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ABSTRACT
A data sender in an IP based network is only capable to efficiently
use a network path if it knows the packet size limit of the path, i.e.,
the Path Maximum Transmission Unit (PMTU). The IETF recently
specified a PMTU discovery framework for transport protocols like
QUIC. This paper complements this specification by presenting a
search algorithm. In addition, it defines several metrics and shows
results of analyses for the algorithm with various PMTU candidate
sequences using these metrics. We integrated the PMTU discov-
ery with our algorithm into a QUIC simulation model. This paper
describes the integration and presents measurements obtained by
simulations.
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• General and reference → Metrics; Evaluation; • Networks →
Transport protocols; Network simulations.
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1 INTRODUCTION
A data sender in an Internet Protocol (IP) based network is only
capable to efficiently use a network path if it knows the packet
size limit of the path. Without this knowledge, a sender could rely
on the network fragmenting IP packets that exceed the limit, but
this works only with IP version 4 (IPv4) [23] and is considered
harmful [15] (IPv6 [7] allows only the sender to fragment packets).
Alternatively, a sender could generate only packets not exceeding
the largest size that, by specification, each network node must be
able to forward without fragmentation. But, sending smaller and
therewith more packets increases the overhead and consumes more
processing power (e.g., [22] shows impact on throughput).
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The Maximum Transmission Unit (MTU) configured for a net-
work interface limits the size of IP packets that can be sent over
it. For a network path, the smallest MTU of all involved network
interfaces, a.k.a. the Path MTU (PMTU), limits the size of IP packets.

The Internet Engineering Task Force recently specified a PMTU
Discovery (PMTUD) framework for transport protocols like QUIC
in RFC8899 [10]. The specification of QUIC in RFC9000 [14] rec-
ommends to use this framework. However, [10] does not contain
details about how to search for a PMTU.

We developed a search algorithm and defined metrics to eval-
uate the algorithm with various PMTU candidate sequences. We
implemented the PMTUD with this algorithm for QUIC and used it
to examine its behavior in simulations.

After discussing related work, this paper describes how to use
the PMTUD framework with QUIC in Section 3. Section 4 describes
the search algorithm and examples for PMTU candidate sequences.
Then, this paper defines metrics, presents the evaluation of the
algorithm with each candidate sequence using these metrics and
presents measurements from simulations using the search algo-
rithm within QUIC in Section 5. Lastly, it discusses the usage of
PMTUD in QUIC in Section 6 and gives a conclusion in Section 7.

2 RELATEDWORK
A PMTUD mechanism for the network layer is specified for IPv4
in [8] and for IPv6 in [20]. This mechanism expects to receive a
Packet Too Big (PTB) message, when a packet too large for the
path was sent. As described in [3], there are multiple reasons why
a PTB message might not arrive at the sender. Measurement results
in [21], [17], [18], [6] and [5] show that this is a problem in the
Internet. [11] even suggests to stop using this mechanism to protect
against a potential attack where a spoofed PTB message is used to
pretend a smaller PMTU.

A PMTUDmechanism for the layer that selects the size of IP pack-
ets, a.k.a. the Packetization Layer (PL), is specified in RFC4821 [19]
and, recently, in RFC8899 [10]. Both work without a signal from
the network. But, [19] has a focus on the Transmission Control
Protocol (TCP), while [10] covers generic PL protocols (e.g., QUIC).
However, both specifications do not contain details about how to
search for a PMTU.

3 PMTUD FRAMEWORK AND QUIC
This section describes a way to use the PMTUD framework as
described in RFC8899 [10] for a QUIC endpoint.

3.1 PMTU Probe
As described by RFC8899 [10], the endpoint probes whether the
network path supports a specific packet size by sending an IP packet
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with that size (a.k.a. a probe packet). As specified in RFC9000 [14], it
builds a probe packet with a short packet header, a PING frame and
PAD frames. It controls the size of the probe packet by the number
of PAD frames, whose size is one byte each. The PING frame makes
the packet ack-eliciting.

The following three subsections describe the events handled
after sending a probe packet.

3.1.1 Acknowledgement. The receipt of an acknowledgment (ack)
for a probe packet confirms that the network path supports the
probed size and, therefore, lets the probe succeed. The result is
known after approximately one round trip time (RTT). Note that
the remote endpoint may delay the sending of the ack by up to the
max_ack_delay.

