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Exploring Anomalies by Many-Body Correlations

Klaus Morawetz

1. Introduction

1.1. Anomalies

Anomalies are a puzzling discovery in quantum field theory.
Certain classical symmetries and conservation laws are broken if
the fields become quantized and have been named anomalies.
They have a long history starting with investigations of pion
decays,[1–3] for an overview see.[4] These anomalies are important
for the description of a variety of experiments. In addition to the
neutral pion decay also the spontaneously broken axial Uð1Þ sym-
metry in QCD should be mentioned seen in no parity doubling of
baryons and no related Goldstone boson[5] as well as the Kaon
decay.[6] The chiral anomaly as a breaking of chiral symmetry[2,7]

has recently gained a renewed interest in con-
densedmatter physics as the excitation of chi-
ral mass-less Fermions in the class of Weyl
semi-metals.[8–13] It was predicted in ref.[14]
and experimentally interpreted[11,15,16] as hav-
ing observed a chiral anomaly. This has led to
an enormous theoretical activity[17–19] describ-
ing, for example, anomalous transport,[20–25]

the relation of chiral anomaly, and quantized
Hall effects[26,27] up to chiral heat effect.[28]

There are two kinds of anomalies. First,
consistent anomalies lead to anomalous Ward
identities[29,30] not guaranteeing renormalizabil-
ity of the theory[31,32] and gauge invariance.[6,33]

Second, the covariant anomalies do not harm
the renormalizability of the theory. Examples
are trace anomalies[34] or chiral anomalies.
Consistent or covariant anomalies[35–39] accept
alternatively violation of gauge invariance or vio-
lation of conservation laws. A relation between

consistent and covariant anomaly can be achieved by Bardeen–Zumino
polynomials.[4,35] Here, we will consider covariant anomalies.

Therefore, it is highly desirable to formulate the theory free of
anomalies or re-describe the experimental facts by a consistent the-
ory. In this respect, various anomaly cancellations have been pro-
posed. In electro-weak interaction of the standard model the
demand of anomaly free formulation restricts the fermionic con-
tent.[4] Nonlocal counter-terms of gauge fields have been used to
compensate anomalies.[40] Extending the initial phase space[41] or
using higher dimensions, cancellations[42] have been also worked
out. Sometimes the similarity of axial non-conservation in chiral
and in gravitational anomaly has led to the claim that mixed axial-
gravitational anomalies are observed and that it violates Lorentz sym-
metry.[15,16,43] In ref. [44] it has been shown that a proper subtraction
scheme of the infrared divergences shows that corresponding extra
terms do not appear. Actually, the Lorentz-invariant chiral kinetic the-
ory can be derived from the quantum kinetic approach[25,45–50] lead-
ing to the chiral anomaly by many-body correlations. A hint that the
anomalies can be possibly explained by many-body effects is also the
relation of 2D conformal anomalies and virial expansions[51] and that
the Dirac sea[52,53] can describe the Schwinger anomaly.[54]

Despite the well worked out mathematical appearances of
anomalies as triangle graphs in field theory,[2,4,29,34,35,55] the physical
origin of anomalies is still a matter of debate. Therefore, it is the
motivation of this article to draw attention to a possible alternative
scenario. Given the experimental facts, we believe that the anoma-
lies describe real physics. However, it is the question of whether it
has to appear as anomalous or whether the same physics can be
described by ordinary means. Let us employ an analogy. Pairing
in superconductors is conveniently described by anomalous propa-
gators to achieve the Gorkov equations or correspondingly the
Beliaev equations for Bose condensates. These propagators violate
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The quantum anomaly is written alternatively into a form violating conservation
laws or as non-gauge invariant currents seen explicitly on the example of chiral
anomaly. By reinterpreting the many-body averaging, the connection to Pauli–Villars
regularization is established which gives the anomalous term a new interpretation as
arising from quantum fluctuations bymany-body correlations at short distances. This
is exemplified using an effective many-body quantum potential which realizes
quantum Slater sums by classical calculations. It is shown that these quantum
potentials avoid the quantum anomaly but approach the same anomalous result by
many-body correlations. Consequently, quantum anomalies might be a shortcut way
of single-particle field theory to account for many-body effects. This conjecture is also
supported since the chiral anomaly can be derived by a completely conserving
quantum kinetic theory. Ameasure for the quality of quantum potentials is suggested
to describe these quantum fluctuations in the mean energy. The derived quantum
potentials might be used to describe quantum simulations in classical terms.
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the number conservation and are inconsistent in the aforemen-
tioned sense. Nevertheless, they lead to correct equations.
Recently it has been shown that one can arrive at the same equa-
tions by a completely conserving theory of multiple corrected T-
matrix[56–58] with equivalent results.[59,60] This illustrates that the
anomalous propagators are a theoretical shortcut to the right result
through adopting inconsistent propagators.

Analogously we will propose here that the quantum anomaly
might be a shortcut way to describe correct physics and investigate
the anomaly as a many-body correlation phenomenon. We will
illustrate this first in terms of the well-discussed chiral anomaly
with the help of Pauli–Villars regularization. This will be shown
to be realizable by many-body averaging in the second part of the
article where we restrict to the non-relativistic quantum anomaly.
This nonrelativistic quantum anomaly is a different physics than
the illustrative example of the chiral anomaly of the introduction
where the latter one appears only for even dimensions. The non-
relativistic anomaly as the main part here is analogous to the non-
relativistic trace anomaly of the energy-momentum tensor.[61,62]

Their common feature is the regularization by Pauli–Villars or
proposed alternatively the many-body averaging. From these non-
relativistic considerations, an alternative explanation for the
appearance of anomalies is suggested by many-body effects.

1.2. Field Theoretical Approach

Relativistic Fermions with zero mass and consequently linear
dispersion have a definite chirality by parallel or anti-parallel spin
and motion directions.[63] The left and right-handed projections

are realized by Dirac matrices ð1∓ γ5Þ=2 with γ5 ¼ iγ0γ1γ2γ3.
The chiral or axial transformation

Ψ0ðxÞ ¼ eiαðxÞγ5ΨðxÞ (1)

leads to the axial current J5 ¼ Ψγμγ5Ψ which changes the
classical action S0 ¼ Sþ ∫ αðxÞ∇μ J

μ
5. This results into the

conservation law

∇μJ
μ
5 ¼ 2imΨγ5Ψ ! 0, for m ! 0 (2)

for massless Dirac particles. The quantum averaging in contrast

∂μJ
μ
5

� � ¼ 2im Ψγ5Ψ
� �! e2

16π2ℏ2c
εμναβFμνFαβ

¼ e2

2π2ℏ2 E ⋅ B for m ! 0
(3)

shows a non-vanishing anomalous term obviously due to quan-
tum fluctuations in the average.

