
©IFIP, (2020). This is the author’s version of the
work. It is posted here by permission of IFIP for your
personal use. Not for redistribution. The definitive version
was published in 2020 IFIP Networking Conference,
https://dl.ifip.org/db/conf/networking/networking2020/1570640599.pdf



A QUIC Simulation Model for INET and its
Application to the Acknowledgment Ratio Issue

Timo Völker∗, Ekaterina Volodina†, Michael Tüxen∗ and Erwin P. Rathgeb†
∗Department of Electrical Engineering and Computer Science

FH Münster University of Applied Sciences, Steinfurt, Germany
Email: {timo.voelker,tuexen}@fh-muenster.de
†Computer Networking Technology Group

University of Duisburg-Essen, Essen, Germany
Email: {ekaterina.volodina,erwin.rathgeb}@uni-due.de

Abstract—Quick UDP Internet Connections (QUIC) is a novel
transport protocol introducing known features in a new protocol
design. To investigate these features and the design, we developed
a QUIC implementation in the INET simulation model suite.

In this paper, we describe that implementation, its validation
and a result achieved using the simulation model. The result
shows the negative impact on throughput, when raising the
acknowledgment ratio. We propose a solution and describe how
it solves the issue.

Index Terms—QUIC, INET, OMNeT++, Protocol Simulation,
Transport Protocol, Ack Ratio

I. INTRODUCTION

Quick UDP Internet Connections (QUIC) is a novel trans-
port protocol currently being standardized by the Internet
Engineering Task Force (IETF). Multiple implementations
exist that support the current version of the internet drafts.

In order to investigate QUIC’s features and new protocol
design in a controllable environment, we developed a QUIC
implementation in the INET simulation model suite. The sim-
ulation model offers an agile way to evaluate the performance
of the protocol and its potential optimizations. For instance, we
used the simulation model to analyze QUIC connections with
different ratios of received packets to sent acknowledgements
(ack ratio). The result shows a negative impact on throughput,
when raising the ack ratio. We propose an extension to QUIC
that solves the issue, as the result further shows.

This paper starts by introducing the QUIC protocol in
section II. Section III describes our QUIC implementation,
followed by the description of its validation in section IV. In
section V, we describe the result of the ack ratio analysis.

II. THE QUIC PROTOCOL

QUIC is a protocol invented by Google. Google presented
its work in November 2013 at the IETF, which initiated the
foundation of the IETF QUIC working group. The QUIC
working group described the core protocol in the two internet
drafts [1] and [2].

QUIC operates on top of the User Datagram Protocol (UDP)
but adds features that are usually located in the transport layer,
like in-order delivery, reliability, packetization, congestion

control, flow control and multi-streaming. A QUIC packet
consists of a QUIC packet header and one or more QUIC
frames. Each frame has its own header format. QUIC always
encrypts the payload and most of the header fields.

The QUIC packet header contains a packet number iden-
tifying the packet. The packet number is strictly monotonic
increasing for each outgoing packet. QUIC acknowledges the
receipt of a packet by sending a packet containing an ACK
frame, which lists the packet numbers of received packets.

The STREAM frame is used to transfer data from the appli-
cation for a specific stream. QUIC does not consider message
boundaries. Each stream uses a byte-stream orientation.

QUIC protects the receiver by credit-based flow controls
for the connection and for each stream. Each byte sent in a
STREAM frame uses up the credit. Each byte fetched from
QUIC by the application frees space for more data. A QUIC re-
ceiver sends a MAX DATA or MAX STREAM DATA frame
to increase the connection-level or a stream-level credit for the
sender, respectively. A sender that exhausted one of the credits
is not allowed to send more application data. It instead sends a
(STREAM )DATA BLOCKED frame to inform the receiver.