3.1.2 Loss. To be robust against loss of probe packets that happen
independent of the packet’s size, the endpoint resends a lost probe
packet. However, analogous to RFC8899 [10], after MAX_PROBES lost
probe packets, it considers the probe as failed. Note, since QUIC’s
loss detection covers all sent packet, especially ack-eliciting packets
like probe packets, the endpoint does not need the PROBE_TIMER
as used in RFC8899 [10].

3.1.3 PTB. The receipt of a valid PTB message as response to a
probe packet (validation described in RFC8899 [10]), lets the probe
fail. The result is usually known in less than one RTT.

3.2 Phases
As described in RFC8899 [10], the endpoint holds a PMTU estima-
tion. It sets the estimation initially to a safe but small value. It then
increases the estimation successively until it has found the best one.
RFC8899 [10] describes this in multiple phases. The main phases
are Base, Search and Search Complete.

3.2.1 Base. In the Base phase, the endpoint probes for a basic
PMTU size. On success, it enters the Search phase. In case of a
failure, the endpoint enters an Error phase. However, since our
focus is on the PMTU search, we do not consider this case.

RFC8899 [10] describes to start in the Base phase. However, as
specified in RFC9000 [14], QUIC must send QUIC packets with a
size of at least 1200 B when validating a path during connection
initiation or migration. Since the size of the resulting IP packet is
similar to what RFC8899 [10] considers a basic PMTU size, it allows
to start directly in the Search phase.

3.2.2 Search. In the Search phase, the endpoint uses a search al-
gorithm that repeatedly chooses PMTU candidates to probe. A
successful probe increases the PMTU estimation to the size of the
probed candidate. When the algorithm determines that it has found
the best PMTU estimation, the endpoint enters the Search Complete
phase.

Note, RFC8899 [10] does not describe a search algorithm. This
paper presents one in Section 4.2.

3.2.3 Search Complete. The network path might change during
a connection. With that, the PMTU might change as well. In the
Search Complete phase, the endpoint checks whether the current
PMTU estimation is still the best one. Since that is out of scope of
this paper, we do not consider it further.

3.3 Congestion Control
In QUIC, all ack-eliciting packets, like probe packets, are congestion
controlled. Sending such a packet uses the congestion window
(cwnd) until its ack or loss. In order to save the cwnd for application
data, the endpoint waits for an ack or loss signal before sending
the next probe packet.

Since the loss of a probe packet is an expected result, the endpoint
does not interpret it as congestion signal [14] and ignores it for the
detection of a persistent congestion.

4 PMTU SEARCH
4.1 Possible PMTU Candidates
The set of possible PMTU candidates is finite.

4.1.1 Lower Bound. The size probed in the Base phase or byQUIC’s
path validation. Since, as specified in RFC9000 [14], QUIC assumes
network paths that support an IP packet size of at least 1280 B, we
use this size as lower bound.

4.1.2 Upper Bound. Due to the length field in the header, an IPv4 or
IPv6 packet cannot be larger1 than 65,535 B or 65,575 B, respectively.
However, often, it is possible to determine a smaller upper bound
than the maximum IP packet size. Three indications help to find a
smaller upper bound.

(1) The MTU specified for the local network interface used for
the network path.

(2) The MTU learned from another network device. An IPv6
endpoint could learn an MTU from a router sending a Router
Advertisement [24]. An IPv4 endpoint could learn an MTU
from a Dynamic Host Configuration Protocol server using
the Interface MTU Option [9].

(3) The Maximum Receive Unit (MRU) declared by the remote
endpoint. For instance, a QUIC endpoint may specify the
maximum UDP payload size it is willing to receive during
connection setup. This can be used to deduce the MRU.

The minimum of these three values is the upper bound.

4.1.3 Precision. It is possible to reduce the number of candidates
between these bounds by accepting a lower precision.

Measurements showed that the most common PMTU value is
1500 B [5], which is the default MTU specified for Ethernet [12].
Other common PMTU values are based on that but reduced by the
overhead of a tunnel technology. Many of these overheads have
a multiple of four bytes in size (e.g., Point-to-Point Protocol over
Ethernet, IPv4, IPv6). Thus, considering only PMTU candidates that
are multiples of four is a reduction without losing precision in most
cases.

4.1.4 Candidate Set. Practically, it might be a good choice to con-
sider only a set of common PMTU values. However, which PMTU
values are common changes over time. This means, regular mea-
surements, as done in [5] and [1], are needed to update the set. A
PMTUD analysis loses its relevance if it is based on a set of PMTU
values that are no longer common. Therefore, we refrain from using
only a set of common PMTU values.

