% 87% −100% −72% 578% 100% 60% – – – –
Heuristic selection (days) 192 −99.94% −96% −2% −42% −25% −100% −100% −12% −41% 43% 306% 0% 0% – – – a
Heuristic selection (days) 384 −99.78% −91% −4% −42% −25% −100% −100% 1% −48% −44% 305% 0% 0% – – – a
Heuristic selection (days) 576 −99.20% −89% 0% −59% −77% −100% −100% 74% −25% −82% 296% 100% 60% – – – –
Heuristic selection (weeks) 336 −99.78% −94% 14% −3% −66% −100% −100% 265% −92% 148% −16% 100% 60% – a – –
Heuristic selection (weeks) 672 −99.15% −83% 9% −51% −66% −100% −100% 63% 12% −71% −16% 100% 60% – a – –
Heuristic selection (weeks) 1344 −96.90% −82% 5% −50% −66% −100% −100% 49% 37% −72% −10% 100% 60% – a – –
Heuristic selection (weeks) 2688 −86.72% −67% −1% −19% 3% −7% −61% 1% −1% −72% 0% 0% 0% – – – –
Heuristic selection (weeks) 4032 −76.84% −52% −2% −9% 0% 2% −11% 0% 0% −55% 0% 0% 0% – – – –
k-means clustering (solar radiation) (days) 72 −99.98% −97% −31% −18% −89% −100% −100% 38% −100% 332% 96% 100% 60% – – – –
k-means clustering (solar radiation) (days) 864 −98.55% −87% −31% 14% −78% 39% −16% −40% −70% −27% 107% 0% 0% – – – –
k-means clustering (solar radiation) (days) 4368 −43.08% −47% −30% 28% −80% 62% 120% −38% −88% 124% 312% 0% 0% – – – –
k-means clustering (solar radiation) (days) 1752 −92.40% −77% −35% 23% −86% 29% 43% −43% −82% 112% 183% 0% 0% – – – –
k-means clustering (electricity demand) (days) 72 −99.99% −97% −32% −33% −91% −100% −100% 51% −100% 479% −2% 100% 60% – – – –
k-means clustering (electricity demand) (days) 864 −97.83% −87% −17% −23% −85% −100% −98% 63% −66% −19% 171% 100% 60% – – – –
k-means clustering (electricity demand) (days) 4368 −52.69% −47% −6% −12% −80% −100% 19% 53% −8% 53% 253% 100% 60% – – – –
k-means clustering (electricity demand) (days) 1752 −93.43% −77% −21% −12% −86% −100% −51% 53% −59% 47% 65% 100% 60% – – – –
k-means clustering (temperature) (days) 72 −99.99% −97% −14% −30% −81% −100% −100% 95% −100% 12% 242% 100% 60% – – – –
k-means clustering (temperature) (days) 864 −98.03% −87% −7% −20% −83% −100% −100% 46% −52% −76% 451% 100% 60% – – – –
k-means clustering (temperature) (days) 4368 −58.50% −48% −7% −10% −82% −100% −25% 48% −22% 24% 353% 100% 60% – – – –
k-means clustering (temperature) (days) 1752 −94.79% −77% −8% −13% −79% −100% −81% 60% −17% −40% 263% 100% 60% – – – –
k-means clustering (solar radiation) (weeks) 840 −98.72% −86% −29% 15% −64% 27% −86% −32% −57% −56% −48% 0% 0% – – – –
k-means clustering (solar radiation) (weeks) 4368 −72.69% −48% −37% 38% −16% 39% 298% −100% −100% 492% −45% −100% −100% – a – –
k-means clustering (solar radiation) (weeks) 168 −99.92% −93% −33% −18% −91% −100% −100% 49% −97% 876% −64% 100% 60% – – – –
k-means clustering (solar radiation) (weeks) 1680 −96.64% −77% −35% 36% −25% 86% 155% −100% −100% 627% −53% −100% −100% – a – –
k-means clustering (electricity demand) (weeks) 4368 −78.13% −48% 1% −11% −68% −100% −21% 54% 66% 34% 1% 100% 60% – – – –
k-means clustering (electricity demand) (weeks) 168 −99.92% −93% −33% −18% −91% −100% −100% 49% −97% 876% −64% 100% 60% – – – –
k-means clustering (electricity demand) (weeks) 1680 −94.97% −77% −16% −2% −46% −6% −19% 9% −60% −57% −38% 0% 0% – – – –
k-means clustering (temperature) (weeks) 840 −98.91% −86% 7% −31% −68% −100% −100% 45% 12% −71% −19% 100% 60% – a – –
k-means clustering (temperature) (weeks) 4368 −75.52% −47% 4% −27% −67% −100% −61% 45% 38% −15% −9% 100% 60% – a – –
k-means clustering (temperature) (weeks) 168 −99.92% −93% −33% −18% −91% −100% −100% 49% −97% 876% −64% 100% 60% – – – –
k-means clustering (temperature) (weeks) 1680 −96.09% −77% −1% 3% −5% 17% −76% −4% −5% −59% −2% 0% 0% – – – –
k-medoids clustering (solar radiation) (days) 72 −99.99% −97% −28% −26% −89% −100% −100% 48% −100% 77% 99% 100% 60% – – – –
k-medoids clustering (solar radiation) (days) 864 −98.31% −87% −10% −31% −86% −100% −100% 69% −95% −60% 530% 100% 60% – – – –
k-medoids clustering (solar radiation) (days) 2904 −85.88% −64% 3% −42% −66% −100% −100% 44% 38% −50% −6% 100% 60% – a – –
k-medoids clustering (solar radiation) (days) 1752 −95.26% −77% 3% −39% −66% −100% −100% 41% 40% −61% −6% 100% 60% – a – –
k-medoids clustering (electricity demand) (days) 72 −99.98% −97% −33% −35% −91% −100% −100% 50% −100% 868% −54% 100% 60% – – – –