A QUIC packet containing frames other than a PING frame
(i.e. a frame used to check reachability to the peer) or an ACK
frame is an ack-eliciting packet. When QUIC sends an ack-
eliciting packet, it expects an ACK frame that acknowledges
the packet. If the packet is not acknowledged after a specified
time, QUIC sends a probe packet to trigger an ACK frame.
A packet that was left unacknowledged upon a received ACK
frame is considered lost, when the packet number is too low
or the sent time too old compared to the acknowledged packet
with the largest packet number. In case of a packet loss, QUIC
does not retransmit the packet. It rather inspects the contained
frames and checks if the information needs to be retransmitted.
A STREAM frame typically contains information that needs to
be retransmitted, while an ACK frame might contain outdated
information. QUIC retransmits information always in a new
QUIC packet with a new packet number.

III. IMPLEMENTATION OF QUIC IN INET

INET is a network simulation model suite that uses the
OMNeT++ simulation library [3]. INET contains so calledISBN 978-3-903176-28-7 © 2020 IFIP



simple modules for typical network protocols, e.g. TCP, UDP,
Stream Control Transmission Protocol (SCTP), IP, Point-to-
Point Protocol (PPP), and Ethernet. They can be combined
to a compound module. One such compound module is the
StandardHost. The StandardHost combines simple modules to
a full TCP/IP network stack, including link layer, network
layer, transport layer, and application layer.

We extended INET by a simple module for QUIC (in the
following referred to as QUIC module) and simple modules
for applications that use QUIC to send and receive data.
We included the QUIC module into the StandardHost, placed
between an application module and the UDP simple module.

The QUIC implementation is based on the IETF internet
drafts [1] and [2] with a focus on the transport layer features
of QUIC. It is planned to contribute the implementation as
open source to the INET model suite.

A. Realized and Missing Features

For the implementation of the QUIC module, we focused on
the transport layer features required to simulate data transfer.
Therefore, we implemented the in-order delivery, reliability,
packetization, congestion control (CC), flow control (FC), and
stream multiplexing.

Currently, the QUIC module models the established state
only. It does not perform a connection setup and therefore
omits the exchange of parameters between the endpoints1. It
also does not encrypt packets. The overhead by encryption
is not modeled. As such, the space available in a packet for
QUIC frames is larger than in a real implementation.

B. Data Sender

When an application signals the need to connect to another
host via QUIC, the QUIC module immediately indicates that
it is ready to send data (it skips the connection setup process).
After that, the application is able to hand over data it needs to
transmit. For that, the application has to specify the number
of the stream it intends to use to transmit the data. The
QUIC module manages a send queue for each stream. It
stores the provided data in the send queue of the specified
stream and starts the sending process. If the CC allows to
send a full-sized packet (i.e. a packet that fully utilizes the
Maximum Transmission Unit (MTU) of the network path), the
QUIC module builds a packet. Building a packet starts with
adding the QUIC short packet header. Then, frames other than
STREAM frames are added, if available. After that, if the FC
allows to send data, one or more STREAM frames are added
for the data in the stream send queues.

A scheduler decides which STREAM frames are added to
the packet. We implemented a generic scheduler interface.
With that, it is simple to change the scheduler mechanism. Cur-
rently, merely a Round Robin scheduler exists. This scheduler
adds one STREAM frame, if the send queue of the current
stream can provide enough data to fill the packet. If not, it
adds STREAM frames for the next streams until the packet is
full or no stream is able to provide data to send.

1Parameters in a configuration file compensates the lack of exchange.

Fig. 1: Send (left) and receive (right) architecture of the QUIC module.

Before a packet will be forwarded to UDP, the packet is
added to a dictionary of sent packets and the application data
from the send queue is copied into the STREAM frames. The
data remain in the stream’s send queue until the peer host
acknowledges a packet containing these data. The total size
of all stream send queues is limited. If this limit is reached,
the QUIC module signals to the application that it will not
accept more data. Once the total size reduces to a low water
mark, the QUIC module signals to the application that it is
ready to accept new data. The limit and the low water mark
are specifiable by parameters.

