
STALK: Security Analysis of Smartwatches for Kids
Christoph Saatjohann

Münster University of Applied Sciences
Germany

Fabian Ising
Münster University of Applied Sciences

Germany

Luise Krings
Münster University of Applied Sciences

Germany

Sebastian Schinzel
Münster University of Applied Sciences

Germany

Abstract
Smart wearable devices become more and more prevalent in the age
of the Internet of Things.While people wear them as fitness trackers
or full-fledged smartphones, they also come in unique versions as
smartwatches for children. These watches allow parents to track the
location of their children in real-time and offer a communication
channel between parent and child.

In this paper, we analyzed six smartwatches for children and the
corresponding backend platforms and applications for security and
privacy concerns. We structure our analysis in distinct attacker sce-
narios and collect and describe related literature outside academic
publications. Using a cellular network Man-in-the-Middle setup,
reverse engineering, and dynamic analysis, we found several severe
security issues, allowing for sensitive data disclosure, complete
watch takeover, and illegal remote monitoring functionality.

CCS Concepts
• Security and privacy→Mobile and wireless security;Web
protocol security;Web application security; Software reverse
engineering; • Social and professional topics→ Privacy policies;
• Human-centered computing→Mobile devices.

Keywords
smartwatch, web security, certificate pinning, GDPR, wearables,
privacy, location tracking, remote listening, GSM

ACM Reference Format:
Christoph Saatjohann, Fabian Ising, Luise Krings, and Sebastian Schinzel.
2020. STALK: Security Analysis of Smartwatches for Kids. In The 15th Inter-
national Conference on Availability, Reliability and Security (ARES 2020), Au-
gust 25–28, 2020, Virtual Event, Ireland. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3407023.3407037

1 Introduction
Modern embedded computers offer substantial computing power
and a variety of wireless interfaces for an affordable price. Because
of this, there is a broad range of wearable devices, including smart-
watches for children with tracking capabilities. These smartwatches
offer – among others – location tracking, phone calls, and to take

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
ARES 2020, August 25–28, 2020, Virtual Event, Ireland
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8833-7/20/08. . . $15.00
https://doi.org/10.1145/3407023.3407037

pictures. Parents can use a smartphone application connected to a
smartwatch to track their kids or to communicate with them. The
kids’ smartwatches usually do not directly interact with the app,
but the central server provided by the smartwatch vendor relays
messages in a store-and-forward manner.

From a security and privacy perspective, the data collected by
and exchanged between the smartwatch and app is highly sensible.
Compromising this data would mean that an attacker can locate
affected kids at any time or that they can read, modify, or delete
messages sent from the kids to their parents and vice versa.

One would assume that vendors of kids smartwatches take se-
curity and privacy very seriously and make sure that no security
vulnerabilities slip into a product that kids use. While there cur-
rently are no peer-reviewed publications, several blog posts and
reports from researchers describe specific security vulnerabilities
in several kids smartwatch products [2, 3, 10, 13].

In this paper, we give an overview of kids’ smartwatches avail-
able on the market. We then select those watches using a central
backend to store and forward messages among kids’ smartwatches
and parents’ apps and perform a structured security analysis of
them. The watches are the StarlianTracker GM11, the Polywell
S12, the JBC Kleiner Abenteurer, the Pingonaut Panda2, the ANIO4
Touch, and the XPLORA GO. The focus is on the communication
between smartwatches and vendor backend (watch-to-backend)
that is usually done via GSM and the interaction between parents’
apps and vendor backend (app-to-backend), which uses the smart-
phone’s Internet connectivity. Furthermore, we analyze the security
of APIs that vendors offer for smartwatch and app communication.
To our knowledge, this paper describes the first structured secu-
rity analysis of the most widely used smartwatches for children
available.

The results show that modern kids smartwatches contain critical
security vulnerabilities that attackers with very little knowledge of
their victim can exploit. We found that an attacker can spoof the
position of a watch on three out of the four tested platforms and can
spoof voice messages from the watch on two of them. Additionally,
an attacker can perform a complete takeover on at least one of the
platforms, allowing them to track victims. We also found several
privacy problems with the watch platforms.