The origin is best seen from Pauli–Villars regularization
where we subtract from the Dirac Lagrangian for Ψ a massive
(M ! ∞) field Φ[4,55,64]

L ¼ iΨð ∂� ieAÞΨ� iΦð ∂� ieAÞΦþMΦΦ (4)

For the chiral current, we calculate Trγ5G12 with ði ∂1 �M þ
eA1ÞG12 ¼ �δ12 iteratively by G ¼ G0 þG0eAG and
G0 ¼ �ðp�MÞ�1. Due to the trace, the first non-vanishing
terms are of fourth-order

∂μJ
μ
5

� � ¼ 8εκλμν
Z

d4qd4r
ð2πÞ4 eirxerνAμ

q�rqλeAκ�q

Z
d4p
ð2πÞ4

M2

ðp2 �M2Þððpþ qÞ2 �M2Þððr þ pÞ2 �M2Þ
¼ �1

4π2ℏ2 ε
κλμν ∂νxeAμ ∂λxeAκ ¼ � e2

16π2ℏ2 ε
κλμνFνμFλκ ¼ e2

2π2ℏ2 E ⋅ B
(5)

where one calculates the integral in the M ! ∞ limit with
∫ d4p=ðp2 þM2Þ3 ¼ π2=2M2. This means it comes from diver-
gences up to the fourth adiabatic order (renormalization) which
can be expressed by anomalous triangle graphs[17,65,66] known as
Adler–Jackiw–Bell anomaly.[2,3,52] Please note the perturbative
approach by the expansion of Green’s functions. The origin is
clearly the behavior at small distances or large momenta. This
chiral anomaly can be based on anomalous Ward identities
which quantum vector or axial vector fields obey. Only exclusively
one of them can be made normal.[67] The rate of chirality (5) can
be rewritten explicitly either according to (3) in a non-
conservative form

∂tn5 þ ∇ ⋅ j ¼ e2

2π2ℏ2 E ⋅ B (6)

or by an anomalous current in a conservative form[68]

∂tn5 þ ∇ ⋅ ðjþ janomÞ ¼ 0 (7)

Using the vector and scalar potentials B ¼ ∇� A,

E ¼ �A
:

� ∇ϕ, the anomalous current

janom ¼ e2

2π2ℏ2
1
2
A
:

� A� ϕ∇� A
� �

(8)

is non-gauge-invariant. So one can choose either to accept a
non-conserving rate equation (6) or alternatively a conserving
rate equation (7) but with a non-gauge-invariant current (8).

1.3. Many-Body Approach

The same anomalous result (3) can be obtained by many-body
effects without anomalous behavior. Heuristically it can be seen
easily[69] considering a parallel electric and magnetic field that
changes the chirality. The Fermi momentum of the right-handed
Fermions increases in the electric field pF ¼ eEt in opposite
direction for left-handed ones. The density of left- and right-
handed Fermions is the product of the longitudinal phase-space
density, dNR=dz ¼ pF=2πℏ, and the density of Landau levels in
the traverse direction, d2NR=dxdy ¼ eB=2πℏ, such that the rate of
chirality N5 ¼ NR � NL is
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dn5
dt

¼ d4N5

dtd3x
¼ 2

p
:

F

2πℏ
eB
2πℏ

¼ e2

2π2ℏ2 E ⋅ B (9)

which agrees with (3). We see that completely conventional rea-
soning by many-body effects leads to the same result as obtained
by treatment of the anomaly before. Correspondingly, the quan-
tum kinetic derivation of this result without any non-conserving
assumptions can be found.[25]

The EB term is also the basis of the experimental interpreta-
tion[11,15,16] of having observed chiral anomaly and breaking of
conservation laws like a mixed axial-gravitational anomaly. The
electrodynamics assuming explicitly a chiral breaking term
has been treated in ref. [70]. The well-investigated path from sym-
metry-violating assumptions to final “non-conservation” form[71]

was in a sense misleading if one sees it as a unique signal of
violation of conservation laws. One cannot conclude backward
from the observed term (3) to a symmetry-breaking field-
theoretical assumption since (5) appears also by a conserving
theory without the described field-theoretical assumptions.[25]

1.4. Conjecture and Outline

We conclude from the example of the chiral anomaly that the
physical origin of the anomalous term is the behavior at small
distances and the quantum fluctuations by many-body correla-
tions. Consequently one should be able to get the anomalous
results by ordinary many-body treatments. We want here to
investigate more in detail how the quantum averaging over
the wave function can consistently be performed within a
many-body treatment. We will concentrate exclusively on nonrel-
ativistic quantum trace anomaly which is certainly different from
the chiral anomaly above but share the common feature as to
appear alternatively by many-body effects. We will find a quan-
tum anomaly in the nonrelativistic case for the mean energy.
This can be considered as the nonrelativistic trace anomaly of
field theory since there the trace of the energy-momentum tensor
does not vanish after quantization. The interaction in field theory
is realized by exchange fields and results nonrelativistically into
potentials sometimes directly used as effective potential
method.[72] Since we are dealing with nonrelativistic particles
we will observe different short-distance behavior of quantum
potentials compared to the Coulomb one. We will show that a
proper treatment of such many-body averaging renormalizes
the divergence at small distances and no anomaly is present.
Though getting rid of anomaly the same physical result appears
for the observables as if we had used anomalous terms.
Therefore the conjecture is proposed that the anomalies are
shortcut ways of single-particle field theory to a many-body effect.
In the single-particle treatment they appear as anomalous, in the
many-body treatment they appear naturally without anomaly.

The outline of the article is as follows. In Section 2, the non-
relativistic anomalies are re-derived by many-body correlations
and the partition function. Conditions are discussed depending

on the dimensionality, the power law of potentials, and the per-
turbation order. This will result in an anomalous energy shift of
one-eighth of Rydberg. In Section 3, we show that the use of
quantum potentials avoids this anomaly but leads to the same
energy shift due to the finite value of the potential at small dis-
tances. This finite value is caused by quantum fluctuations which
are represented by quantum potentials discussed in binary and
ternary order. Section 4 summarizes the results. Appendix A pro-
vides integrals occurring in the treatment of Section 2. Appendix
B discusses the derivation of quantum potentials on binary and
ternary levels separately for Maxwellian and for Fermi particles.