(continued on next page)
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Table 6 (continued).
k-medoids clustering (electricity demand) (days) 864 −98.30% −87% −27% 6% −76% 23% −25% −17% −80% 127% 44% 0% 0% – – – –
k-medoids clustering (electricity demand) (days) 2904 −74.55% −64% −10% −5% −85% −100% 25% 48% −28% 48% 320% 100% 60% – – – –
k-medoids clustering (electricity demand) (days) 1752 −87.09% −77% −27% 8% −74% 8% −43% −6% −88% 64% 55% 0% 0% – – – –
k-medoids clustering (temperature) (days) 72 −99.99% −97% −23% −26% −86% −100% −100% 60% −100% 110% 166% 100% 60% – – – –
k-medoids clustering (temperature) (days) 864 −97.13% −87% −9% −55% −85% −100% −100% 48% −53% −99% 395% 100% 60% – – – –
k-medoids clustering (temperature) (days) 2904 −75.56% −65% −9% −47% −88% −100% −100% 45% −66% −61% 477% 100% 60% – – – –
k-medoids clustering (temperature) (days) 1752 −93.88% −77% −10% −52% −85% −100% −100% 47% −48% −87% 391% 100% 60% – – – –
k-medoids clustering (solar radiation) (weeks) 2856 −86.75% −65% 5% −51% −66% −100% −100% 65% 29% −89% −11% 100% 60% – a – –
k-medoids clustering (solar radiation) (weeks) 168 −99.92% −93% −33% −18% −91% −100% −100% 49% −97% 876% −64% 100% 60% – – – –
k-medoids clustering (solar radiation) (weeks) 1680 −94.12% −78% −14% −28% −80% −100% −28% 33% −10% −55% −12% 100% 60% – – – –
k-medoids clustering (electricity demand) (weeks) 2856 −85.70% −65% −11% 0% −33% 6% 32% −2% −33% −63% −23% 0% 0% – – – –
k-medoids clustering (electricity demand) (weeks) 168 −99.92% −93% −33% −18% −91% −100% −100% 49% −97% 876% −64% 100% 60% – – – –
k-medoids clustering (electricity demand) (weeks) 1680 −95.54% −78% −12% 8% −41% 59% −19% −2% −32% −42% −23% 0% 0% – – – –
k-medoids clustering (temperature) (weeks) 2856 −89.46% −65% 0% −30% −68% −100% −80% 64% 52% −26% −2% 100% 60% – – – –
k-medoids clustering (temperature) (weeks) 168 −99.92% −93% −33% −18% −91% −100% −100% 49% −97% 876% −64% 100% 60% – – – –
k-medoids clustering (temperature) (weeks) 1680 −96.97% −79% 0% −17% −68% −100% −74% 55% 56% −23% −2% 100% 60% – – – –