1.1 Related work
While no peer-reviewed publications on the security of children’s
smartwatches exist, several authors published substantial work in
penetration test reports, blog posts, and talks. In 2017, Forbruker-
rådet – the Norwegian Consumer Council – in cooperation with

https://doi.org/10.1145/3407023.3407037
https://doi.org/10.1145/3407023.3407037

ARES 2020, August 25–28, 2020, Virtual Event, Ireland Christoph Saatjohann, Fabian Ising, Luise Krings, and Sebastian Schinzel

Mnemonic published the most thorough report available [10]. This
report took a look at four smartwatch models for children: Gator
2, Tinitell TT1, Viksfjord – a 3G Electronics watch – and Xplora –
an older model of the watch tested in this paper. Forbrukerrådet
analyzed these watches for privacy concerns as well as functional
security. However, the functional security section of the report is
heavily redacted, and despite statements in the report, technical
details remain unpublished. Just from the unredacted descriptions
in the report, the researchers found several vulnerabilities similar
to those we identified, including location spoofing, covert account
and watch takeover, misuse of the voice call functionality, and sen-
sitive data disclosure. Upon our request, the researchers denied
publishing the details of their research.

Most other reports on smartwatches for children focus on one of
the attack surfaces presented in this paper. In 2019, Tod Beardsley et
al. analyzed three smartwatches – all of which turned out to be 3G
Electronics products – for vulnerabilities in the SMS communication
interface [2]. They found that they could bypass the SMS filter and
use the undocumented default password to configure and takeover
3G electronics smartwatches1.

In 2018 and 2019, Christopher Bleckmann-Dreher found several
security vulnerabilities in GPS watches manufactured by Vidimen-
sio, which use the AIBEILE backend [3, 18]. These vulnerabilities
include tracking of arbitrary watches, wiretapping, and location
spoofing. In 2019, researchers from Avast independently discovered
the same weaknesses in 29 models of GPS trackers manufactured by
Shenzen i365 Tech – a white-label manufacturer using the AIBEILE
backend [13]. Similar vulnerabilities were found in November 2019
by Morgenstern et al. for a smartwatch produced by Shenzhen
Smart Care Technology Ltd. [15].

In 2019, the European Commission even issued a recall for smart-
watches produced by the German manufacturer ENOX because of
unencrypted communication and unauthenticated access to data
as well as wiretapping functions [5].

1.2 Responsible Disclosure
We disclosed all vulnerabilities in this paper to the vendors with a
standard 90-day disclosure deadline and supported them in devel-
oping fixes. JBC, ANIO, Pingonaut, and 3G Electronics were very
cooperative and provided feedback on our disclosure.

2 Background
2.1 Mobile Cell Phone Communication
All currently available cell phone technologies use encryption al-
gorithms to secure over-the-air communication. Whereby UMTS
and newer standards require mutual authentication, the authen-
tication for GSM and GPRS is done on the base station side only.
Consequently, the mobile device cannot differentiate between a
base station of a valid GSM provider and a rogue station, operated
by an attacker. In the latter scenario, the attacker can disable the
encryption by providing only the no-encryption mechanism during
the pairing.

1We found that this default password is documented on several websites as well as in
some vendors manuals.

Backend

GSM

SIM

Base station

Figure 1: Overview of the communication model of chil-
dren’s smartwatches.

To successfully mount an attack via a rogue base station, the
attacker must force the mobile device into the GSM mode and
convince it to connect to their station. This is possible by jamming
frequencies used by the regular UMTS and LTE networks and, at
the same time, provide a GSM network with the best signal strength
for the device-under-attack. In such a case, conventional mobile
devices will automatically downgrade the connection to GSM and
connect to the network with the highest signal-to-noise ratio.

The encryption schemes used for mobile cell phone communi-
cation are also well analyzed, and several attacks were published.
For the original 2G encryption scheme called A5/1, there is a long
history of publicly known research leading to near-real-time de-
cryption of a passive sniffed stream via rainbow tables [4]. The
newer A5/3 algorithm, now used for current 2G and 3G communi-
cation, also has some vulnerabilities and is considered to be broken
[8]. Even the most current cell phone network, LTE, uses encryp-
tion mechanism with vulnerabilities that violate typical security
objectives like confidentiality or authenticity [16, 17].

2.2 Smart Wearable Devices
Due to the development of increasingly small, low-power embed-
ded microprocessors, more and more formerly unconnected devices
are equipped with Internet-of-Things (IoT) technology, forming
new smart wearable product categories. These are, for example,
life-saving implantable pacemakers, where the newest models com-
municate via Bluetooth with the patients’ smartphone and allow
them to track vital data like the daily activity level, directly mea-
sured by the pacemaker [14]. The trend is to be more connected
and to collect more information about our self and try to optimize
our lifestyle.