2. Anomaly by Partition Function

First, we observe that the averaging over a many-body statistical

operator with kinetic bE and potential bV energy can be written as
inverse Laplace transform

z ¼ Tre�βðbEþbV�μbNÞ ¼ Tr
Zi∞þε

�i∞þε

dM
2πi

eβðMþμbNÞ 1bE þ bV þM

¼ Tr
Zi∞þε

�i∞þε

dM
2πi

eβðMþμbNÞ 1bE þM
� 1bE þM

bV 1bE þM
� : : : .

� �
(10)

where we expand with respect to the interaction and assume that
it commutes with the number operator. The vanishing statistical
averaging corresponds to the high-temperature limit β ! 0 or
alternatively to M ! ∞. The latter one takes the role of the large
mass of Pauli–Villars regularization. To see this, consider the
pure quantum (qm) state expectation in D-dimensions

Tr
qm bA ¼

Z
dDp

ð2πℏÞD hpjbAjpi ¼ Z dDxdDx0dDp
ð2πℏÞD e

�i
ℏ pxhxjbAjx0ie�i

ℏ px
0

(11)

If the observable bA does not contain any explicit ℏ, one expects

ð2πℏÞDTrbA� limℏ!0ð2πℏÞDTrbA ¼ 0. A violation of this zero
represents the quantum anomaly[73] we will consider here.
Please note the subtle interchange of limiting procedure with
the phase-space cell which excludes trivial quantum results
vanishing in the classical limit.

To investigate this anomaly further, we combine the many-
body mixed state (10) and the quantum-mechanical pure
state (11) averaging

Wð1Þ ¼ ð2πℏÞDz� lim
ℏ!0

ð2πℏÞDz ¼
X∞
n¼0

ð�1Þn
Z

dM
2πi

eβMWn (12)

with

Wn ¼
X
n1

nn1e
βμn1

Z
dDpdDx

"
1

n1
ðp�iℏ ∂xÞ2

2m þM
VðxÞ 1

n1
ðp�iℏ ∂xÞ2

2m þM
⋅ : : : � 1

n1
ðpÞ2
2m þM

VðxÞ 1

n1
ðpÞ2
2m þM

⋅ : : :

#
(13)
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where we have used the non-relativistic kinetic energy bE ¼bp2=2m as an example. The relativistic dispersion works analo-
gously. We have commuted the expð�ipx=ℏÞ factor in (11)
through the kinetic energy factors such that iℏ ∂x acts only on
the next following potentials. The ⋅ : : : signs indicate n multipli-
cation terms according to V. The sum runs over the number
of Fermions n1 ¼ 0, 1 or Bosons n1 ¼ 0, 1, 2 : : : .

Now, we assume a momentum dependence of the Fourier
transformed potential in the form of a power law

VðqÞ ¼ E0aD�α
0 ℏαcdq�α (14)

with a typical energy E0 and length scale a0. This would be the
Bohr radius a0 ¼ aB and E0 ¼ Ryd ¼ e2=4πε0aB for Coulomb
potentials in D¼ 1,2,3 dimensions with the numerical factor
cd¼ 2D�1π.

The Fourier transformation (13) in dimensionless momen-
tum k ! k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1=2mM

p
reads then

Wn ¼
ð2πℏÞDcnd
2
n
2ðα�DÞEsþ1

0

X
n1

eβμn1

nsþ1
1

MsIðDÞn ðαÞ (15)

with

s ¼ n
2
ðD� α� 2Þ � 1 (16)

and

IðDÞn ðαÞ ¼
Z

dDk1
ð2πÞDkα1

: : :
dDkn

ð2πÞDkαn
dDp

1þ p2
δðΣn

i¼1kiÞ�
1

1þ ðpþ k1Þ2
: : :

1
1þ ðpþ k1 þ : : : þ knÞ2

� 1
ð1þ p2Þn

� (17)
One can understand this integral as a ring-graph of n propa-

gators interacting n times with external potentials as illustrated in
Figure 1, first considered in.[29]

The expression W ð1Þ describes the anomaly in the normaliza-
tion of the statistical operator or the completeness. The corre-
sponding term for the mean energy is conveniently expressed
as WðHÞ ¼ � ∂βW ð1Þ. If we are interested in the anomaly of
the momentum, we have an additional momentum factor that
requires s ! sþ 1=2 and a fore-factor

ffiffiffi
2

p
ℏ=aB as well as

modified integrals (17) by an additional p factor.

Performing the inverse Laplace transform (12) we obtain
finally

Wð1Þ ¼
X∞

n1, n¼1

ð�cdÞnð2πℏÞD
2
n
2ðα�DÞ

eβμn1IðDÞn ðαÞ
Γð�sÞðE0βn1Þ1þs (18)

Let us now discuss the M ! ∞ or β ! 0 analogous to the
Pauli–Villars regularization. This will produce a non-vanishing
anomaly only for certain combinations of dimensions D, power
of the momentum in the potential α, and the order of terms n in
the sum (18) with the help of (16).

One sees the dependence on β as

Wð1Þ ¼ ð2πℏÞDδz � β�1�s

WðHÞ ¼ ð2πℏÞDδH � ð1þ sÞβ�2�s

WðpÞ ¼ ð2πℏÞDδp � β�3
2�s

(19)

which means that one gets with (16) a nonzero anomaly for the
normalization δz, the energy δE, and the momentum δp only for
the combinations

δz 6¼ 0∶∀n,D ¼ 2þ α
δH 6¼ 0∶n ¼ 1,D ¼ α or n ¼ 2,D ¼ αþ 1
δp 6¼ 0∶n ¼ 1,D ¼ 2þ α

(20)

For any sensible potential, the relation for the anomaly in the
normalization δz is not fulfilled. Also, the case of momentum
anomaly is zero due to the vanishing integral (54). We get there-
fore the anomaly only for the mean value of the energy

Hh i ¼ Tr bH bρ
z

þ ΔH, for n ¼ 1,D ¼ α or

n ¼ 2,D ¼ αþ 1
(21)

Let us discuss this anomaly in each dimension. In three
dimensions D ¼ 3 and Coulomb α ¼ 2 interaction, the inte-
gral (17) is given by (46) and one obtains

ΔH ¼ W ðHÞ

ð2πℏÞ3 ¼
1
8
E0 (22)

a result reported in[73] with a factor of 2 due to spin which we
omit here. Summarizing, the quantum anomaly shows up in
the mean energy H but not in the normalization z.