Random sampling (days) 4368 −40.19% −48% −2% −18% −69% −100% −38% 36% 64% 57% 39% 100% 60% – – – –
Random sampling (days) 864 −98.66% −87% −8% −45% −85% −100% −100% 60% −60% −40% 437% 100% 60% – – – –
Random sampling (days) 72 −99.99% −97% −8% −72% −81% −100% −100% 119% −100% −91% 232% 100% 60% – – – –
Random sampling (days) 1752 −94.00% −77% 0% −40% −67% −100% −100% 45% 57% −28% 57% 100% 60% – – – –
Random sampling (weeks) 1680 −95.04% −77% −16% −14% −44% −20% −50% 2% −56% −65% −20% 0% 0% – – – –
Random sampling (weeks) 168 −99.96% −93% −66% 33% −86% −61% −89% −100% −100% 2052% −84% −100% −100% – – – a
Random sampling (weeks) 4368 −68.79% −48% −4% −26% −73% −100% 21% 70% 31% 2% 6% 100% 60% – – – –
Random sampling (weeks) 840 −98.75% −86% −12% −46% −80% −100% −100% 98% −48% −49% −20% 100% 60% – – – –
Slicing (days) 72 −99.99% −97% −29% −81% −69% −100% −100% −30% −100% −100% 13% 0% 0% – – – –
Slicing (days) 864 −98.88% −87% −5% −26% −12% −33% −100% 1% −21% −60% 28% 0% 0% – – – –
Slicing (days) 4368 −73.35% −48% 0% −4% −2% 0% 20% 2% −3% −38% −1% 0% 0% – – – –
Slicing (days) 1752 −95.89% −77% −2% −24% −3% −25% −54% 0% −10% −67% −4% 0% 0% – – – –
Slicing (days) 5808 +18.81% −29% 0% 0% −1% 2% 22% 2% −1% −16% 1% 0% 0% – – – –
Slicing (days) 6552 −13.71% −23% 0% −2% 0% −2% 1% 0% 0% −20% 1% 0% 0% – – – –
Slicing (weeks) 840 −98.64% −86% −29% −22% −59% −50% −74% −17% −75% −60% −43% 0% 0% – – – –
Slicing (weeks) 4368 −71.35% −48% −1% −13% 0% −8% −23% −1% −4% −55% −5% 0% 0% – – – –
Slicing (weeks) 168 −99.94% −93% −18% −100% −87% −100% −100% 96% −90% −100% −43% 100% 60% – – – –
Slicing (weeks) 1680 −95.65% −77% 0% 0% −4% 31% −81% −1% 1% −43% −1% 0% 0% – – – –
Slicing (weeks) 6552 +22.48% −23% 1% −5% 2% −10% −9% −1% 0% −23% 0% 0% 0% – – – –
Time horizon reduction 1095 −98.31% −85% 300% −100% 488% −100% −100% 380% −100% −100% 214% 67% 40% a a – –
Time horizon reduction 2190 −93.88% −73% 113% −72% 200% −100% −100% 380% −100% −100% 102% 100% 60% a a – –
Time horizon reduction 4380 −84.88% −48% 46% −7% 61% −100% −17% 166% 10% 93% 52% 100% 60% – a – –