1With IPv6 Jumbograms [4] packets can be larger than 65,575 bytes. However, we are
not aware of its usage in the current Internet and therefore ignored it.
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4.2 Algorithm
A simple search algorithm is one that probes one PMTU candidate
after the other. This means, it starts the probe for the next candidate
not before the probe for the current candidate either succeeded or
failed (as described in Section 3.1).

However, when searching for the PMTU, usually an algorithm
needs to consider many PMTU candidates and the probe for some
candidates might fail. Detecting that a probe fails is time-consuming.
To accelerate the search, we deviated from the simple algorithm as
described in the following.

4.2.1 Prefer Smaller Candidate. In case of a probe packet loss, our
algorithm postpones its retransmission and instead starts a probe
for a smaller candidate, if available. This avoids investing too much
time in a single PMTU candidate. If no smaller candidate is available,
the algorithm resends the lost probe packet.

The loss of a probe packet indicates that the PMTU is smaller
than the probed PMTU candidate. Therefore, the algorithm does
not start a probe for a larger PMTU candidate.

4.2.2 Failed Probe. In absence of a PTBmessage, the algorithm con-
siders a probe for a PMTU candidate as failed, only if MAX_PROBES
probe packets of the size of the candidate were detected as lost. This
means, the algorithm uses MAX_PROBES not as a total maximum of
all sent probe packets as described in RFC8899 [10], but only as a
maximum of probe packets sent for one PMTU candidate.

A probe for a PMTU candidate that fails, lets all other probes
for larger candidates fail as well. The receipt of a validated PTB
message lets all probes for candidates larger than the reported MTU
within the PTB message fail. If not already probed, the algorithm
continues with probing the reported MTU.

If the probe for the smallest of the currently probed PMTU candi-
dates failed and no smaller candidates are available, the algorithm
terminates with the largest successfully probed candidate as result.

4.2.3 Successful Probe. A probe for a PMTU candidate that suc-
ceeds, lets all other probes for smaller candidates succeed as well. To
control the rate of probe packets sent, the algorithm continues with
probing only if no probe packet of a larger candidate is outstanding.

If the probe for the largest of the currently probed PMTU can-
didates succeeded and no larger one is available, the algorithm
terminates with this succeeded candidate as result.

4.3 Candidate Sequence
The candidate sequence specifies the order in which the algorithm
probes PMTU candidates. It must choose a candidate larger than
the largest successfully probed candidate and smaller than any
other probed candidate with a lost probe packet. The following
subsections describe some examples.

4.3.1 Linear Upward. The linear upward sequence (Up) selects one
candidate after the other from a list of candidates in ascending
order, starting with the second one (the first one was probed before,
e.g., in the Base phase).

4.3.2 Linear Downward. The linear downward sequence (Down)
selects one candidate after the other from a list of candidates in
descending order, starting with the first one.
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Figure 1: Number of probed PMTU candidates (PTB)

4.3.3 Optimistic Linear Upward. The optimistic linear upward se-
quence (OptUp) selects the largest candidate first. After that, it
continues as Up.

4.3.4 Linear Down-Upward. The linear down-upward sequence
(DownUp) is a combination of Down and Up. It switches between
these two. It starts by selecting the largest candidate, followed by
the second smallest one, followed by the second largest one, and so
on.

4.3.5 Binary. The binary sequence (Binary) selects candidates
from a balanced binary tree over the list of currently allowed PMTU
candidates in descending order. This means, the middle element
(choosing the larger one if there is no one distinct middle element)
is at the root with larger candidates left from the root and smaller
candidates right from the root. It selects the first candidate not
selected before while traversing the binary tree in a breadth-first
order.

4.3.6 Optimistic Binary. The optimistic binary sequence (short:
OptBinary) selects the largest candidate first. After that, it continues
as Binary.

4.3.7 Jump. The jump sequence (Jump) selects candidates from
a list with a reduced number of PMTU candidates. It adds further
candidates to the list successively.

Without using a set of common PMTU candidates, we choose
the initial list of PMTU candidates based on a distance. However,
we use a smaller distance in regions where it is more likely to find
the PMTU. As initial list, we use the lower and upper bound of the
PMTU candidates and, within these bounds, each of the following
candidates: 1300, 1400, 1420, 1440, 1460, 1480, 1500, 1520, 4000, 6500,
9000, 21,500, 34,000, 46,500 and 59,000 bytes.

