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Abstract: Cross-saturation of the gain media in intra-cavity pumped lasers leads to complex
dynamics of the laser power. We present experimental results and a detailed theoretical analysis of
this nonlinear dynamics for an intra-cavity pumped Yb:YAG thin-disk laser in the framework of a
rate-equation model. The gain medium of this laser is residing in the resonator of a conventional,
diode-pumped Yb:YAG thin-disk laser. Continuous-wave operation, periodic pulse trains, and
chaotic fluctuations of the optical power of both lasers were observed. The dynamics is not driven
by external perturbations but arises naturally in this laser system. Further examination revealed
that these modes of operation can be controlled by the resonator length of the diode-pumped
laser but that the system can also show hysteresis and multi-stability.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

A large class of lasers shows relaxation oscillations of their output power when the laser is
subjected to a rapid change of gain or loss. These lasers are often called class-B lasers [1]. Their
dynamics has to be described in a two-dimensional phase space that is spanned by the population
inversion in the gain medium and the laser power. An additional degree of freedom to such a
laser can be added by placing a saturable absorber into the resonator. Then, passive Q-switching
and even chaotic fluctuations of the power occur under suitable conditions [2]. If the saturable
absorber is itself a laser gain medium and resides in its own resonator, we have an intra-cavity
pumped laser. Such a system has four dynamical variables (two population inversions and two
laser powers). In the past, intra-cavity pumped lasers have shown hysteresis and self-sustained
oscillations of their output power [3–6]. Here, we present a detailed theoretical study and
supporting experimental results of an intra-cavity pumped laser that shows continuous-wave
operation, periodic oscillation of the output power, periodic pulse trains, and chaotic power
fluctuations. To the best of our knowledge, this is the first study of its kind and it is meant to
further the understanding and utilization of the rich dynamics of intra-cavity pumped lasers.

Intra-cavity pumping of lasers is sometimes used for pumping gain media with very low
single-pass absorption of the pump light. The number of passes of the pump light through the
gain medium is then only limited by the losses of the resonator mirrors of the pump laser. For a
study of a laser with very low quantum defect, we pumped an Yb:YAG thin-disk laser operating
at 1048 nm by another Yb:YAG thin-disk laser operating at 1030 nm. We chose intra-cavity
pumping because the single-pass pump light absorption at 1030 nm was only of the order of 1%
for our Yb:YAG disk [7].

Figure 1 shows the energy level diagram of Yb:YAG in (a) and the effective cross sections for
absorption and emission in (b). The two electronic states 2F7/2 and 2F5/2 are split by the crystal
field into 4 and 3 sublevels, respectively. The relative population densities at room temperature
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of the sublevels of each electronic state are denoted fZ1 · · · fZ4 and fA1 · · · fA3. The intra-cavity
pumped laser is pumped on the Z3 → A1 transition (1030 nm) and emits on the A1 → Z4
transition (1048 nm). The quantum defect is thus 2%. Strong coupling of the two Yb:YAG lasers
occurs if both the pump transition and the laser transition of the Yb:YAG disk are saturated.

Fig. 1. (a) Energy levels of Yb:YAG at room temperature [7,8]. The energy levels are
denoted by Z in the lower multiplet and by A in the upper multiplet. The relative occupation
numbers are denoted by f . The thicknesses of the arrows are proportional to the effective
cross sections of the transitions. (b) Effective cross sections for absorption and emission at
room temperature [9].

Our intra-cavity pumped Yb:YAG laser showed surprisingly complex dynamics of the output
power [10]. Among the 18 papers on intra-cavity pumped lasers we could find [3–6,11–24], only
the following five discuss dynamics of the output power. Bollig et al. studied a Ho:YAG laser
intra-cavity pumped by a Tm:YAG laser. They observed hysteresis of the laser thresholds of both
lasers which they attributed to the Ho:YAG crystal acting as a saturable absorber for the Tm:YAG
laser [3]. Schellhorn et al. were the first to report a pulse mode behaviour of both the Ho:YAG
laser and the Tm:YLF laser that was pumping it intra-cavity [4]. The temporal spacing and the
energy of the pulses were irregular. Yang et al. noticed the same behaviour in their Ho:LuAG
laser [5]. In retrospect, these observations might have been signatures for chaos but that was
not investigated by the authors. Chen et al. looked for chaotic emission in their intra-cavity
pumped Tm:YAG laser but only observed unstable spiking that they attributed to the operation of
their laser close to threshold [6]. However, when they replaced their Tm:YAG disk by another
Yb:YAG disk, creating an Yb:YAG disk laser pumped intra-cavity to another Yb:YAG disk laser,
they observed the same chaotic laser emission that we had published previously. Herault et
al. explicitly stated that unlike Schellhorn et al. they did not observe any self-pulsing of their
1064 nm Nd:YVO4 laser that was pumped intra-cavity to a 912 nm Nd:GdVO4 laser [18]. None
of these papers presented a theoretical analysis of the observed laser dynamics. Here, we show
experimentally that the dynamics of our laser can be controlled by simply changing the resonator
length of the pump laser. We provide insight into the different modes of operation of intra-cavity
pumped lasers by analysing the coupled rate equations using the concepts of nonlinear dynamics.

2. Experiments

2.1. Experimental setup of the intra-cavity pumped thin-disk laser

Our experimental setup is shown in Fig. 2. The diode-pumped Yb:YAG thin-disk laser is pumped
at 940 nm with 280 W of optical pumping power. A multi-pass pumping scheme establishes 16
single passes through disk 1. The resulting pump spot is circular and has a diameter of 5.5 mm.
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The diode-pumped laser has a V-shaped resonator formed by disk 1 at the vertex of the “V“, disk 2
and a dichroic mirror terminating the resonator. The opening angle of the V-shaped resonator is
10◦. Consequently, the angle of incidence of the laser beam on disk 1 is 5◦.

Fig. 2. Experimental setup of the two coupled lasers. The arm lengths of the V-shaped
resonator of the diode-pumped laser are denoted by d1,a and d1,b. The arm length of the
lower arm d1,b is varied in the experiment. The arm lengths of the V-shaped resonator of the
intra-cavity pumped laser are kept constant and are denoted by d2,a and d2,b. The angle that
is introduced by the double reflection inside the wedged substrates is shown exaggerated for
the purpose of illustration.