The left side of Figure 1 depicts the send architecture of
the QUIC module for a connection with two streams. The
cylinders represent the stream send queues. It shows how
a packet is built with an ACK frame, and two STREAM
frames for stream 0 (one with lost data and one with new
data). A copy of the packet is stored in the dictionary of sent
packets, before the application data is added and the packet is
forwarded to the UDP module.

C. Data Receiver

When the QUIC module receives a packet for an open
connection, it starts by processing each frame on its own. For
a STREAM frame, the containing application data are stored
in the receive queue of the corresponding stream. Each stream
manages a separate receive queue. The size of each stream
receive queue is limited, as well as the total size of all stream
receive queues is limited by configurable parameters.

When data were received in order, the QUIC module will
provide them directly to the application. In this case, the QUIC
module signals to the application that it is able to provide
newly received data for the specific stream. If the application
requests data for that stream, the QUIC module sends them
to the application and removes them from the stream receive



queue. When the data were received out of order, the QUIC
module waits for the data that fit into the gap between the
previously received and the newly received data, before it will
provide them to the application.

Once all frames were processed, the packet is considered
fully received and added to a list of received packets. How the
QUIC module responds depends on the received packet. When
the packet received is not ack-eliciting, the QUIC module
does not send an ACK frame. If no ack-eliciting packets
were received, it may include an ACK frame in the next ack-
eliciting packet it has to send. Whether it should bundle an
ACK frame for non ack-eliciting packets is configurable by a
parameter. When the packet received is ack-eliciting, the QUIC
module does a delayed acknowledgment. Upon the first packet
received since the last ACK frame was sent, a timer is started.
An ACK frame is sent bundled in an ack-eliciting packet that
needs to be sent because of another reason, or in an own
packet if either the timer expires or the packet received was
the nth one since the last ACK was sent. n is a configurable
parameter that specifies the ack ratio to 1:n. The parameter is
2 by default.

The right side of Figure 1 shows the receive architecture
of the QUIC module for a connection with two streams.
The cylinders represent the stream receive queues. It shows
how a packet is processed that contains a STREAM frame
for stream 1 and an ACK frame. The application data in the
STREAM frame is stored into the stream receive queue. The
ACK frame acknowledges a previously sent packet with a
STREAM frame for stream 1. The acknowledged packet is
removed from the dictionary of sent packets and its contained
application data is removed from the send queue. After the
received packet is fully processed, it will be added on the list
of received packets.

D. Congestion Control

QUIC is designed to work with different CC algorithms.
To make it simple to implement and integrate different algo-
rithms, we implemented a generic CC interface. A parameter
decides which CC algorithm to use. We implemented New
Reno, as this is the CC specified for QUIC. The New Reno
implementation increases the congestion window in congestion
avoidance either in an approximate way as shown in [2] or
in a more exact way by counting the acknowledged bytes as
recommended in [4]. A parameter specifies which way to use.
We also implemented a CC that does not limit the number of
outgoing packets. It basically disables the CC.

E. Flow Control

For the QUIC module, we specify the stream receive queue
size and the total size of all stream receive queues by parame-
ters. Based on that, the initial FC credits are determined, which
a QUIC host communicates during connection setup. Since the
QUIC module skips the connection setup, it interprets these
parameter values also as the values of the peer.

The MAX DATA and MAX STREAM DATA frames are
used to increase FC credit. In order to keep the overhead

Fig. 2: Generic network for the case studies.

by these frames low, the receiver generates them only if the
remaining credit falls below a specific threshold. The threshold
is configurable by a parameter, which is the half of the initial
credit by default.

F. QUIC Applications

To be able to simulate the behavior of the QUIC module, we
created two QUIC applications. One named Traffic Generator
simply generates data messages in a configurable interval and
size to forward it to QUIC for transmission. The other named
Discard Server simply fetches data from QUIC as soon as
possible.