Jump uses Down in the first round until a probe for a PMTU
candidate succeeds. For each following round, it uses Up until the
loss of a probe packet. Between two rounds, it adds new PMTU
candidates if the distance d between the last successfully probed
candidate and the next larger one is larger than 4. In-between
these two candidates, it adds all multiples of a jump size j as new
candidates in ascending order. Basically2, we chose j = d/5, because
it suits well to the chosen set of initial PMTU candidates where
almost every candidate has a distance of d = 4 · 5x to its next
larger one for some x > 0. Up starts in each round with the next
candidate after the last successfully probed one (i.e., the smallest
added candidate).
2more precisely, we chose j = 4 · 5 ⌈loд5(d/20)⌉ to cover the cases where d is not a
multiple of 4 · 5
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(b) Time to find the PMTU with RTT = 20 ms
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(c) Network Load by probe packets with MAX_PROBES = 3
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Figure 2: Results from analyses without PTB

5 EVALUATION
The PMTU candidate sequence completes the search algorithm. In
the following, we often omit the separation and, for example, write
linear upward search algorithm or short Up to refer to the search
algorithm that uses the linear upward sequence.

This section evaluates the algorithms first analytical and then
by simulation and concludes with a result.

5.1 Analytical
To compare the algorithms analytical, we define four metrics and
analyze the algorithms for each metric. For the analyses, we con-
sider a network endpoint that searches theMTU of a path to another
endpoint using the 55 PMTU candidates between 1280 B and 1500 B
that are a multiple of four. For that, we assume no packet loss due
to any reason other than the packet size.

Each of the following subsections first describes a metric and
then uses it to evaluate the algorithms. They present the results
using line graphs that have the actual PMTU on the x-axis and the
metric value on the y-axis.

5.1.1 Number of Probed PMTU Candidates. The number of probed
PMTU candidates by an algorithm already gives a rough picture of
the performance.

At first, we analyze the number of probed PMTU candidates
per algorithm with the assumption that the endpoint receives a
PTB message reporting the correct PMTU when it sends a probe
packet larger than the PMTU. Figure 1 depicts the result. It shows
that all algorithms except Up and Binary either find the PMTU
or trigger a PTB message with its first candidate and thus require
only one or two probes. Up triggers a PTB message only with its
last selected candidate. Binary triggers a PTB message with its
nth selected candidate for a PMTU that is smaller than 1/2n of all
candidates. Since the case with a PTB message is only relevant for

these two algorithms and this in a predictable way, we omit it for
the following metrics.

Here and for the followingmetrics, we present results of analyses
without the assumption that the endpoint receives a PTB message.
Figure 2a depicts the result for the number of probed PMTU candi-
dates. The graph shows that the linear algorithms have a relatively
high peak with 55 probed PMTU candidates.

5.1.2 Time. To be effective, a search algorithm should determine
the best PMTU estimation and terminate as fast as possible. Here,
we focus on the time the algorithm needs to find the best PMTU es-
timation. This is less than the time an algorithm needs to terminate
if it requires extra steps to check that the found PMTU estimation
is the best one. Note, this makes our time analysis independent of
the value for MAX_PROBES.

The time to receive an ack or get a loss indication for a probe
packet depends on whether the endpoint sends other ack-eliciting
packets.

The receiver of a probe packet might delay the ack by up to
max_ack_delay. However, if, for example, it received other ack-
eliciting packets before, the probe packet could trigger an immediate
ack. Therefore, we assume an ack time between RTT and RTT +
max_ack_delay.

Without receiving an ack, the probe timeout (PTO) triggers QUIC
to send an ack probe packet to request an ack (we precede the word
ack here, to distinguish these probe packets from probe packets
used by the PMTUD). Without assuming further packet loss, an ack
that acknowledges the ack probe packet, but not the probe packet,
arrives one RTT later and lets QUIC declare the probe packet as
lost. However, if the endpoint sends a probe packet as the first one
among other ack-eliciting packets, an ack could arrive one RTT
later that acknowledges only these other ack-eliciting packets and
lets QUIC consider the probe packet as lost. Thus, we assume a loss
detection time between RTT and RTT + PTO.
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For the PTO, we evolve the values for smoothed_rtt and rttvar
with every new RTT sample as described in RFC9002 [13]. We
assume a constant RTT. With n > 0 RTT samples, this gives

smoothed_rtt = RTT

rttvar(n) = (3/4)n−1 × RTT/2

⇒ PTO(n) = (1 + 2(3/4)n−1) × RTT + max_ack_delay

We assume to have at least one RTT sample when the PMTU
search starts (e.g., from the Base phase) and to have another one
with each probe packet sent (the ack of either the probe packet or
the later sent ack probe packet allows the RTT measurement).