The dichroic mirror is plane and has a reflectance of less than 45% at 1052 nm and a reflectance
larger than 99% at 1032 nm. If the dichroic mirror was replaced by a conventional broadband
high reflectance mirror, the laser would oscillate at longer wavelengths in order to reduce its
absorption loss in disk 2. The intra-cavity pumped laser has its own V-shaped resonator formed
by a plane high reflectance mirror, disk 2 and a plane output coupler with a transmittance of
0.2% at 1052 nm. The angle of incidence of the laser beam on disk 2 is 35 ◦ due to mechanical
restrictions. As a consequence, the intensity distribution on disk 2 is slightly elliptical, having a
circularity of 0.82.

Both disks in our experimental setup are made from Yb:YAG and are glued onto diamond heat
sinks. The disks have the same thickness of 130 µm, a diameter of 14 mm, a doping concentration
of 9 at.% and a concave curvature with a radius of 2 m which makes the resonators stable. A
fraction of the 1032 nm laser light that is transmitted by the dichroic mirror is directed towards an
uncoated wedged substrate. The second reflection of the laser light inside the wedged substrate is
received by a photodiode (photodiode 1), likewise a fraction of the 1052 nm laser light transmitted
by the output coupler is directed towards another uncoated wedged substrate and photodiode
(photodiode 2). Both photodiodes have a bandwidth of 30 MHz.

The spectral emission of the lasers in continuous-wave operation is measured once with
an optical spectrum analyzer (HP 1450B) which is used temporary in lieu of the photodiodes.
Centroid wavelengths around 1032 nm and 1052 nm were measured. We have shown in a previous
publication that the emission spectrum changes as the laser is pumped higher above threshold and
its centroid shifts by a few nanometers [7]. Furthermore, the angle of incidence of the beams on
the intra-cavity pumped disk can alter the centroid of the emission spectrum due to spatial hole
burning [25]. This is true for both the 1032 nm laser and the 1052 nm laser. In [26] two of us
showed that spatial hole burning also causes the spectrum of the laser emission of the Yb:YAG
thin-disk lasers to be a few nanometers wide. In our rate equation model, we neglect spatial hole
burning and assume monochromatic laser emission.
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We will see that the ratio κ := A1/A2 of the beam areas in the disks (cf. Fig. 2) determines
the dynamics of the two coupled lasers [10]. The ratio κ can be changed in our experiment by
shifting the dichroic mirror along the optical axis of the resonator, i.e. we change the distance
d1,b. Shifting the dichroic mirror along the optical axis also affects the ratio of the resonator
round-trip times which is denoted by χ. The diameter of the fundamental mode at disk 1 is seven
to ten times smaller than the pump spot for all five different arm lengths d1,b we investigated.
Since there are no apertures in the resonators, the diameter of the 1032 nm beam adapts to the
pumped area. The laser operates in transverse multimode and has a constant beam area A1 at
disk 1. However, the area A2 of this beam in disk 2 does change when d1,b is altered. Nevertheless,
the diameter of the pumped area A2 was always four to five times larger than the fundamental
mode of the intra-cavity pumped laser, thus also supporting multi-mode operation. The beam
areas were calculated under the assumption that the thermal lens effect can be neglected. This
assumption is well justified for both disks, because the relative change in refractive power of
disk 1 is smaller than 3% in comparison to the refractive power of the cold disk for the applied
pump power of 280 W [27]. The change in refractive power in disk 2 is even lower, since it
exhibits a lower quantum defect and therefore lower heating.

2.2. Experimental results

The dichroic mirror was set to five different positions, d1,b = 280, 320, 340, 380 and 400 mm
resulting in five different beam areas in disk 2 and five different resonator round trip times. At
each position, the dichroic mirror was aligned such that the recorded signal of photodiode 2 was
maximal. The signals of photodiode 1 and photodiode 2 which are proportional to the intra-cavity
laser powers of both lasers are shown in Fig. 3. At the first position of the dichroic mirror, the
beam area ratio was κ = 1.2 and both lasers were running in continuous-wave mode as shown in
Fig. 3(a). At the second position (see Fig. 3(b)), a beam area ratio of 1.3 was achieved. Both
lasers showed self-sustained oscillations. In the following, we characterize the emission of the
lasers as dP-iP cycles by counting the number of pulses after which the temporal shape of the
output power curve repeats for the power of the diode-pumped laser (d) and the power of the
intra-cavity pumped laser (i). The beam area ratio κ = 1.3 thus results in a 1P-1P cycle because
the power of the diode-pumped laser exhibits one maximum and the power of the intra-cavity
pumped laser also exhibits one maximum before the curve in Fig. 3(b) repeats. The pulsations of
the two lasers are approximately in anti-phase. The diode-pumped laser is driving the population
density in the intra-cavity pumped disk and the energy in the system is shifting periodically
between the population densities and the light fields. The graph in Fig. 3(c) shows self-sustained
pulsation with pronounced intensity peaks at a beam area ratio of 1.5. For this ratio, a 2P-2P
cycle was observed in the powers of the lasers. The two-period cycle of the intra-cavity pumped
laser becomes a one-period cycle for a beam area ratio of 1.7 (see Fig. 3(d)), thus we have a
2P-1P cycle. At last, a beam area ratio of 1.9 was established and chaotic laser emission was
observed as shown in Fig. 3(e).

When we started the investigation of the nonlinear dynamics, we used the same experimental
setup as in Vorholt et al. [7]. In this setup, the output coupler had a reflectivity of about 99.98%
in order to achieve a high intra-cavity power. The output power was 10.3 W at 300 W diode
pump power and the optical efficiency, which is the output power of the second laser divided by
the diode pump power, was 3.4%. However, when we investigated the influence of the ratio of
the beam areas, disk 2 was damaged by high intensity laser pulses. Figure 4 shows these high
intensity laser pulses that are transmitted by the dichroic mirror for κ = 3.1. Consequently, we
replaced the high reflectance output coupler in the second laser with a mirror having a reflectivity
of 99.8% at 1052 nm to prevent damage to the replacement disk (cf. Fig. 2). This also reduces
the optical efficiency to be about 3%.
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Fig. 3. Measured dynamics of the laser powers of the diode-pumped laser P1 (green) and
the intra-cavity pumped laser P2 (red) for five different positions of the dichroic mirror,
resulting in five different beam area ratios κ = A1/A2 and five different resonator round-trip
time ratios χ. The periods of the laser power oscillations for κ = 1.3, κ = 1.5 and κ = 1.7
are indicated by vertical dashed lines. For κ = 1.9 in (e), we observe chaotic emission.