IV. VALIDATING THE SIMULATION MODEL

We used two approaches to validate the simulation model.
In order to check the behavior on a packet level, we used
packetdrill [5]. Packetdrill allows to write simple scripts that
help testing a network protocol implementation. Rüngeler [6]
ported packetdrill into the INET simulation model suite. We
extended packetdrill in INET to support the QUIC module
and a syntax to describe QUIC packets. Our packetdrill scripts
check in specific scenarios whether the QUIC module reacts
on API calls or received packets correctly and whether it sends
the right packet at the right time. In order to check the behavior
when interacting with another host, we ran the simulation
in specific cases and statistically analyzed the result, where
the correct result is known. Four of these case studies are
described in the following subsections.

For the case studies, we used a network for the simulation
as shown in Figure 2. The links between hosts and routers are
ideal links with an unlimited bandwidth and zero delay. The
Discard Server application runs on the receiver. The Traffic
Generator application runs on the sender. Since each case
needs a saturated sender the Traffic Generator application is
configured to generate data messages as fast as possible with
a size of at least the initial CC window. For the same reason
the QUIC send queue limit is set to a value of at least the
maximum of the amount of data the sender is allowed to have
outstanding at any given time.

A. Link Bandwidth Case

The Link Bandwidth case shows that the QUIC simulation
model is able to fully utilize the bandwidth (BW ) of the
bottleneck link. In this case, the saturated sender fills the drop
tail queue of router R1 until the router has to drop packets.
When the sender detects packet loss, its New Reno CC reduces
the congestion window, which in turn reduces the number of
outgoing packets.

Since, in the simulation, there are no side effects and
the time hosts need to process packets are not accounted,



Fig. 3: Throughput using a 100Mbit/s link. Fig. 4: Throughput using a link with packet loss. Fig. 5: Goodput in a FC limited connection.

the measured throughput should be equal to the theoretical
maximum. For the QUIC layer, this is

TPmax =
maxQuicPacketSize

maxPacketSize
· BW (1)

where maxPacketSize is the total size of the packet and
maxQuicPacketSize is the MTU reduced by the IP and UDP
header size.

For the simulation, we configured the bottleneck link with
a bandwidth of 100Mbit/s and a delay of 1ms. We set
the queue size of router R1 to 23 packets. This value was
derived from the Bandwidth-Delay-Product, which is the ideal
queue size as described in [7]. We repeated the simulation for
different values of MTU = 1280, 1452, 1500, 9000B.

We simulated a QUIC connection with over eight seconds of
data transfer. To calculate the throughput, we sum up the bytes
received by QUIC on the receiver for five seconds (omitting
the first three seconds to avoid measuring effects from CC in
slow start). As Figure 3 shows, the measured throughput for
each MTU equals the theoretical maximum calculated by (1).

B. Lossy Link Case

In contrast to the last case, a fixed packet loss rate is used.
The packet losses regulate the New Reno CC at the sender,
which limits the throughput. Mathis et al. presented in [8] an
equation for throughput, when using TCP on a link with a
fixed packet loss rate.

As basically the New Reno CC algorithm using a stream-
oriented transport protocol was analyzed, the equation is also
applicable for QUIC, when using New Reno as specified
by [2]. Adapting the throughput (TP ) equation for QUIC gives
us

TP =
maxQuicPacketSize

RTT

√
3

2p
(2)

For the simulation, we chose a configuration that fulfills the
assumptions used for the equation. These are the following.

(a) New Reno CC increases its window in congestion avoid-
ance exactly by maxQuicPacketSize bytes per RTT .

(b) The packet loss is periodic, i.e. exactly one packet is
dropped after 1/p packets were transmitted successfully.

(c) Only the packets from the sender are dropped, not the
packets from the receiver.

(d) The receiver immediately sends an ACK frame for each
received packet.

(e) The bandwidth of the bottleneck link is high enough to
not be the limiting factor.