Figure 2b shows the result of the analysis with RTT = 20 ms and
max_ack_delay = 25 ms. The color filled area visualize possible
time values. The result confirms that the high number of probed
candidates of the linear search algorithms has a negative effect on
the time these algorithms need.

5.1.3 Network Load. Sending probe packets produces extra load
on the network. A search algorithm should produce as less load
as possible. We consider the bytes of the IP packets the algorithm
sends until it terminates.

Figure 2c shows the result of the analysis with MAX_PROBES = 3.
The result corresponds to the result from the number of probed
PMTU candidates.

5.1.4 Average PMTU Estimation. Data transmission can benefit
from a search algorithm that increases the PMTU estimation while
searching. We look at the average PMTU estimation weighted by
the time an algorithm uses each estimation before it has found the
best one. For example, if an algorithm estimated the PMTU with
1280 B for 20 ms and after that with 1400 B for 40 ms before it has
found the best PMTU estimation, the average PMTU estimation is
(1280 B · 20 ms + 1400 B · 40 ms)/(20 ms + 40 ms) = 1360 B. Care
must be taken when interpreting this metric, because algorithms
that need a long time have a better chance to achieve a high value
here.

Figure 2d shows the result of the analysis. Since this metric
depends on the time an algorithm needs, similar as in Section 5.1.2,
the color filled area visualizes possible values for the average PMTU
estimation. As the intermediate PMTU estimations cannot be equal
or larger than the actual PMTU value, the result spectrum is below
a diagonal line from the lower left to the upper right. This graph
outlines that Down does not change its PMTU estimation before it
finds the best one, not even during the long time it needs for small
PMTU values.

5.2 Simulation
We use a simulation model to investigate the PMTU search inside
QUIC where external events influence the search. For that we focus
on the two most promising algorithms: OptBinary and Jump (see
Section 5.3 for a discussion).

5.2.1 Environment. For the simulation we use the OMNeT++ sim-
ulation library [16] together with the INET network simulation
model suite [2]. We implemented the PMTUD for the QUIC model
[25] as described in Section 3.

Sender
R1 ReceiverR2

sends r msg/s Discard Server

Bandwidth: 100 Mbit/s
Delay: 10 ms 
Loss Rate: p 

MTU = PMTU

1 Gbit/s 1 Gbit/s

MTU = 1500 B MTU = 1500 B

Figure 3: Network in Simulation

For all simulation runs, we use the network shown in Figure 3.
In the network, the links between the hosts and the routers have a
bandwidth of 1 Gbit/swithout propagation delay. The link between
the routers R1 and R2 is the bottleneck link. For the bottleneck
link, we set a bandwidth of 100 Mbit/s and a one-way propagation
delay of 10 ms. Thus, the RTT from one endpoint to the other is
approximately 20 ms.

The MTU of each network interface is 1500 B. However, we
reduce the MTU of the router interfaces towards the bottleneck
link as required to modify the MTU of the path between the sender
and the receiver. The routers drop packets larger than the MTU
of the outgoing interface without notifying the sender with a PTB
message.

For the simulations, we configured the sender to discover the
PMTU with using 1280 B as lower bound of the PMTU candidates.
The sender determines 1500 B as upper bound due to the MTU of
its network interface.

5.2.2 Data Transmission. As shown by the color filled areas in
Figure 2b, the time the PMTU search needs to find the best PMTU
estimation varies as described in Section 5.1.2. To measure this
dependence, we use the simulation.

The Search phase starts with one RTT sample from the Base
phase.We repeat the simulation with various values for the message
send rate of the application on the sender r between 0 and 2000
messages per second each with 1 kB in size.

Since the exact time when the sender sends a packet might in-
fluences the result, instead of using a constant distance between
two messages, we use an exponentially distributed random dis-
tance with r as mean. To compensate random effects, we repeat the
simulations for each r 100 times.

Note that r sets only the send rate of the application on the
sender. QUIC decides when to send out a packet. We configured
QUIC to send packets as soon as possible even if the available
application data do not fill the packet completely to get the same
packet send rate for a small r . For a r ≥ 500 QUIC’s New Reno
congestion control blocks outgoing packets for a short period at
the start of the connection where the cwnd is low. This leads to a
smaller packet send rate compared to r , but, however, influences
the result only marginal.