In two dimensions with a potential of α ¼ 1 one finds
analogously

Wð1Þ
n � βn=2 ! 0 and WðHÞ

n � βn=2�1 6¼ 0 for n ¼ 2 (23)

and for α ¼ 2

Wð1Þ
n � βn ! 0 and WðHÞ � βn�1 6¼ 0 for n ¼ 1 (24)

In one dimension we do not have any anomaly for any
potential. Indeed, considering α ¼ 1 we have

Wn � βn ! 0, and WðHÞ � βn�1 6¼ 0, for n ¼ 1 (25)

but Ið1Þ1 ð1Þ ¼ 0 due to (53). For α ¼ 2 all anomalies vanish in 1D

due to Wn � β
3
2n ! 0 and WðHÞ

n � β
3
2n�1 ! 0. The Fourier

n

p

k

k
k

k

k

1

......

2

3

4

Figure 1. Propagators interacting with external potentials in a ring
according to (17).
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transform of the Coulomb potential in 1D is α ¼ 0 but VðqÞ �
signðqÞ which leads to Ið1Þ2 ð0Þ ¼ 0 as well.

We can conclude that in all discussed cases the anomalies
appear due to the large momentum (short distance) divergence
of the potential. The results depend on dimensions and the
anomaly appears in 2D and 3D but not in 1D and can be under-
stood as a certain limit of the partition function. In the following,
we restrict to the discussion of three dimensions.

3. Effective Quantum Potential

We can now state that a finite behavior of the potential at small
distances realized by quantum potentials cures such anomalies
since we will see that they lead to α ¼ 4 which avoids all cases of
anomalies (20). These effective quantum potentials appear if we
represent the many-body binary quantum correlations by a clas-
sical calculation with effective quantum potential. This can be
considered at different levels of many-body approximations.
Formally there are two ways to achieve this goal. The first way
constructs the quantum potential such that the two-particle quan-
tum Slater sum is correctly represented by the classical one with
the help of the quantum potential. This results in the Kelbg
potential for Maxwellian Coulomb systems[74–77]

V2ðrÞ ¼
E0a0
r

�
1� e�

r
lð Þ2 þ ffiffiffi

π
p r

l
erfc

r
l

	 
�

¼ E0a0

(1
r þ oðr�3Þffiffi
π

p
l � r

l2 þ oðr2Þ

(26)

where the coordinate is scaled by the thermal wavelength
l2 ¼ 2ℏ2=mT . Improvements and systematic applications can
be found in.[78–80]

The second way is to use a statistical equivalence of quantum
N-particle systems with an N þ 1-particle classical system.[81]

There it was found that the quantum potentials are just succes-
sive convolutions of the (Coulomb) potential VcðxÞ with the
binary distribution ρð2ÞðxÞ. If we use the non-degenerate
Maxwell correlation

ρð2ÞðrÞ ¼
Z

dp
ð2πℏÞ3 e

ipr=ℏe�β p2

2mT ¼ 1
π3=2l3

e�r2=l2 (27)

the Kelbg potential (26) appears as

V2abðrÞ ∝
X
c

Z
dx1ρ

ð2Þ
bc ðx1ÞVc

cbðx1ÞVc
caðx1 þ rÞ (28)

with the quantum number, e.q. being charges, indicated by Latin
subscripts. These quantum potentials represent quantum (Fock)
exchange correlations when employed within the classical energy
expression. As calculated in Appendix B, using the Fermi func-
tion at T ¼ 0, we obtain instead of (27) the potential

V2f ðrÞ¼
E0a0
2r

�
2þ πr

2lF
� cos

r
lF

� lF
r
sin

r
lF

� r
lF
Si

r
lF

� ��

¼ E0a0

(1
r þ oðr�3Þ
π
4lF

� r
6l2F

þ oðr2Þ
(29)

where the coordinate scales with the inverse Fermi momentum
lF ¼ ℏ=pF and the sinus integral is SiðxÞ ¼ ∫ x

0dt sin t=t.
This scheme allows constructing besides the binary quantum

potential also the next (ternary) order

V3abðrÞ ∝
X
cd

Z
dx1dx2ρdcðx1ÞVc

cdðx1Þ

Vc
cbðx1 þ x2Þρbdðx2ÞVc

caðx1 þ x2 þ rÞ
(30)

which leads with (27) to

V3ðrÞ ¼
E0a0
r

"
erf 2

xffiffiffi
2

p
� �

þ 23=2xffiffiffi
π

p
Z∞
x

dz
z
e
�z2
2 erf

zffiffiffi
2

p
� �#

¼ E0a0

8>>><>>>:
1
r
þ oðr0Þffiffiffi
8

p
lnð1þ ffiffiffi

2
p Þffiffiffi

π
p

l
� 2r
πl2

þ oðr2Þ

(31)

calculated in Appendix B. The corresponding ternary order for
Fermi correlations reads

V3f ðrÞ ¼
E0a0
r

4
π2 þ 4

Z1
0

dx
x

x þ ð1� x2Þartanh x½ �

�
h
2þ πxr=lF � 2 cosðxr=lFÞ � 2x

r
lF
Siðxr=lFÞ

i

¼ E0a0

8>><>>:
1
r
þ oðr0Þ

4πð1þ 2ln2Þ
3ð4þ π2ÞlF � 2r

ð4þ π2Þl2F
þ oðr2Þ

(32)

The results (29) and (32) are not yet reported while the
ones (26) and (31) had been presented in.[81] The quantum poten-
tial of binary and ternary correlations are compared in Figure 2
where the finite limits at small distances are shown. The ternary
order somewhat improves the binary quantum potential and
leads to somewhat less binding behavior in the attractive case.