(f) The FC gives enough credit to not be the limiting factor.
For (a), we configured the QUIC module to use the
more exact way of counting the acknowledged bytes as
recommended in [4]. For (d), we set the ack ratio to
1:1. For (e), we set the bandwidth of the bottleneck
link2 to 100Gbit/s. We further set the MTU to have
maxQuicPacketSize = 1252B. We repeated the simulation
for different values of RTT = 2, 4, 8, 12, ..., 100ms and
p = 0.1, 0.02, 0.005%.

To measure the throughput, we sum up the number of
bytes received by QUIC on the receiver starting after the New
Reno CC on the sender changed from slow start to congestion
avoidance. Figure 4 shows the result. The curves describe the
theoretical throughput using (2). The small dots describe the
measured throughput from the simulation. The fact that these
dots are located on the curves shows that the result from the
simulation conforms to the expected result.

C. Flow Control Limited Case

This case validates the function of the stream FC in the
QUIC simulation model (validating the connection FC has
been done in the same way). For that, the CC is disabled.
The saturated sender sends packets as long as the FC allows
to send application data. Once the FC credit is exhausted, the
sender has to wait for a credit update from the receiver.

The sender starts with using the full initial FC credit
(initialMaxData) by sending initialMaxData bytes of ap-
plication data in QUIC packets to the receiver. Since the
application on the receiver fetches data from the QUIC stream
as soon as possible, after the packets arrived, the receiver
will increase the FC credit by initialMaxData and informs
the sender by sending MAX STREAM DATA frames. The

2An unlimited bandwidth fits even better to the equation but would have a
negative impact on the throughput of QUIC. The sender would send packets
at the exact same time. This makes it unable to detect the order of sent
packets by time, which is necessary when the sender detects a packet loss,
because only acknowledgements for packets sent timely after the lost packet
are allowed to use to increase the congestion window.



Fig. 6: Throughput using a link shared among three senders. Fig. 7: Throughput for different ack ratios with 0.1% random packet loss.

information about the new FC credit arrives at the sender after
one RTT, whereon the sender again sends initialMaxData
bytes of application data. Therefore, the sender is able to send
initialMaxData bytes of application data per RTT , which
gives us the equation for goodput (GP ).

GP =
initialMaxData

RTT
(3)

For the simulation, we configured the bottleneck link
with an unlimited bandwidth and disabled the CC on
the sender. The application on the sender uses solely
stream 0. We repeated the simulation for different values
of RTT = 2, 4, 10, 20, ..., 100ms and initial FC credit for
stream 0 on the receiver initialMaxData = 65, 100, 140 kB.

The curves in Figure 5 show the theoretical goodput by
using (3) for the three values of initialMaxData . To calculate
the goodput from the simulation, we sum up the application
data in bytes received for stream 0 on the receiver. The
measured goodput is shown by the small dots in Figure 5.
The fact that these dots are located on the curves shows that
the result from the simulation conforms to the expected result.

D. Shared Link Case

The Shared Link case aims to show that QUIC senders are
able to share a bottleneck link in a fair manner. We extended
the network shown in Figure 2 by three additional senders and
three additional receivers. Each sender only sends packets to
its corresponding receiver. Sender1, Sender2 and Sender3 are
saturated QUIC senders. Each of these senders starts sending
at a different time and has to regulate its send rate for fair
sharing. Sender4 sends UDP packets in a random fashion to
reduce traffic phase effects [9].

When only one sender is active, it should achieve the
maximum throughput possible by the link bandwidth, as given
by (1). Two or three active senders should achieve a half or a
third of the maximum throughput, respectively.

For the simulation we configured the bottleneck link with
a bandwidth of 10Mbit/s and a delay of 10ms. We further
configured Sender1 to send from 20 s to 120 s, Sender2 to
send from 40 s to 160 s and Sender3 to send from 80 s to
180 s, as well as Sender4 to send UDP packets all the time
with a random size that is uniformly distributed from 100B to

1000B in random intervals that are uniformly distributed from
25ms to 100ms. To compensate random effects, we repeated
the simulation 100 times.