We measure the time the sender needs to determine the PMTU.
To show the decreasing loss detection time, we run the simulation
with a PMTU of 1284 B. To also show the decreasing ack delay,
additionally, we run the simulation with a PMTU of 1496 B for
OptBinary and a PMTU of 1396 B for Jump.

Figure 4 shows the result. The dashed horizontal lines mark
the largest and the smallest time as determined by the analysis
described in Section 5.1.2. The solid lines show the mean of the
time the algorithms need to find the PMTU over all 100 runs for
each r with a 95 % confidence interval (shown by vertical error bars).
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Figure 4: Simulation with Data Transmission

These lines show how the time decreases between the bounds due
to the reduced loss detection time or ack delay for increasing r .

5.2.3 Packet Loss. Since the PMTUD uses the loss of a probe packet
as indication that the path does not support its size, the loss of a
probe packet not larger than the PMTU leads to a false negative
indication.We use the simulation to measure the influence of packet
loss to the time needed to find the PMTU and to the number of
probe packets required to send before receiving an ack.

We set the PMTU so that both algorithms send the most probe
packets that may result in a false negative. This is 1496 B for
OptBinary and 1396 B for Jump. We repeat the simulation with
various values for the packet loss rate p between 0 and 10 %. To
compensate random effects, we repeat the simulations for each p
100 times.

Figure 5 shows the result. Shown by the solid lines, the time the
algorithms need increases only moderate for larger p. Shown by
the dashed lines, the required number of probe packets keep below
2, which shows that 3 is a reasonable value for MAX_PROBES.

5.3 Result
Looking at the results of the four metrics in Section 5.1, Binary
shows the best performance overall followed by OptBinary and
Jump. We prefer the optimistic variant of Binary, because it selects
the upper bound of PMTU candidates first and, therewith, has the
potential to immediately either find the best PMTU estimation or
trigger a PTB message. The results of the simulations show that
both algorithms perform well even with external events like data
transmission or packet loss.

In general, we recommend to use OptBinary. But, if a small but
still accurate set of currently common PMTU candidates is known,
Jump configured to initially use this set potentially outperforms
Binary.

For our analyses we limited the number of PMTU candidates by
an upper bound of 1500 B. We did this to have a presentable small
number of candidates and because most of the endpoints in the
current Internet advertise a TCPMaximum Segment Size (MSS) that
correspond to an MTU equal or smaller than 1500 B [5]. However,
we believe that our results apply to cases with larger upper bounds
as well.

6 DISCUSSION
This section provides a brief discussion about the usage of PMTUD
in QUIC.
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Figure 5: Simulation with Packet Loss

6.1 When to use PMTUD in QUIC?
QUIC should cache a discovered PMTU.With that, QUIC can benefit
from using PMTUD in connections that last long enough for the
search algorithm to terminate. In this case, QUIC can cache the
discovered PMTU and use it for future connections to the same
endpoint.

Since QUIC itself cannot know how long the connection lasts,
the application should decide whether to use PMTUD.

6.2 How to use a cached PMTU estimation?
A cached PMTU estimation is a good indication for the PMTU.
However, QUIC should not use it blindly in a new connection. For
example, the network could route the new connection on another
path with a PMTU less than the cached value. Therefore, QUIC
should still use PMTUD.

The PMTUD can utilize the cached PMTU estimation by using
it temporarily as upper bound of the PMTU candidates. With a
search algorithm that probes the largest candidate first, the PMTUD
sets the PMTU estimation to the cached size and terminates after
approximately one RTT if the network path supports this cached
size. Even if it does not, the algorithm continues with the benefit
of a potential smaller upper bound. The PMTUD should reset the
upper bound to the initially determined value when entering the
Search Complete phase. This allows to detect an increased PMTU.

7 CONCLUSION AND OUTLOOK
This paper complements the PMTUD framework as specified in
RFC8899 [10] by presenting a search algorithm. In addition, it de-
fines metrics to evaluate the algorithm with different candidate
sequences in an analytical way.

We implemented PMTUD with the search algorithm in a simu-
lation model for QUIC. Results from simulations were presented
showing that the algorithm with the suggested candidate sequences
performs well even with external events.

We are planning to publish work about the validation of the
PMTU estimation in the Search Complete phase. Another field
for future work are the consequences of having probe packets
congestion controlled. For example, it allows to send additional
probe packets (note that our algorithm supports this). However,
having multiple probe packets or, as another example, one large
probe packet outstanding uses more of the cwnd and, therewith,
increases the risk of delaying the transmission of application data.
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