Fig. 4. Laser power transmitted by the dichroic mirror at a diode pump power of 174 W. In
comparison to the experimental setup shown in Fig. 2 the output coupler with a transmittance
of 0.2% had been replaced by a high reflectance mirror. The beam area ratio is κ = 3.1.
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Qualitatively, the physical origin of the pulsing behaviour of the lasers can be explained as
follows. A spike in the power of the diode-pumped laser can lead to gain-switching of the
intra-cavity pumped laser. Also, disk 2 serves as a saturable absorber for the diode-pumped
laser and can force it into periodic Q-switching. The intensity of the diode-pumped laser that is
required to bleach this absorber depends on the population of the Z3 sublevel of disk 2 (cf. Fig. 1).
This population in turn depends on the laser intensity of the intra-cavity pumped laser which
re-populates the 2F7/2-manifold by stimulated emission. Thus, both laser intensities act on each
other.

3. Rate-equation model

3.1. Dimensional model equations

In the following, we present a model for the intra-cavity pumped Yb:YAG thin-disk laser. The
continuous-wave output power of intra-cavity lasers with high round trip gain was studied by
Brown [28,29] using a Rigrod approach. Here, we develop a model that is capable to capture
the temporal dynamics of the system. It consists of four coupled rate equations for the time
evolution of the population densities of the excited state in the first, diode-pumped disk n1 and
in the second, intra-cavity pumped disk n2 as well as the laser intensities in the disks of the
diode-pumped laser I1 and the intra-cavity pumped laser I2. It uses the small gain approximation
for thin or diluted media. Figure 5 schematically shows the main constituents of the model. In the
following, quantities characterizing the first, diode-pumped laser are indicated by the subscript 1
and quantities characterizing the second, intra-cavity pumped laser are indicated by the subscript
2.

Fig. 5. Schematic representation of the main constituents of the rate-equation model.
The population densities in the upper manifold of the first, diode-pumped and the second,
intra-cavity pumped disk are denoted by n1 and n2, respectively. The laser light in the disks
has the intensity I1 (shown in green) and I2 (shown in red) and the frequency ν1 and ν2,
respectively. The laser diodes have been omitted from the drawing for clarity since they just
provide an effective pump intensity ID,1(t) in disk 1.

In the derivation of the model, we assume monochromatic laser light with flat-top intensity
distributions for both lasers. We use effective cross sections in order to account for the distribution
of the atoms across the sublevels of each manifold. Amplified spontaneous emission (ASE) can
compete with the laser oscillation in a strongly pumped Yb:YAG thin-disk laser if resonator
losses are high. In this case, the laser power circulating in the resonator becomes so weak that its
gain competition with ASE trapped by total internal reflection in the disk has to be considered. In
our experiment, the diode-pumped laser had approximately 2% round-trip losses from absorption
in the second disk plus 1% loss at its dichroic mirror. The intra-cavity pumped laser only had
0.4% combined losses per round trip at the output coupler and the coating of the laser disk.
These losses are lower than the resonator losses of the conventional diode-pumped thin-disk
lasers from which our disks were taken and which showed no signs of ASE. We therefore do
not need to consider ASE in our model. Both disks in our experimental setup have identical
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doping concentrations ndot and we assume that they are operated at approximately the same
temperatures. This assumption is supported by measurements with a calibrated IR-camera, which
yield a temperature difference of less than 10 K. Then, the fluorescence lifetimes are identical for
both disks and denoted by τ10 in the following. Under these conditions, also the effective cross
sections for absorption and stimulated emission have the same values in both disks at a given
wavelength. Therefore, σa,ν is the effective cross section for absorption of light of frequency ν in
both disks and σe,ν is the corresponding effective cross section for stimulated emission.

The population density of the excited state in the first disk, n1, results from absorption and
stimulated emission at the wavelengths of diode light and laser light, as well as from spontaneous
emission. Its time derivative is thus given by

dn1
dt
=

ID,1

hνD
[︁
σa,νD (ndot − n1) − σe,νD n1

]︁
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

absorption and stim. emission at νD

+
M1,1I1

hν1
[︁
σa,ν1 (ndot − n1) − σe,ν1 n1

]︁
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

stim. emission and reabsorption at ν1

−
n1
τ10⏞⏟⏟⏞

spont. em.

, (1)

where h is the Planck constant, νD and ν1 are the optical frequencies of the diode light and the
light of the first laser respectively, and M1,1 is the number of passes of the laser light through
disk 1 per round trip. The laser intensities ID,1 and I1 (and later I2) are assumed to have no spatial
variation in the disks. The effective pump light intensity ID,1 impinging onto disk 1 is the result
of all overlapping beams of the diode multi-pass pumping scheme. It is related to the pump
intensity ID,0 that would hit disk 1 if single-pass pumping were used via [30]

ID,1
[︁
σa,νD (ndot − n1) − σe,νD n1

]︁
d = ID,0

(︁
1 − exp

{︁
−MD,1d[σa,νD (ndot − n1) − σe,νD n1]

}︁)︁
,
(2)

where MD,1 is the number of passes of the diode light through disk 1 which is 16 in our case.
The intensities I1 and I2 of the laser light in the resonators are in the small gain approximation
given by the sum of the intensities of forwards and backwards propagating laser beams in the
respective resonators. The time evolution of I1 is determined by

dI1
dt
=

I1
T1

{︂
M1,1d

[︁
σe,ν1 n1 − σa,ν1 (ndot − n1)

]︁⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
stim. emission and reabsorption

in disk 1

− M1,2d
A1
A2

[︁
σa,ν1 (ndot − n2) − σe,ν1 n2

]︁
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

absorption and stim. emission
in disk 2

−γdiss,1⏞ˉ̄⏟⏟ˉ̄⏞
diss. loss

}︂
+ ksp,1

n1
τ10⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞

spont. em.