To visualize the throughput in a time curve, we measured
one value per second. We did that by summing up the bytes
received by QUIC on each of the three receivers for each
second. We repeated that for all 100 runs to calculate the
average throughput and the confidence interval. As Figure 6
shows, the senders are able to share the bottleneck link in a
fair manner.

V. QUIC THROUGHPUT FOR DIFFERENT ACK RATIOS

The IETF QUIC working group specified in [1] that a QUIC
endpoint should send an ACK frame for at least every second
received ack-eliciting packet. Whether this ack ratio of 1:2 is
a good choice is an ongoing discussion in the working group.
Choosing an ack ratio is a tradeoff. Reducing the frequency
of ACK frames reduces the workload for the sender and the
receiver of the frame, as well as for the network. Increasing
the frequency of ACK frames gives the data sender a more up
to date view of transmitted and lost packets. Fairhurst et al.
suggest in [10] to change the ack ratio to 1:10. Iyengar and
Swett propose in [11] an extension that allows to change the
ack ratio dynamically during a QUIC connection.

A. Simulation
One drawback when sending ACK frames less frequently

is a reduced throughput if the sender is limited by the New
Reno CC in a way, where it cannot fully utilize the bandwidth
of the bottleneck link (e.g. because the link is shared with
other senders). For example, the Lossy Link case has this
characteristic. We further examined the case to get a better
understanding of the issue. As our intention now is to simulate
in a more real-world environment, we changed the periodic
packet loss to a random packet loss. Due to the random influ-
ence, we repeated the simulation 100 times. We also changed
the way how the sender increases its congestion window in
congestion avoidance to the one shown in the pseudo code
in [2], as this is more likely how real implementations do it.

B. Description of the Result
To calculate the throughput, we sum up the bytes received

by QUIC on the receiver. It is important to note that the



time the endpoints need to process a packet is not considered.
Figure 7 shows the average throughput and the confidence
interval for the ack ratios 1:1 (ack every packet), 1:2 (ack
every other packet) and 1:10 (ack every 10th packet) for small
values of RTT using a packet loss rate of p = 0.1%. The
randomness in packet loss causes an increase in throughput as
visible when comparing the result for the ack ratio 1:1 with
the result from the Lossy Link case shown in Figure 4. The
changed way in increasing the congestion window has only
marginal impact on the throughput.

For lower packet loss rates using the values of RTT as
in Figure 7, the absolute difference in throughput for higher
ack ratios keeps almost unchanged. Because of the higher
throughput values, the relative difference shrinks. The relative
difference between an ack ratio of 1:1 and 1:2 or 1:10 is
−0.7% or −6.2% for p = 0.02% and −0.4% or −3.2% for
p = 0.005%, respectively. As shown in Figure 7, the opposite
is true as the RTT increases for a fixed packet loss rate.
The absolute difference shrinks, while the relative difference
keeps almost unchanged. This changes when the RTT exceeds
the ack delay timer of the receiver. Then, both, absolute and
relative difference shrink as the RTT further increases.

C. Analysis of the Result

A closer look into the output of the simulation reveals
why the throughput decreases for higher ack ratios. The
sender is limited by the CC. The congestion window is lower
than the bottleneck link bandwidth would have allowed, due
to the configured packet loss rate. Therefore, there is no
continuous packet flow. Rather, the sender sends the number
of packets allowed by the congestion window and waits for the
acknowledgements from the receiver. Whenever the number of
arrived packets at the receiver, that need to be acknowledged,
is not a multiple of n, the receiver with an ack ratio of 1:n
delays the acknowledgement for the last packets received.
Clearly, that happens more often with higher n. The receiver
delays the acknowledgement until more packets arrive after
one RTT or until the ack delay timer expires, whichever occurs
earlier. Since each newly acknowledged packet increases the
congestion window, this reduces the growth of the congestion
window at the sender, which leads to the decreased throughput
for higher ack ratios.