This means that the Coulomb divergence at small distances is
cured due to quantum fluctuations brought by many-body corre-
lations. Please note that this is the opposite limit than the large-
distance Coulomb behavior which is cured by screening. This
finite behavior at a small distance translates into a faster potential
decay at large momenta. The Fourier transform of the binary
potentials read

V2ðqÞ ¼
8πE0a0ℏ3

q3l
D

ql
2ℏ

� �
¼ E0a0

8>><>>:
8πℏ4

l2q4
þ oðq�6Þ

4πℏ2

q2 � 2πl2
3 þ oðq2Þ

(33)

and
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V3ðqÞ ¼
32E0a0ℏ3ffiffiffi

π
p

q3l

Z∞
0

due�u2DðuÞln
����� ðuþ ql

2Þ
ðu� ql

2Þ

�����
¼ E0a0

8>>><>>>:
16ℏ4

l2q4
þ oðq�6Þ

4πℏ2

q2 � 2ð2þ πÞ
3 l2 þ oðq2Þ

(34)

with the Dawson functionDðxÞ ¼ e�x2 ∫ x
0 dye

y2 . Analogously one
obtains for the Fermi potential

V2f ðqÞ ¼
2πE0a0ℏ2

q2
1þ p2F � q2

2qpF
ln
���� pF þ q
pf � q

����� �

¼ E0a0

8>>><>>>:
4πℏ4

3l2Fq
4 þ oðq�5Þ

4πℏ2

q2 � 4πl2F
3 þ oðq2Þ

(35)

and

V3f ðqÞ¼
16πE0a0ℏ3

ð4þ π2Þq3l
Z1
0

dx½x þ ð1� x2Þartanh x� ln
jxpF þ qj
jxpF � qj

¼ E0a0

8>><>>:
16πℏ4

ð4þ π2Þl2Fq4
þ oðq�6Þ

4πℏ2

q2
� 4πð12þ π2Þ

3ð4þ π2Þ l2F þ oðq2Þ

(36)

These quantum potentials in momentum space are compared
in Figure 3. The potentials with Fermi correlations show a faster
decay around the Fermi momentum q ¼ pF compared to the
Maxwellian ones. We see that all the quantum potentials have
a VðqÞ � 1=q4 behavior for large q and a Coulomb behavior at
small q. Therefore these quantum potentials lead to α ¼ 4 and
according to the aforementioned discussions, the anomalies

vanish in all cases. Does this mean that the energy shift of
the anomaly (22) does not exist? We will see how that will reap-
pear quite ordinarily as the difference of the total energy calcu-
lated by quantum potentials compared with the one by the
Coulomb potential.

The reason for quantum anomaly is the short distance behav-
ior. Therefore the interaction energy dominates the kinetic
energy and we discuss only the correlational energy.
Employing the quantum potentials, we could use now any more
refined correlation energy but want to restrict the discussion to
the lowest-order Hartree correlational energy for homogeneous
systems

Ecorr ¼
1
2

Z
d3r 0nðr � r 0ÞVðr 0Þ ¼ n

2
Vðq ¼ 0Þ (37)

which is the convolution of the potential with the particle density
n. According to (33)–(36), the difference of one-particle energies
between the quantum potentials and the Coulomb one is

ΔEh i ¼ n
2
½Vquantðq ¼ 0Þ � Vcðq ¼ 0Þ�

¼ �E0

8>>>>>>>>>>><>>>>>>>>>>>:

1
3
ffiffiffi
π

p a0
l

for V2

2þ π

3π3=2
a0
l

for V3

2
9π

a0
lF

for V2f

2ð12þ π2Þ
9πð4þ π2Þ

a0
lF

for V3f

(38)

where we have used the densities n ¼ 1=π3=2l3 for V2,3 and
n ¼ 1=3π2l3F for V2,3f .

In contrast, we have the potential energy of a single particle
Vðr ¼ 0Þ as indicated in Figure 2

Figure 2. The comparison of the Kelbg potential (26) of binary correlations
together with the next (ternary) order correlation potential (31), the Fermi
potential (29), and the Coulomb potential. For the Kelbg and ternary
potential, the scale is l ¼ ℏ

ffiffiffiffiffiffiffiffiffiffiffiffi
2β=m

p
and for the Fermi potential

l ¼ lF ¼ ℏ=pF. The finite value at zero distance is explicitly indicated.

Figure 3. The ratio of the quantum potentials to the Coulomb one
in momentum space. For the Kelbg and ternary potential, the scale is
l ¼ ℏ

ffiffiffiffiffiffiffiffiffiffiffiffi
2β=m

p
and for the Fermi potential l ¼ lF ¼ ℏ=pF.
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E1h i ¼ Vðr ¼ 0Þ ¼ E0

8>>>>>>>>>>><>>>>>>>>>>>:

ffiffiffi
π

p a0
l

for V2ffiffiffi
8
π

r
lnð1þ

ffiffiffi
2

p
Þ a0
l

for V3

π

4
a0
lF

for V2f

4πð1þ 2ln2Þ
3ð4þ π2Þ

a0
lF

for V3f

(39)

Dividing now (38) by (39), ΔEh i
E1h i ¼ � 1

c, we get

ΔH
Ec
1

� � ¼ � ΔEh i
Ec
1

� � ¼ 1
1þ c

(40)

with

c ¼

8>>>>>>>><>>>>>>>>:

3π � 9.24 for V2
6
ffiffiffi
2

p
lnð1þ ffiffiffi

2
p Þ

ð2þ πÞ � 4.57 for V3

9π2

8
� 11.10 for V2f

6π2ð1þ 2ln2Þ
12þ π2

� 6.46 for V3f

(41)

Comparing with the exact “anomalous” result (22) we would
expect c ¼ 7. The increasing quality of potentials from binary to
ternary level is visible given the lowest-order mean-field we have
considered. The Maxwellian is less accurate than the Fermi cor-
relation since we had considered Fermi ones in Section 2. We
can now suggest using this ratio c of the energy to the deviation
of the energy with quantum potentials from the classical
Coulomb one as a measure for the quality of the potential to rep-
resent quantum fluctuations.