,
(3)

where T1 is the resonator round-trip time of the first laser and M1,2 is the number of passes
of the light from the first laser through disk 2 per round trip. When expanded, Eq. (3)
contains the product I1 · A1/A2 which is the intensity of the first laser beam on disk 2. The
beam area ratio κ = A1/A2 thereby determines the coupling strength between the population
density n2 in disk 2 and the intensity I1 of the laser light in disk 1. The dissipative loss
γdiss,1 = − ln[RdicR

(M1,1/2)
1 R(M1,2/2)

2 (1 − L1)
2] is determined by the reflectivity Rdic of the dichroic

mirror, R1 of the high-reflection coating on the backside of disk 1, R2 of the high-reflection
coating on the backside of disk 2, and the losses L1 due to scattering and imperfections in the
disks. Spontaneous emission into the laser mode is accounted for by multiplying the rate of
spontaneous emission by the factor ksp,1 which contains the fractional solid angle.

The population density of the excited state in disk 2 follows the rate equation
dn2
dt
= κ

M1,2I1

hν1
[︁
σa,ν1 (ndot − n2) − σe,ν1n2

]︁
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

absorption and stim. emission at ν1

+
M2,2I2

hν2
[︁
σa,ν2 (ndot − n2) − σe,ν2n2

]︁
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

absorption and stim. emission at ν2

−
n2
τ10⏞⏟⏟⏞

spont. em.

, (4)
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where ν2 is the optical frequency of the light of the second laser and M2,2 is the number of passes
of laser light of the second laser through disk 2 per round trip. The model is completed by the
rate equation for the laser intensity I2 in disk 2

dI2
dt
=

I2
T2

{︂
M2,2d

[︁
σe,ν2n2 − σa,ν2 (ndot − n2)

]︁
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

stim. emission and reabs. in disk 2

−γdiss,2⏞ˉ̄⏟⏟ˉ̄⏞
diss. losses

−γout,2

}︂
⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞
outcoupling

+ ksp,2
n2
τ10⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞

spont. em.

, (5)

where T2 is the resonator round-trip time of the second laser. The losses are composed of an
outcoupling term γout,2 = − ln(ROC) determined by the reflectivity ROC of the outcoupling mirror
and the dissipative loss γdiss,2 = − ln[RHRR(M2,2/2)

2 (1 − L2)
2] where RHR is the reflectivity of the

high-reflectance mirror (cf. Fig. 2). L2 is the parasitic loss due to scattering and absorption.
For the calculation of γdiss,1 and γdiss,2 we assume a reflectivity of 100% for the coatings on the

backside of both disks as well as for the HR resonator mirror of the second laser. The parasitic
losses L1 = 5.4 · 10−3 and L2 = 95 · 10−6 have been determined by comparing the output power
of numerical simulations as a function of L1 and L2 to the measured output power of the laser
presented in Vorholt et al. [7]. The large difference in parasitic loss may be caused by the fact that
disk 1 was more than six years old and disk 2 had been refurbished just before the experiments
were carried out.

All parameters of the model and their values in the simulations are summarized in Table 1.

3.2. Dimensionless equations

In order to analyze the model, the equations are written in a dimensionless form by applying
a scaling. We introduce normalized population densities that reach unity when the disks are
transparent at the laser wavelength of the first laser and second laser. The intensities are
normalized by their respective saturation intensities [32]

Isat,1 =
hν1
τ10

1
σa,ν1 + σe,ν1

and Isat,2 =
hν2
τ10

1
σa,ν2 + σe,ν2

. (6)

We apply the scaling

τ =
t
τ10

D1 =
n1

ndotβν1

D2 =
n2

ndotβν2

i1 =
I1

Isat,1
i2 =

I2
Isat,2

, (7)

where the cross-section ratios

βν1 =
σa,ν1

σa,ν1 + σe,ν1

and βν2 =
σa,ν2

σa,ν2 + σe,ν2

(8)

physically correspond to the fractions of ions of the second laser necessary in the upper state
to be transparent at the pump and lasing wavelength. In this scaling, the rate equations for the
dimensionless quantities read

dD1
dτ
=

iD,0B1MD,1

W (p)

{︂
1 − exp

[︃
−WD,1

(︃
1 −

D1
B1

)︃]︃}︂
− M1,1i1(D1 − 1) − D1 (9)

di1
dτ
=

i1
Γ1

[︃
W1 (D1 − 1) − κ

M1,2

M1,1
W1

(︃
1 −

D2
B2

)︃
− γdiss,1

]︃
+ η1D1 (10)

dD2
dτ
= M1,2 κ i1 (B2 − D2) − M2,2i2 (D2 − 1) − D2 (11)

di2
dτ
=

i2 χ
Γ1

[︁
W2(D2 − 1) − γdiss,2 − γout,2

]︁
+ η2D2 , (12)

where we used Eq. (2) and introduced the following dimensionless parameters as defined in
Table 1: The diode pump intensity normalized by the saturation intensity of the diode-pumped
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Table 1. Definition of the parameters of the rate-equation model and their values used in the
numerical simulations. c0 = 3 · 108m/s is the speed of light in vacuum.

Symbol Description Value

νD optical frequency of the diode laser c0 / 940 nm

ν1 optical frequency of the first laser c0 / 1032 nm

ν2 optical frequency of the second laser c0 / 1051 nm

σa,νD effective cross section for absorption at 940 nm [9] 6.97 · 10−21 cm2

σe,νD effective cross section for stimulated emission at 940 nm [9] 1.45 · 10−21 cm2

σa,ν1 effective cross section for absorption at 1032 nm [9] 0.686 · 10−21 cm2

σe,ν1 effective cross section for stimulated emission at 1032 nm [9] 13.0 · 10−21 cm2

σa,ν2 effective cross section for absorption at 1051 nm [9] 68.5 · 10−24 cm2

σe,ν2 effective cross section for stimulated emission at 1051 nm [9] 2.96 · 10−21 cm2

τ10 fluorescence lifetime at 300 K [31] 958 µs

M1,1 number of passes of the laser light through disk 1 per round trip 4

M2,2 number of passes of the laser light through disk 2 per round trip 4

M1,2 number of passes of the pump light through disk 2 per round trip 2

MD,1 number of passes of the pump light through disk 1 16

d thickness of disk 1 and disk 2 130 µm

γdiss,1 dissipative loss of the first laser 19.6 · 10−3

γdiss,2 dissipative loss of the second laser 0.202 · 10−3

γout,2 outcoupling loss of the second laser 2.00 · 10−3

T1 round-trip time in the resonator of the first laser 3.33 ns

χ = T1/T2 ratio of the resonator round-trip times 0..25

κ = A1/A2 ratio of the beam areas on the disks 1..3

iD,0 = ID,0
τ10(σa,νD+σe,νD )

hνD
pumping intensity of the diode laser normalized by the saturation
intensity of the first laser