The decrease in throughput shrinks relatively for a lower
packet loss rate, because the number of packets the sender
is allowed to send by the congestion window is larger due
to fewer packet losses, while the number of packets that are
acknowledged with a delay keeps unchanged. On the other
hand, the decrease in throughput remains steady for a higher
RTT that still is below the ack delay timer on the receiver,
because the reduced number of RTTs (where a delay could
occur) for a fixed period of time is even out by the longer
delay (which equals one RTT).

D. Proposed Solution

The receiver cannot know when more packets are expected.
Only the sender has this information. We propose to specify

one of the reserved bits in the QUIC short packet header as
Immediate Bit (I-Bit) similar to the one specified for SCTP
in [12]. With that, a sender is able inform the receiver, before
it is blocked in waiting for acknowledgments. A sender should
set the I-Bit with the last packet sent before it is blocked. A
receiver should send an acknowledgment immediately after
receiving a packet with the I-Bit set.

We implemented the I-Bit extension in order to examine the
effect. As shown in Figure 7 by the light blue and light red
bars, the extension solves this issue for higher ack ratios.

Alternatively, it is feasible to solve this issue with the
extension that allows to change the ack ratio dynamically [11].
A sender could set the ack ratio to 1:1 before it is blocked and
reset the ack ratio afterwards. However, the I-Bit extension is
simpler and does not add overhead.

VI. CONCLUSION AND OUTLOOK

It is to be expected that the QUIC protocol will play a
significant role for data transfer in the future internet. For
in-depth analysis of the protocol’s behavior, we created a
simulation model for the INET simulation model suite. In
this paper, we described the architecture of the model and
its validation. We further used the simulation to analyse the
influence of higher ack ratios. The result described in this
paper showed the negative impact for throughput and how the
I-Bit extension can compensate it.

We will use the simulation model to do further analysis on
the protocol’s behavior. In order to simulate more aspects of
the protocol, we are going to extend the QUIC module step
by step. Subsequently, we will contribute our implementation
as open source to the INET model suite.

REFERENCES

[1] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed
and Secure Transport,” IETF, Internet-Draft draft-ietf-quic-transport-27,
February 2020.

[2] J. Iyengar and I. Swett, “QUIC Loss Detection and Congestion Control,”
IETF, Internet-Draft draft-ietf-quic-recovery-27, March 2020.

[3] INET Network Simulation Model Suite for OMNeT++. [Online].
Available: https://inet.omnetpp.org/

[4] E. Blanton, Dr. V. Paxson, and M. Allman, “TCP Congestion Control,”
IETF, RFC 5681, September 2009.

[5] N. Cardwell and B. Raghavan, “Drilling network stacks with packet-
drill,” USENIX ;login:, vol. 38, no. 5, pp. 48–52, October 2013.

[6] I. Rüngeler and M. Tüxen, “Integration of the packetdrill testing tool in
inet,” CoRR, vol. abs/1509.03127, September 2015.

[7] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
in Proceedings of the 2004 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, ser. SIG-
COMM ’04. ACM, August 2004.

[8] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic be-
havior of the tcp congestion avoidance algorithm,” SIGCOMM Comput.
Commun. Rev., vol. 27, no. 3, p. 67–82, July 1997.

[9] S. Floyd and V. Jacobson, “Traffic phase effects in packet-switched
gateways,” SIGCOMM Comput. Commun. Rev., vol. 21, no. 2, p. 26–42,
April 1991.

[10] G. Fairhurst, A. Custura, and T. Jones, “Changing the Default QUIC
ACK Policy,” IETF, Internet-Draft draft-fairhurst-quic-ack-scaling-01,
March 2020.

[11] J. Iyengar and I. Swett, “Sender Control of Acknowledgement Delays in
QUIC,” IETF, Internet-Draft draft-iyengar-quic-delayed-ack-00, January
2020.

[12] M. Tüxen, I. Ruengeler, and R. R. Stewart, “SACK-IMMEDIATELY
Extension for the Stream Control Transmission Protocol,” Nov. 2013.