aIn the simplified model, an investment has taken place which was not taken into account in the reference case.
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Appendix E. Results: Temporal model adaptions (Plots)

Deviations of investment decisions of slicing and averaging from the reference case are shown in Figs. 8–10. Investment decisions that did not
prove suitable for system optimization neither in the reference case nor in the simplified model runs for system optimization (wall, window and
roof insulation) are not shown.

Fig. 8. Investment decision deviations of temporal simplified models from the reference case. Methods with sample days are shown on the left, sample weeks on the right. Modeled
values are shown as full symbols.
17
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Fig. 9. Investment decision deviations of temporal simplified models from the reference case. Methods with sample days are shown on the left, sample weeks on the right. Modeled
18

values are shown as full symbols.
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Fig. 10. Investment decision deviations of temporal simplified models from the reference case. Methods with sample days are shown on the left, sample weeks on the right.
19

odeled values are shown as full symbols.
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Appendix F. Results: Techno-spatial model adaptions

Deviations of techno-spatial simplified models from the reference case are shown in Table 7.

Table 7
Deviations of techno-spatial simplified models from the reference case. Green cells indicate a model improvement, respectively low model errors, red cells indicate negative
deviations from the reference case, blue positive deviations.
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A1: technological pre-selection 31 10 −99.38% −29% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
B1: technological aggregation 75 20 +68.27% −2% 0% +5% −1% +3% 0% 0% 0% +3% 0% 0% 0% 0% 0% 0% 0%

C1: spatial clustering 50 14 −80.97% −44% −4% +9% +2% −2% +120% −35% −38% +5% −16% −67% −60% 0% a 0% 0%
C2: spatial clustering 43 12 −94.51% −54% −10% −7% −7% −100% +121% −10% −15% −26% −15% −67% −60% 0% a 0% 0%
C3: spatial clustering 37 8 −99.26% −64% −20% −15% −11% −100% −100% +39% −41% −78% −26% −67% −60% 0% a 0% 0%

D1: linearization 86 13 −57.58% 0% −4% −16% −68% −100% 0% +54% +57% +62% −3% +100% +60% 0% a 0% 0%
D2: linearization 92 7 −87.13% 0% −9% −18% −40% −100% −100% +55% −9% +62% −17% +133% +160% 0% a 0% 0%
D3: linearization 99 0 −98.49% 0% −13% −18% +18% −100% −100% +37% −70% +62% −17% +500% −100% 0% a 0% 0%
D4: linearization 99 0 −98.99% 0% −14% −18% −28% −100% −100% +59% −22% +62% −17% −100% +300% 0% a 0% 0%
D5: linearization 99 0 −99.01% 0% −14% −18% −19% −100% −100% +55% −31% +62% −17% +133% +160% 0% a 0% 0%

E1: technological boundaries 79 20 −76.79% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
E2: technological boundaries 79 20 −75.96% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
E3: technological boundaries 79 20 −59.71% +1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
E4: technological boundaries 79 20 −49.47% +1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

F: sub-modeling 39/45 8/13 −67.84% −39% +1% 0% +1% −6% 0% 0% 0% +54% 0% 0% 0% 0% 0% 0% 0%
G: case-distinction 43/75 20/0 −98.56% −22% +1% +13% +81% +33% +122% −100% −100% +55% −16% −100% −100% 0% a 0% 0%

aIn the simplified model, an investment has taken place which was not taken into account in the reference case.

ppendix G. Results: Combined methods

Deviations of simplified models using combined methods from the reference case are shown in Table 8 and Fig. 11.

Table 8
Deviations of models with combined methods from the reference case. Green cells indicate a model improvement, respectively low model errors, red cells indicate
negative deviations from the reference case, blue positive deviations.
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X1 31 10 −99.43% −29% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
X2 31 10 −99.57% −62% 0% −4% −2% 0% +20% +2% −3% −38% −1% 0% 0% 0% 0% 0% 0%
X3 16/15 0/10 −99.31% −55% +1% 0% +1% −5% 0% 0% 0% +29% 0% 0% 0% 0% 0% 0% 0%
X4 16/15 0/10 −99.70% −77% +1% −2% −1% −4% +20% +2% −3% +9% −1% 0% 0% 0% 0% 0% 0%
X5 16/15 0/10 −99.89% −88% −1% −21% −2% −29% −54% 0% −10% −32% −4% 0% 0% 0% 0% 0% 0%

In the simplified model, an investment has taken place which was not taken into account in the reference case.
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Fig. 11. Investment decision deviations of the applied combined model reduction method schemes from the reference case results.
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