This trend does not stop with self-optimization but is also present
in the tracking of pets, cars, other people – often illegally in many
countries – and children. Smartwatches are one way of tracking a
child’s location and establishing a communication channel between
children and parents that has become popular.

Smartwatches for Children Due to the need for a remote and
semi-permanent connection, Smartwatches for children are not
directly paired to a mobile phone via Bluetooth. Instead, they have
their own SIM card and connect to a backend server via GSM. This
communication model can be seen in Figure 1.

The functionality of a smartwatch is similar to that of a mobile
phone with certain limitations. The main functions are taking pho-
tos, sending and receiving voice messages, and making phone calls

STALK: Security Analysis of Smartwatches for Kids ARES 2020, August 25–28, 2020, Virtual Event, Ireland

– usually only to and from specified contacts, calls from unknown
numbers are typically blocked. Another standard function is send-
ing SOS messages to the parents by pressing an SOS button on
the watch that triggers an alarm signal with the current location
on the parents’ smartphone. With the corresponding smartphone
application, parents can display the location history, see the current
location, take and download pictures, and write and receive mes-
sages. Any configuration changes to the smartwatch, e.g., changing
the stored contacts or set up geofences, are made with this app.

2.3 Security Marketing of Kids Smartwatches
Smartwatches for children are often offensively marketed with ex-
plicit promises of high privacy and security standards. Some man-
ufacturers make explicit promises regarding encryption between
watch and server and application and server [19, 20]. One German
manufacturer even claims that many watches sold by competitors
– some brands are explicitly named – use Chinese infrastructure
where personal data is stored in China or Korea [11].

Additionally, multiple vendors explicitly state that their watches
do not have a remote monitor functionality – because it would
be illegal under various jurisdictions. This marketing promise is,
however, severely contradicted by third-party apps available in
app stores – i.e., the FindMyKids application [9] – advertising this
functionality on the same platform.

Since all of these watches come with a promise of a security gain
for both parents and children, it is paramount to take a look both
at already published as well as new security vulnerabilities.

3 Attacker Model
The networking model of systems analyzed in this paper consists of
the watch, a backend system, and a mobile phone with an app. The
watch contains a SIM card and uses the GSM network to connect
to the backend system. The app uses the internet connection of
the mobile phone, such as GSM or WiFi, to connect to the backend
system. The backend system relays messages between watch and
app in a store-and-forward manner.

Man-in-the-Middle (MitM) Attacker An attacker that can eaves-
drop and modify the connection between either the phone and the
backend or the watch and the backend can potentially compro-
mise the security of the communication between these endpoints.
Specifically, they are capable of reading and modifying all network
traffic between endpoints. This attacker is realistic for the phone
to backend communication because users might use untrusted or
unencrypted WiFi networks. Additionally, any traffic might be sent
over multiple untrusted hosts towards the ultimate destination.
This is also true for GSM connections as they are only encrypted
between the sender and the base station – which can be imper-
sonated by an attacker. Whether the data is sent encrypted in the
backend relies on the GSM provider. A common countermeasure
against this attacker is the use of transport encryption, e.g., TLS.

External Attacker - Internet This attacker can connect to any
of the servers and endpoints available on the Internet. They are
capable of: (1) identifying endpoints used by the watches and the
applications (e.g., by reverse engineering or sniffing traffic of their
own devices) and (2) sending requests to these endpoints. Generally,
these are rather weak attacker capabilities, as anybody can connect

to publicly available servers and analyze the traffic of their own
devices. Depending on the type of information the attacker wants to
access or modify, they might need additional information, for exam-
ple, phone numbers, device IDs, or usernames, increasing the effort
of attacks. This attacker targets a wide range of API weaknesses
to circumvent authorization. We restrict our tests in this regard to
the most prominent vulnerabilities, including authorization bypass,
injection attacks, and insecure direct object reference.

External Attacker - SMS This external attacker can send SMS
text messages to smartwatches with GSM capabilities with the
intent to execute commands. Specifically, they need to be capable
of: (1) finding out the smartwatches’ phone number, (2) sending
text messages. We assume that an attacker is always capable of (2),
whereas (1) is more difficult to achieve. As children’s smartwatches
usually do not communicate with other devices but the connected
mobile phones, the attacker must be able to either probe possible
phone numbers or to learn the phone number differently. This
might include one of the other attackers, e.g., through an API call
leaking registered phone numbers.