4. Summary

The nonrelativistic quantum anomaly is investigated for combi-
nations of momentum behavior of potentials, dimensionality,
and the order of perturbation. It is found that only for the energy
an anomalous shift appears in three dimensions while in one
dimension no anomaly is seen. In two dimensions the discus-
sion can be performed analogously. The quantum anomaly
appears as the large momentum or short distance behavior of
the potential. Quantum potentials are proposed which describe
quantum features on a classical level. These quantum potentials
lead to a finite value at small distances and cure the Coulomb
divergence. The consequence is that no quantum anomaly
appears. In contrast, the deviation of the energy with quantum
potentials from the energy with the Coulomb potential reflects
this anomalous energy shift. In this way, the quantum anoma-
lous behavior is reformulated by normal quantum many-body
correlations. It may be a hint that anomalies as such are a theo-
retical shortcut to the right physics but can be formulated equiv-
alently by a more refined many-body treatment. This of course
needs further investigation on a more abstract level than consid-
ered here. The discussed quantum potentials might be useful to
describe the simulation of strongly correlated quantum systems
in classical terms.

Appendix A: Integrals

The occurring integrals in chapter II have the form

IðDÞn ðαÞ¼
X

p, k1, : : : kn

δðk1 þ : : : þ knÞ
kα1 : : : k

α
n

1
1þ p2

1
1þ ðpþ k1Þ2

: : :
1

1þ ðpþ k1 þ : : : þ knÞ2
� 1

1
ð1þ p2Þn

� � (42)

with
P

p ¼ ∫ dDp=ð2πÞD. Introducing new variables p1 ¼ k1 þ p,
p2 ¼ k2 þ p1 etc. leads to

IðDÞn ðαÞ ¼
X

p, p1 : : : pn�1

�
1

1þ p21
: : :

1
1þ p2n�1

� 1
ð1þ p2Þn�1

�
1

ðp1 � pÞα
1

ðp2 � p1Þα
: : :

1
ðpn�1 � pn�2Þα

1
ðp� pn�1Þα

1
ð1þ p2Þ2

(43)

We are going to calculate the integrals for Coulomb potentials
α ¼ 2.

A.1 3D

Let us consider the integrals with increasing n starting with the
lowest non-vanishing one

Ið3Þ2 ð2Þ ¼
X
p, p1

1
ðp1 � pÞ4

1
ð1þ p2Þ2

�
1

1þ p21
� 1
1þ p2

�
(44)

First performing the integrals about p1

1
4π2

Z∞
0

dp1p21

Z1
�1

dx
ðp21 þ p2 � 2p1pxÞ2

1
1þ p21

¼ 1
4π2

Z∞
�∞

dp1
p21

ðp21 � p2Þ2
l

1þ p21

(45)

where for the second integral in (44) we do not have the last term
in (45). Using the residue calculus we circumvent the poles p1 ¼
�p by a semicircle with vanishing radius ε and obtain for (44)

Ið3Þ2 ð2Þ ¼ 1
4π2

X
p

(
1

ð1þ p2Þ2
�
1
ε

1
1þ p2

� π

ð1þ p2Þ2
�

� 1
ε

1
ð1þ p2Þ3

)
¼ � 1

8π3

Z∞
0

dp
p2

ð1þ p2Þ4 ¼ � 1
256π2

(46)

and the divergence cancels leading to a finite result.
All next-order n > 2 integrals are divergent. This can be seen

from the second part of (43) which is convolution and which can
be written as Fourier transform of

Ið3Þn ð2Þright ¼
Z

d3r
1
4πr

� �
nX

p

1
ð1þ p2Þnþ1 (47)

This is obviously divergent at a small distance of the potential
due to the powers n > 2. The first part of (43) instead is
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convergent as one can see, e.q. by calculating

Ið3Þ3 ð2Þleft ¼
X

p, p1, p2

1
ðp1 � pÞ2

1
ðp2 � p1Þ2

1
ðp� p2Þ2

1
ð1þ p2Þ2

� 1
1þ p21

1
1þ p22

(48)

The integration over p1 can be performed with the help of the
Fourier transformation and shifting k1 ¼ p1 � pZ

d3p1
ð2πÞ3

1
ðp1 � pÞ2

1
ðp2 � p1Þ2

1
1þ p21

¼
Z

d3rd3r 0

ð4πÞ2
Z∞
0

dk1
2π2

sinðk1jr � r 0jÞ
k1

e�ir⋅ðp2�pÞ�ir’⋅p�r 0
(49)

Performing the integration over k1 which gives π=2 and after
shifting r ¼ sþ 1

2 r’ we can use

Z∞
0

ds
s sinðsaÞ
s2 � r

02
4

¼ π

2
cos

ar
0

2

� �
(50)

to obtain finally

1
4

Z∞
0

dr 0
cos jp�p2jr 0

2

jp� p2j
sin jpþp2jr 0

2

jpþ p2j
e�r 0

r 0
¼ π

8
1

p2 � p22
(51)

where we have used

Z∞
0

dr 0 cosðar 0Þ sinðbr 0Þ e
�r 0

r 0

¼ Im
1
4

Z∞
�∞

dr 0
e�jr 0 j

r 0
ðeiðaþbÞr þ eiðb�aÞrÞ

¼ � 1
4
Im i

Z0
π

dϕð1þ 1Þ ¼ π

2

(52)

A.2 Integrals for n ¼ 1

For n ¼ 1 the integral (42) takes the form

IðDÞ1 ðαÞ ¼
X
p, k1

δDðk1Þ
kα1

1
1þ p2

1
1þ ðpþ k1Þ2

� 1
ð1þ p2Þn

� �
¼ �

X
p, k1

δDðk1Þ
kα1

k21 þ 2p ⋅ k1
ð1þ p2Þ3 � ¼ �

X
p, k1

δDðk1Þ
k2�α
1

ð1þ p2Þ3
(53)

where the integration over p renders the scalar product zero. A
non-vanishing result is only for α ¼ 2 which means that for one,
two, and three dimensions the case D ¼ α� 2 is zero

IðDÞ1 ðD� 2Þ ¼ 0 (54)

and for D ¼ α the only finite result is

Ið2Þ1 ð2Þ ¼ � 1
16π2

(55)

due to trivial integrations. In three dimensions there is no poten-
tial with α ¼ 3.

Appendix B: Quantum Potentials

In the following, we indicate potentials without the units of E0a0
by V . A further possible fore-factor is added in the end corre-
sponding to the demand that the Coulomb potential should
be approached for large distances.