0.0482

B1 =
σa,νD
σa,ν1

σa,ν1+σe,ν1
σa,νD+σe,νD

quotient of the cross-section ratios of disk 1 16.5

B2 =
σa,ν1
σa,ν2

σa,ν2+σe,ν2
σa,ν1+σe,ν1

quotient of the cross-section ratios of disk 2 2.22

WD,1 = MD,1dσa,νD ndot measure for the absorbed fraction of pump light in disk 1 (given by[︁
1 − exp(−WD,1)

]︁
)

1.81

W1 = M1,1dσa,ν1 ndot reabsorption of 1032 nm light in disk 1 44.6 · 10−3

W2 = M2,2dσa,ν2 ndot reabsorption of 1051 nm light in disk 2 4.44 · 10−3

η1 =
ndotβν1

Isat,1
ksp,1 rate of spontaneous emission at 1032 nm in the first laser 200 · 10−12

η2 =
ndotβν2

Isat,2
ksp,2 rate of spontaneous emission at 1051 nm in the second laser 200 · 10−12

Γ1 = T1/τ10 resonator round-trip time of the first laser normalized by the lifetime
of the excited state

3.48 · 10−6

transition is denoted iD,0. The parameters WD,1, W1 and W2 are measures for the absorption of
the disks at the wavelength of the diode laser, the first laser and the second laser, respectively.
The parameters B1 and B2 are the ratios of the transparency thresholds for the pump light and for
the emitted laser light in disk 1 and disk 2, respectively. The effective cross sections for absorpion
and stimulated emission entering these parameters are obtained from a smoothed interpolation of
the data in [9]. Γ1 is the resonator round-trip time normalized by the fluorescence lifetime. We
define χ = T1/T2 as the ratio of the round-trip times. This ratio affects the coupling strength
between the population density n2 and the intensity I2 in disk 2. For a longer resonator round-trip
time T2, and thus smaller value of χ, the laser light spends a smaller fraction of the round-trip
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time in disk 2, where the stimulated emission and reabsorption processes take place that couple I2
to n2. Throughout the analysis of the model, we fix all parameters to the values given in Table 1
and only vary the normalized pump intensity iD,0, the ratio of the resonator round-trip times
χ = T1/T2 and the ratio of the pumped areas κ = A1/A2 because these are the parameters of the
system that can easily be modified in the experiment.

Note that unfortunately some parameters used in the numerical simulations have not been
adapted precisely to the experimental setup presented in Sec. 3. This concerns predominantly
the round-trip times and a small shift in the wavelengths affecting the employed effective cross
sections. A quantitative comparison between the specific experiment in Sec. 3 and our simulation
results is not intended. The aim of the model analysis is to explore the physical mechanism
underlying the experimentally observed dynamics of the laser intensities in intra-cavity pumped
thin-disk lasers in general. Therefore, the differences in the parameters are of no concern.

4. Results of the rate-equation model

4.1. Steady state solutions: continuous-wave lasing

We start our analysis by discussing the continuous-wave lasing states of the system. These are
characterized by a constant output power and – in the language of nonlinear physics – thus
correspond to steady state solutions of the dynamical system

d
dτ

x⃗ = F⃗(x⃗) with x⃗ =
[︂
D1, i1, D2, i2

]︂T
, (13)

where the superscript T indicates the transpose of a vector and the function F⃗ is defined by the
right hand sides of Eqs. (9)–(12). The stability of a steady state x⃗0 fulfilling F⃗(x⃗0) = 0⃗ can
in general be determined from a linear stability analysis [33]. The time evolution of a small
deviation δ⃗ from the steady state is investigated by expanding F⃗ around x⃗0. The time evolution of
δ⃗ is then given by

d
dτ
δ⃗ =
∂F⃗
∂x⃗

|︁|︁|︁
x⃗0
δ⃗ , (14)

where ∂F⃗
∂x⃗

|︁|︁|︁
x⃗0

is the Jacobi matrix of the system containing the partial derivatives of the components

of F⃗ evaluated at the steady state. The deviation from the state decreases with time and the
steady state is thus stable, if the Jacobi matrix possesses only eigenvalues with negative real
part. Otherwise, the steady state is unstable. Complex eigenvalues result in an oscillatory
increase or damping of the deviation from the fixed point, e.g. damped relaxation oscillations in
laser systems. In the following analysis, the steady state solutions are obtained by setting the
right-hand side of Eqs. (9)–(12) to zero. In the derivation of the following Eqs. (15)–(19) from
this condition, we neglect the spontaneous emission into the modes in very good approximation,
i.e. use η1 ≈ η2 ≈ 0. Parameter continuation (see, e.g., [34] for a general reference to the method
and, e.g., [35] for an application in the context of semiconductor lasers) is used to follow the
solutions with varying control parameters and to simultaneously calculate the corresponding
eigenvalues. To that end, we employ the continuation package MatCont [36,37], a toolbox for
bifurcation analysis of dynamical systems.

We first determine the threshold diode pump intensity that is necessary to achieve continuous-
wave emission of the second laser. Figure 6 shows the stable steady states of the system with
varying diode pump intensity iD,0. We find three qualitatively different regimes: For very low
diode pump intensity (regime I), the lasing threshold of the first laser is not reached. In this case,
the population density of disk 1 increases in good approximation linearly with the pumping. For
higher diode pump intensities (regime II), the lasing threshold of the first laser is reached. Its



Research Article Vol. 29, No. 4 / 15 February 2021 / Optics Express 5765

intensity i1 and thus also the population density D2 of disk 2 increases. When the diode pump
intensity exceeds the threshold

iD,0,th =
WD,1

B1MD,1{1 − exp[−WD,1(1 − D1/B1)]}

[︃
D1 +

M1,1(D1 − 1)D2

M1,2κ(B2 − D2)

]︃
, (15)

both lasers are in continuous-wave operation (regime III) since the lasing threshold of the second
laser is reached. In this regime, the population densities in the disks are clamped to the following
values: In the second laser, the population density

D2 =
γdiss,2 + γout,2

W2
+ 1 (16)

is determined by an equilibrium between reabsorption in disk 2 on the one hand and (dissipative
and outcoupling) losses on the other hand. Since disk 2 represents a loss for the first laser, the
population density in disk 1

D1 = 1 + κ
M1,2

M1,1

(︃
1 −

D2
B2

)︃
−
γdiss,1

W1
(17)

depends on the beam area ratio κ. The laser intensities in regime III are given by

i1 =
B1MD,1

M1,1(D1 − 1)WD,1

{︂
1 − exp

[︃
−WD,1

(︃
1 −

D1
B1

)︃]︃}︂
iD,0 −

D1
M1,1(D1 − 1)

(18)

i2 =
M1,2(B2 − D2)κ

M2,2(D2 − 1)
i1 −

D2
M2,2(D2 − 1)

(19)

and both increase linearly with the diode pump intensity.

Fig. 6. Stable steady states as a function of the diode pump intensity. For low diode pump
intensities, the lasing threshold of the first laser is not reached (regime I). With increasing
diode pump intensity, the first laser reaches threshold and thus also the population density in
disk 2 increases (regime II). When the lasing threshold of the second laser is reached for
even higher diode pump intensity, the system is in continuous-wave lasing mode (regime
III). The steady states in this figure are determined for χ = 1 and κ = 1.

In the following, we fix the diode pumping intensity to iD,0 = 0.0482 corresponding to the
pump power of 280 W used in the experiment and investigate the influence of the beam area ratio
κ and the resonator round-trip time ratio χ on the continuous-wave emission. The corresponding
steady states are shown in Fig. 7(a) and (b). Our experimental setup allows us to change the
pumped area and beam area A2 on disk 2 by changing the resonator length of the first laser. Let
us assume we decrease the beam area A2. This leads to higher intensity of the 1032 nm pump
light that is incident onto the disk of the second laser, thus saturating its pump transition more
strongly. If this disk were not sitting in an another resonator, it would be a conventional saturable
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absorber and stronger saturation would lead to lower absorption of the 1032 nm laser light. Thus,
the intra-cavity intensity i1 would increase. However, the opposite is happening in our laser as
can be seen from Fig. 7(a). The reason for this is that an increasing pump intensity on disk 2
pushes the second laser higher above its threshold. This leads to a higher intra-cavity intensity of
this laser. The associated stronger stimulated emission re-populates the lower level of the laser
atoms in disk 2 quickly, providing more atoms that can absorb the light from the first laser. The
process can also be understood in terms of conservation of energy. Close inspection of Fig. 7(a)
reveals that if κ is increasing by a factor of two from 1.0 to 2.0, the intensity i2 is increasing by
more than a factor of 2 (an increase from 0.49 to 1.08). The output power of the second laser
is proportional to the product of the normalized intracavity intensity i2 and the beam area A2
in disk 2. Thus, the output power is increasing because i2 is increasing by more than a factor
of 2 and A2 = A1/κ is decreasing by exactly a factor of 2. This additional power is taken from
the dissipative losses of the intra-cavity power of the first laser which decrease if its intra-cavity
power is decreasing.

Fig. 7. Influence of the beam area ratio κ and the resonator round-trip time ratio χ on
the steady state corresponding to continuous-wave emission. Solid (dashed) lines indicate
stable (unstable) states. (a) When κ is increased at fixed χ = 1, the steady state changes and
looses stability in a Hopf bifurcation at κ ≈ 2.08. (b) When χ is increased at fixed κ = 1,
the stationary state looses stability in a Hopf bifurcation at χ = 17.461. (c) The parameter
region for which the continuous-wave emission is stable (blue region, III) is confined by the
Hopf bifurcation line (red line) to the right. To the left, the lasing threshold of the second
laser is not reached (grey region, II).

When κ is increased beyond a given threshold κH – in the language of nonlinear physics called
a bifurcation point – the steady state corresponding to the continuous-wave emission looses
stability. For κ<κH , all four eigenvalues of the system have negative real parts and the fixed
point is stable (solid lines). At the bifurcation point κH ≈ 2.081, two eigenvalues λ± = ±155.6i
simultaneously cross the imaginary axis. This eigenvalue structure is characteristic for a Hopf
bifurcation. For κ>κH , deviations from the steady state oscillatory increase due to the positive
real parts of the two eigenvalues and the state is unstable (dashed lines). A small-amplitude
periodic self-sustained oscillation with period T = 2π/Im(λ+) replaces the fixed point as stable
attractor as we will discuss in more detail in the next section.

Figure 7(b) shows that the ratio of the resonator round-trip times χ does not influence the
population densities and intensities, as expected from Eqs. (16)–(19). However, it affects the
stability of the state. For κ = 1, the steady state becomes unstable in a Hopf bifurcation which
occurs at χH = 17.461 with eigenvalues λ± = ±174.8i.

Figure 7(c) summarizes the influence of κ and χ on the stability of the continuous-wave
emission. For small values of κ (grey region, II), the lasing threshold of the second laser is
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not reached. The limiting grey dashed line is determined by Eq. (15). For larger values of κ,
the continuous-wave emission is stable (blue region, III). The Hopf bifurcation line (red), i.e.
the parameter tuple (κH , χH) for which the two eigenvalues cross the imaginary axis, limits
the parameter region for stable continuous-wave emission to the other side. Beyond the red
bifurcation line (white region), the intensity starts to show periodic self-sustained oscillations,
pulse trains and chaotic emission which we discuss now in more detail.

4.2. Periodic solutions: self-sustained oscillations and pulse trains

To study the dynamics of the system in the oscillatory regime, Eqs. (9)–(12) are integrated
numerically with an explicit Runge-Kutta method of order 5(4). These time simulations are
performed for a time span of ∆τt = 150 to remove transient behavior. Then, the local maxima of
the population densities and intensities are analyzed for a subsequent time span ∆τ = 20. We
investigate the effect of the beam area ratio on the dynamics by performing time simulation for
so-called adiabatically increasing values of κ, i.e. the end state of a simulation run is taken as
initial condition for the next simulation with slightly higher value of κ. The model qualitatively
reproduces the self-sustained oscillations and pulse trains that are observed experimentally for
comparable beam area ratios κ (cf. Fig. 3). The details of the bifurcation scenario, like the
exact value of κ, differ between the model and the experiment. This is to be expected due to the
approximations in the model and the large number of parameters that enter the rate-equations.