B.1 Binary Potentials

We calculate the convolution

V2ðrÞ ¼
Z

d3xρð2ÞðxÞVcðxÞVcðxþ rÞ (56)

between the binary correlation ρð2Þ and the Coulomb potential
VcðrÞ ¼ 1=r. The angular integration is trivial

Z
dωVcðxþ rÞ ¼ 2π

Z1
�1

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ r2 þ 2xrz

p ¼ 4π
�
x�1, x > r
r�1, x < r

(57)

such that

V2ðrÞ ¼ 4π
1
r

Zr
0

dxxρð2ÞðxÞ þ
Z∞
r

dxρð2ÞðxÞ
0@ 1A (58)

B.1.1 Maxwellian Correlations

The Maxwellian correlation is the Fourier transform of the
Maxwell distribution

ρð2ÞðrÞ ¼
Z

d3p
ð2πℏÞ3 e

i
ℏrp� p2

2mT ¼ 1
π3=2l3

e�x2=l2 (59)

with the thermal wavelength l2 ¼ 2ℏ=mT ¼ λ2=π. One easily
integrates (58) with the result

V2ðrÞ ¼
2ffiffiffi
π

p
lr

�
1� e�

r
lð Þ2 þ ffiffiffi

π
p r

l
erfc

r
l

	 
i
¼ 2ffiffiffi

π
p

l

8<:
ffiffi
π

p
l � r

l2 þ oðr2Þ
l
r þ oðr�5Þ

(60)

which provides the fore-factor E0a0
ffiffiffi
π

p
l=2 to obtain (26). This

fore-factor is chosen such that the Coulomb potential appears
for large r.

The Fourier transform into momentum space is in principle
straightforward. However, we will use the convolution structure
since this will turn out to be helpful later for the ternary
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potentials. The potential (56) translates into a product

V2ðqÞ ¼ fρð2ÞVcgðqÞVcð�qÞ (61)

where we need to calculate the convolution fρð2ÞVcgðqÞ. For
Maxwellian correlations the angular integration is trivial and
one gets

Z
d3q0

ð2πℏÞ3 V
cðq0Þρð2Þðq� q0Þ ¼ 4πℏ2

Z
d3q0

ð2πℏÞ3
e �l2ðq�q0Þ2

4ℏ2

q
0
2

¼ 2ℏ
πql2

Z∞
0

dt
t

e�
ql
2ℏ�tð Þ2 � e�

ql
2ℏþtð Þ2	 


¼ 4ℏffiffiffi
π

p
l2q

D
ql
2ℏ

� � (62)

with the Dawson integral DðxÞ ¼ e�x2 ∫ x
0 dye

y2 . With (61) we
obtain

V2ðqÞ ¼
2ffiffiffi
π

p
l
8πℏ3

q3l2
D

ql
2ℏ

� �
¼ 2ffiffiffi

π
p

l
4πℏ2

q2

(
1� l2

6ℏ2 q
2 þ oðq3Þ

2ℏ2
l2q2 þ oðq�3Þ

(63)

and we see again the fore-factor E0a0
ffiffiffi
π

p
l=2 to get the expres-

sion (33) including the expansions.

B.1.2 Fermi Correlations

With Fermi correlations as Fourier transform of the Fermi
function

ρ2f ðxÞ ¼
Z
p≤pF

d3p
ð2πℏÞ3 e

i
ℏrp ¼ 1

2π2r3
sin

r
lF
� r
lF
cos

r
lF

� �
(64)

with lF ¼ ℏ=pF, one obtains for (58)

V2f ðrÞ ¼
1

πrlF

�
2� cos r � sin r

r
þ r
�
π

2
� Siðr

�

¼

8>><>>:
1
2l2F

� r
3πl3F

þ oðr2Þ
2

πrlF
þ oðr�3Þ

(65)

with r ¼ r=lF. We see that the fore-factor to be chosen is here
E0a0πlF=2 to obtain (29).

The Fourier transform we calculate analogously to the
Maxwellian with

fρ2fVcgðpÞ¼
Z

d3q
ð2πℏÞ3V

cðp�qÞρ2f ðqÞ¼
1

2πℏp

ZpF
0

dqqln
ðpþqÞ2
ðp�qÞ2

¼ pF
2πℏ

2þ pF
p
� p
pF

� �
ln
jpþpFj
jp�pFj

� � (66)

where we have used the trivial angular integration

Z
dΩVcðp� qÞ ¼

Z1
�1

dx
8π2ℏ2

q2 þ p2 � 2pqx
¼ 4π2ℏ2

pq
ln

ðpþ qÞ2
ðp� qÞ2

(67)

With the help of (66) we obtain for (61)

V2f ðqÞ ¼
2ℏ2

lFq2

"
2þ pF

p
� p
pF

� �
ln

jpþ pFj
jp� pFj

#

¼ 8ℏ2

lFq2

8<:1� q2

3p2F
þ oðq4Þ

p2F
3q2 þ oðq�4Þ

(68)

which provides again the fore-factor E0a0πlF=2 as above to get
finally (35).

B.2 Ternary Potentials

The convolution structure of the ternary potentials (30) suggests
calculating them in momentum space

V3ðqÞ ¼ Vð�qÞ
Z

d3p
ð2πℏÞ3 fρ

ð2ÞVcgðpÞρð2ÞðpÞVcðq� pÞ (69)

where we can conveniently use the results of the foregoing
chapter (62) or (66), respectively.

B.2.1 Maxwellian Correlations

Introducing the simple angular integration (67) into (69) and
using (62) we obtain

V3ðqÞ ¼
2ffiffiffi
π

p
Z∞
0

due�u2DðuÞln ðuþ ql
2ℏÞ2

ðu� ql
2ℏÞ2

¼ 4πℏ2

l2q2

8<:1� ð2þπÞq2 l2
6πℏ2 þ oðq4Þ

4ℏ4

πq2l4
þ oðq�4Þ (70)

where we used the integrals

Z∞
0

e�u2DðuÞ
u

u�1

u�3

0@ 1A ¼
ffiffiffi
π

p
8

1
π

�2ð2þ πÞ

0@ 1A (71)

for the small and large-q expansions. The comparison with the
Coulomb potential for small q provides the fore-factor E0a0l2

to get just (34).
For the potential in the spatial domain, we integrate

directly (30) with a trivial renaming x1 ! x, x2 ! y� x

V3ðrÞ ¼
Z

d3xd3yρð2ÞðxÞVcðxÞVcðyÞρð2Þðy� xÞVcðyþ rÞ (72)