Figure 8(a) shows the local maxima of the intensities i1 and i2. Exemplary solutions for three
parameter values of κ are shown in Fig. 8(b) - (d), respectively. As expected, the system is in the
steady state corresponding to stable continuous-wave emission for small values of κ. Note that i1
and i2 in Fig. 8(a) are for κ<2.081 small but not zero. Figure 7(a) shows these intensities on a
larger scale. Continuous-wave emission looses stability in a Hopf bifurcation at κ = κH ≈ 2.081
as discussed above. A small-amplitude periodic oscillation around the fixed point arises that
is shown in Fig. 8(b). The period of the oscillation is T = 0.0404, fitting to the eigenvalues
λ± = ±155.6i at the bifurcation point. The region of stability of this small-amplitude oscillation
is, however, rather small and for slightly larger values of κ, it is replaced by pulse trains with
pronounced intensity peaks. For 2.09 ≤ κ ≤ 2.27, the dynamics of the system is a 3P-1P cycle
which exhibits three intensity pulses in i1 with different local maxima followed by one pulse in i2
(see Fig. 8(c)). With increasing value of κ, the system goes through a 2P-2P cycle in a small
parameter region and a 2P-1P cycle (see Fig. 8(d)). For large values of κ ≥ 2.8, the system is in a
1P-1P cycle with high peak intensity. In an experiment, these solutions with high peak intensities
could potentially be useful for materials processing but could also damage the dielectric coatings
on the disks.

The dynamics of the intensities and population densities for the 2P-1P cycle shown in Fig. 8(d)
allows us to understand the emergence of the high peak intensities. At the beginning of the cycle,
the intensities of both lasers are low. Disk 1 is pumped continuously and the population of the
excited state rises. The excited state in disk 2 is still occupied from the previous cycle but the
population density decreases due to spontaneous emission. After some time, disk 1 reaches the
lasing threshold. The intensity in disk 1 thus increases rapidly within a few microseconds. The
intensity of the first laser bleaches disk 2, thereby further accelerating its increase of intensity. At
the same time, the amplification of disk 1 decreases because the intensity reaches values up to 60
times larger than its saturation intensity and finally this laser falls below the lasing threshold.
This sequence repeats multiple times in one cycle and with each repetition, the population of
the excited state of disk 2 increases stepwise. When the amplification of disk 2 overcomes the
losses, the intensity in disk 2 rapidly increases, also reaching multiples of the saturation value.
The intensity saturates the amplification of disk 2 and in consequence, it falls below the lasing
threshold. Then, the cycle repeats itself. The repetition rate of the pulse trains is constant for
a given parameter set and is determined by the period of the respective limit cycle. Varying a
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Fig. 8. Periodic solutions of the system corresponding to self-sustained oscillations and
pulse trains. (a) Local maxima of the intensities i1 (green) and i2 (red) obtained by time
simulations. The value of κ is increased "adiabatically", i.e. the end state of a simulation
run is taken as initial condition for the next one. For κ<2.081, the laser is in stable
continuous-wave mode and the intensities are temporally constant. For larger values of κ,
periodic solutions with intensity peaks occur. Exemplary periodic cycles for three parameter
values of κ marked by grey arrows in (a) are presented in (b)-(d). The global maxima of i1
obtained by parameter continuation of solutions with one intensity peak in i2 and up to four
peaks in i1 are shown in (e). Solid (dashed) lines indicate stable (unstable) states. The local
maxima of the stable solutions for i1 obtained in the time simulations (cf. (a)) are shown
with grey dots for comparison. The arrows indicate the location of the solutions (b) - (d) on
the periodic solution branches. The resonator round-trip time ratio is set to χ = 1.
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single parameter of the system in general affects not only the repetition rate but also other aspects
of the dynamics, like the peak intensities.

Due to the potentially useful as well as damaging nature of the periodic cycles with high peak
intensities, it is important to understand their region of existence and stability. To this end, we
employ parameter continuation. Starting from a solution of the system found by time simulation
for a given parameter value (here of the beam size ratio κ), the technique allows us to follow the
solution when the parameter is varied. It is not necessary to perform time simulations starting
from various initial conditions for each parameter value [34]. For example, we can start with
the 3P-1P solution for κ = 2.15 which we have found by time simulation (cf. Fig. 8(a) and (c)).
We then continue to reduce the parameter κ. This leads to new solutions not found in the time
simulations in Fig. 8(a) as we will now show. In this way, we can systematically investigate for
which parameter region a solution type (e.g. 3P-1P cycle) exists. In addition to stable solutions,
parameter continuation also reveals unstable solutions that are not observable experimentally
and in time simulations. The stability of an obtained periodic cycle can be determined from
the respective Floquet multipliers [38]. However, parameter continuation does not predict the
so-called basin of attraction of stable solutions, i.e. for which initial conditions the system
actually evolves into the stable solution.

Our analysis via parameter continuation shows that the solution space of the system is very
rich, i.e. the laser system can exhibit a multitude of periodic cycles even for the same value of κ.
Here, we restrict ourselves to periodic cycles with one intensity peak in i2 and up to four peaks in
i1. Figure 8(e) shows the global maxima of the intensity i1 for the periodic cycles obtained by
parameter continuation. Stable solutions are shown with solid lines, unstable solutions which are
not expected to be observed in an experiment for an extended time-span are shown with dashed
lines. The local intensity maxima of i1 obtained in the time simulations presented in Fig. 8(a) are
shown again in Fig. 8(e) with grey dots for comparison. If a periodic cycle obtained by parameter
continuation is also observed in the time simulations for the respective value of κ, the global
maximum of i1 (solid line) coincides with the largest local maximum (grey dots). This is e.g. the
case for the solutions (c) and (d) marked by arrows.

The parameter continuation confirms the emergence of a stable small-amplitude 1P-1P cycle
(orange) from the steady state at κ ≈ 2.081 which rapidly looses stability when κ is further
increased. It also verifies the existence of 2P-1P (blue) and 3P-1P (green) cycles corresponding
to pulse trains with large intensity maxima. The stability analysis shows that the 2P-1P and 3P-1P
cycles are also stable in extended parameter regions for κ<2.081. In addition, a stable 4P-1P
cycle (purple) is found in this parameter range. Note that for κ<2.081, periodic dynamics and in
particular the 4P-1P cycle are not observed in the time simulations with adiabatically increased
κ (cf. Fig. 8(a)). Instead, the system is in the steady state corresponding to continuous-wave
emission for this parameter regime. The system thus shows multi-stability, i.e. multiple solutions
are stable for the same parameter set. For example, Fig. 8(e) shows that for κ = 1.75 a stable
4P-1P cycle as well as a stable 2P-1P cycle exists. Figure 8(a) shows that continuous-wave
emission is also stable for this beam area ratio. The observed dynamics of the lasers, i.e. whether
they are in stable continuous-wave operation or show pulse trains, depends on the initial condition
and thus on their history. We observe a hysteresis of the transition from stable continuous-wave
operation to oscillatory emission when the beam area ratio κ is first adiabatically increased from
κ = 1.9 to κ = 2.2 (cf. Fig. 8(a), transition from stable continuous-wave emission to oscillations
at κH ≈ 2.081) and subsequently adiabatically decreased again (data not shown). For decreasing
κ, the dynamics of the system remains oscillatory in the range 1.95 ≤ κ ≤ 2.081, before falling
back to stable continuous-wave emission.



Research Article Vol. 29, No. 4 / 15 February 2021 / Optics Express 5770

4.3. Chaotic states

In this section, we analyze the system for an initial condition that reveals the full richness of
its dynamics. Figure 9 shows the local maxima of the laser intensities, now starting the time
simulation run from the initial condition (i1, D1, i2, D2) = (0, 0, 0, 0) for each value of the beam
area ratio κ. For ratios of the pumped areas κ larger than 2.081, the dynamical behavior of the
system is qualitatively identical to the one observed for "adiabatically" increased κ (cf. Fig. 8(a)).
For smaller beam area ratios in the range 1.67 ≤ κ ≤ 2.081, the dynamics of the system is,
however, rather different. The system does not evolve into the stable continuous-wave lasing
state for the initial condition (i1, D1, i2, D2) = (0, 0, 0, 0) in this parameter range. Instead, we
observe the 4P-1P periodic solution for 1.68 ≤ κ ≤ 1.82 that was found to be stable in this
parameter range by parameter continuation (cf. purple line in Fig. 8(e)). This observation again
demonstrates the multi-stability of the system and the dependence of the observed dynamics on
the initial condition.

Fig. 9. Chaotic intensity fluctuations. (a) Local maxima of the intensities i1(t) (green) and
i2(t) (red) obtained by time simulations. In contrast to the results shown in Fig. 8(a), each
simulation run was started from the initial condition (i1, D1, i2, D2) = (0, 0, 0, 0). (b) The
signs of the three largest Lyapunov exponents (l1, l2, l3) can be used to identify the type of
dynamics. Positive Lyapunov exponents indicate chaotic dynamics. (c) Exemplary chaotic
solution for κ = 1.92 and (d) corresponding attractor projected to the (i1, i2, D1) phase space.

For some beam area ratios in the range of 1.85 ≤ κ ≤ 1.95, the laser intensities do not have
a small number of distinct local maxima. An exemplary solution for κ = 1.92 together with a
projection of the respective attractor in the (i1, i2, D1) phase space is shown in Fig. 9(c) and (d).
The dynamics consists of intensity peaks in i1 followed by a peak in i2 where the magnitudes of
the peaks vary unpredictably from cycle to cycle. The output power of the laser system fluctuates
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chaotically. This type of dynamics was also observed experimentally for certain large beam area
ratios κ (cf. Fig. 3 and Fig. 4).

To substantiate the observation that the system exhibits regions of chaotic dynamics for certain
beam area ratios, we determine the Lyapunov exponents [38]. They qualitatively measure the
time-averaged exponential rate of divergence or convergence of volume elements in phase space
and are a well-established tool for dynamic systems. Depending on the signs of the largest two
exponents, different qualitative types of dynamics can be distinguished: If the system evolves
towards a stationary fixed point, the difference between initially slightly different states decreases
over time and the two largest Lyapunov exponents are negative. For periodic dynamics, the
largest Lyapunov exponent is zero. If the dynamics is chaotic and therefore highly sensitive to
the initial condition, at least one Lyapunov exponent is positive. Figure 9(b) shows the largest
three Lyapunov exponents (l1, l2, l3) of the system calculated numerically via the Wolf algorithm
[39]. The determined Lyapunov exponents confirm that depending on the beam area ratio κ, the
system exhibits regions of stable continuous-wave lasing (l1<0 and l2<0), periodic pulse trains
(l1 = 0 and l2<0) and chaotic intensity fluctuations (l1>0 and l2 = 0) which were also observed
experimentally (cf. Fig. 3(e) and Fig. 4). Due to the large number of parameters in the rate
equations, the model can not be expected to capture the onset of chaotic intensity fluctuations
quantitatively, but it predicts chaos for beam area ratios in the same order of magnitude as in the
experiment. This shows that chaotic emission is an inherent feature of this laser system that does
not arise due to external perturbations and noise.

In sections 4.2 and 4.3, we have varied the beam area ratio κ and kept all other parameters of
the model fixed. We would like to point out that the destabilization of continuous-wave emission
can also be achieved by increasing the normalized diode pump intensity iD,0 (data not shown)
which can lead to pulse trains and chaotic dynamics. This was also observed in the experiment
where stronger diode pumping resulted in intensity peaks that potentially damage the laser disks.

5. Conclusion

We showed that an intra-cavity pumped Yb:YAG thin-disk laser is capable of various types of
dynamics that can be controlled by a single experimental parameter, namely the resonator length
of the diode-pumped laser. This parameter affects the ratio of the beam areas on the disks and,
to a lesser extent, the ratio of the resonator round-trip times. Experimentally, continuous-wave
emission, periodic pulse trains and chaotic power fluctuations were observed. We presented
a rate-equation model capable of qualitatively reproducing all these types of dynamics and
investigated it in the framework of nonlinear dynamics. The investigation of this deterministic
model confirms that the dynamics of the laser system arises due to intrinsic properties of the
system and is not driven by external perturbations. Periodic pulses and chaotic fluctuations are a
result of the strong coupling between the first, diode-pumped laser and the second, intra-cavity
pumped laser which acts as a saturable absorber. We found that the beam area ratio affects this
coupling because it determines the saturation and thus also determines the output dynamics.
The observation that continuous-wave emission becomes unstable for large beam area ratios
substantiates the idea that focusing on maximal optical efficiency is not sufficient for the design
of intra-cavity pumped laser systems: Stability is another criterion for the optimal set-up. The
observed multi-stability in the intra-cavity pumped Yb:YAG thin-disk laser shows that whether a
laser system exhibits stable continuous-wave emission does not only depend on the parameters of
the system, but also on its initial condition.
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