The angular integration of y is given by (57) and the one of x byZ
dΩxρ

ð2Þðy� xÞ ¼ 2 sinh 2xy
l2

π2l4xy
e
�ðx2þy2Þ

l2 (73)
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The jxj integration yields error functions. Using y ¼ lt the
remaining integration reads

V3ðrÞ ¼
23=2ffiffiffi
π

p
l3

Z∞
r=l

dt
t
þ 1

r

Zr=l
0

dt

0B@
1CAe�t2

2 erf
tffiffiffi
2

p
� �

(74)

The second integral can be made analytically observing that one
can perform a partial integration r ¼ r=l

Zr
0

dt

" ffiffiffi
π

2

r
erf

tffiffiffi
2

p
� �#

erf
tffiffiffi
2

p
� �

¼
ffiffiffi
π

2

r
erf 2

tffiffiffi
2

p
� ������

r

0

�
ffiffiffi
π

2

r Zr
0

dt erf
tffiffiffi
2

p
� � ffiffiffi

2
π

r
e�t2

2 ¼
ffiffiffi
π

8

r
erf 2

rffiffiffi
2

p
� � (75)

The last identity appears just observing that the second term
from the partial integration is just the negative of the desired
integral itself. Finally, we obtain

V3ðrÞ ¼
1
l3

"
23=2

rffiffiffi
π

p
l

Z∞
r=l

dt
t
e�t2

2 erf
tffiffiffi
2

p
� �

þ erf 2
rffiffiffi
2

p
l

� �#

¼ 1
l2

8<:
ffiffi
8

p
lnð1þ ffiffi

2
p Þffiffi

π
p

l � 2
π
r
l2 þ 2r2

3πl3 þ oðr3Þ
l
r þ oðr�2Þ

(76)

This shows again the fore-factor E0a0l2 to get (31).

B.2.2 Fermi Correlations

For Fermi correlations, we introduce (66) and (67) into (69) to
obtain

V3f ðqÞ ¼
4p3F
πq3

Z1
0

dx½x þ ð1� x2ÞartanhðxÞ� ln
jxpF þ qj
jxpF � qj

¼ p2Fð4þ π2Þ
4π2ℏ2

8>>><>>>:
16ℏ4

ð4þ π2Þl2Fq4
þ oðq�6Þ

4πℏ2

q2
� 4πℏ2

3p2F

ð12þ π2Þ
ð4þ π2Þ þ oðq2Þ

(77)

Choosing the fore-factor as E0e04π2ℏ2=p2Fð4þ π2Þ such that for
small momentum q the Coulomb result appears corresponding
to large distance behavior, we obtain just (36).

The first term of the small q-expansion of (77) and large
q-expansion can be performed directly using

Z1
0

dx½x þ ð1� x2ÞartanhðxÞ�
 x

1
x�1

1A ¼
1
2

1
3 ð1þ 2ln2Þ
1
8 ð4þ π2Þ

0B@
1CA

(78)

The second term in the small-q expansion of (36) deserves special
attention. The needed integral with x�3 in (78) would diverge.
The reason is a tricky order of principal value integrations.

The best way to solve this problem is to consider a Debye poten-
tial expð�κr=ℏÞ=r with a vanishing κ in the angular integra-
tion (67) instead of the Coulomb potential � 1=r

Z
dΩVcðq� pÞ ¼

Z1
�1

dx
8π2ℏ2

q2 þ p2 � 2pqx þ κ2

¼ 4π2ℏ2

pq
ln

ðpþ qÞ2 þ κ2

ðp� qÞ2 þ κ2
(79)

This leads instead of (66) to

fρ2fVcgðpÞ ¼ pF
2πℏ

"
2� 2e

x
arctan

2e
e2 þ x2 � 1

þ e2 � x2 þ 1
2x

� �
ln
ð1þ xÞ2 þ e2

ð1� xÞ2 þ e2

# (80)

with x ¼ p=pF and e ¼ κ=pF. Though the limit e ! 0 gives (66)
the x-integral in (77) diverges if performed after this limit and is
finite when the limit is performed after the integration. To see
this, we consider the large-q expansion

1
q3

ln
jxpF þ qj
jxpF � qj ¼

2
xq2pF

þ 2
3x3p3F

þ : : : (81)

and have with (80) instead of (77)

V3f ðqÞ ¼
8
π

Z1
0

dx
�
x � e arctan

2e
e2 þ x2 � 1

þ e2 � x2 þ 1
4

� �
ln
ð1þ xÞ2 þ e2

ð1� xÞ2 þ e2

�
p2F
xq2

þ 1
3x3

þ oðq2Þ
� � (82)

The first term � 1=x is convergent in the e ! 0 limit according
to (78). For the second problematic q0 term � 1=x3 we first
integrate and then perform the limit with the result

V3f ðqÞ ¼
p2F
q2

4
π
þ π

� �
� 4

π
þ π

3

� �
þ 8
3π

eþ oðe2, q2Þ (83)

which after e ! 0 gives the expansion (77) and (36).
The form (77) is convenient for the Fourier transform which

yields

V3f ðrÞ ¼
Z

d3q
ð2πℏÞ3 V3f ðqÞ ¼

p2F
π3ℏ2r

Z∞
0

dy
sin yr
y2

Z1
0

dx

½x þ ð1� x2ÞartanhðxÞ� ln
ðx þ yÞ2
ðx � yÞ2

(84)

with y ¼ q=pF and r ¼ rpF=ℏ. The y-integration can be performed
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Z∞
0

dy
sin yr
y2

ln
ðx þ yÞ2
ðx � yÞ2 ¼

π

x
½2þ πxr � 2 cos xr � 2xrSiðxrÞ�

¼
�
π2r � πxr2 þ oðr3Þ
2π
x þ oðr�1Þ

(85)

with the sinus integral SiðxÞ ¼ ∫ x
0dt sin t=t. Using (78) the

needed fore-factor can be seen from the r ! 0 expansion

V3f ðrÞ ¼
2p2F
π2ℏ2r

Z1
0

dx½x þ ð1� x2ÞartanhðxÞ�½x�1 þ oðrÞ�

¼ p2Fð4þ π2Þ
4π2ℏ2

(
4πð1þ2ln2Þ
3ð4þπ2ÞlF � 2r

ð4þπ2Þl2F
þ oðr3Þ

1
r þ oðr�2Þ

(86)

again to be E0e04π2ℏ2=p2Fð4þ π2Þ to obtain the Coulomb
potential for large distances which all together provides (32).
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