Internal Attacker - Privacy and Compliance Since the communi-
cation between parents and kids as well as location data of children
is sensitive, we consider mishandling and abusing this data an at-
tack. On the one hand, this means that vendors – as per the General
Data Protection Regulation (GDPR) – must clearly state what infor-
mation they collect, where and for how long it is stored, and where
the data is transferred. On the other hand, this also means that
owners of children smartwatches must not be able to circumvent
privacy laws using the device – especially when explicit rulings
exist to forbid this. One example of such a feature is the eavesdrop-
ping capability of some children smartwatches, which is illegal in
several countries. For example, under German law, benign-looking
devices must not be eavesdropping devices [7], also under Illinois
state law, the recording of a conversation without the consent of
all parties is illegal [1]. We assume that an internal attacker – e.g.,
overprotective parents – might try to circumvent possible restric-
tions to these functionalities by using one of the other attacker
models. They also might be able to apply open source knowledge
from the Internet. For example, we found a list of SMS commands
(see Section 5.1.3) for one of the watches online, and sending those
commands is possible even for laypeople.

4 Analysis
4.1 Selection of Test Samples
The market offers a wide range of smartwatches for kids in different
price ranges. Some of them are so-called white-label products that
companies can customize and sell under their brand name. The
internal hard- and software is usually not modified. One of the
largest white-label manufacturers for kids smartwatches is the
company 3G Electronics.

For the customer, the Original Equipment Manufacturer (OEM)
of the smartwatch is usually not transparent. One indication is the
recommended smartphone application. If this app is distributed
by a different company than the watch or used for watches of
multiple brands, one can assume that the watch is produced by a
white-label manufacturer. However, as we will show in Section 5.3,

ARES 2020, August 25–28, 2020, Virtual Event, Ireland Christoph Saatjohann, Fabian Ising, Luise Krings, and Sebastian Schinzel

an application with the same brand name as the watch does not
necessarily indicate in-house development of the smartwatch.

To compare different white-label products, we bought three 3G
Electronics watches from different brands. The decision for the
three additional watches was based on the marketing promises of
the producers. They have in common that they promise extraordi-
nary security and privacy level of their products [11, 19, 20]. At the
time of selection, we were not aware of the original manufacturers
of these three watches. An overview of our analyzed watches is
shown in Table 1.

4.2 Intercepting Smartwatch Traffic
Analyzing the smartwatch to server communication requires in-
tercepting the mobile data connection. We create a custom GSM
base station with the Software Defined Radio (SDR) N210 from
Ettus Research, and the open-source GSM stack implementation
OpenBTS inside a controlled and shielded environment. We use the
GPS simulator LabSat 3 from Racelogic to spoof different locations
for the smartwatch.

While testing all functionalities of the selected smartwatches, we
recorded the traffic between the smartwatch and the server using
Wireshark on the OpenBTS host computer.

Reverse Engineering of the Communication Protocol To under-
stand the communication between the smartwatch and the server,
we had to reverse engineer the used protocol from the recorded
traffic. Three of six analyzed watches use an ASCII protocol with no
encryption. See Listing 1 for sample messages of the StarlianTracker
GM11 watch. The message starts with the ASCII string 3G, which
corresponds to the white-label manufacturer. 74041XXXX is the
IMEI of the watch, and 0008 is the length of the message. The first
sample message sends a heart emoji from the app to the watch.
The second message triggers the smartwatch to ring, whereas the
third message sends the text Hallo to the watch. The last message
sends a location update based on GPS coordinates, including the
battery status and the currently connected cell phone network. By
analyzing the protocol, it is also possible to deduce the original
manufacturer of a smartwatch.

Listing 1: Redacted protocol messages between the Star-
lianTracker GM11 smartwatch and the server.
[3G *74041 XXXXX *0008* FLOWER ,1]

[3G *74041 XXXXX *0004* FIND]

[3G *74041 XXXXX *0020* MESSAGE ,00480061006 c006c006f0020]

[3G *74041 XXXXX *006E*UD ,060220 ,125030 ,V ,40.143057 ,N,

7.3223417 ,E,0.00 ,0.0 ,0.0 ,0 ,100 ,91 ,811 ,

0 ,00000000 ,1 ,0 ,467 ,193 ,530 ,10 ,147 ,0 ,75.1]

Finally, we conducted a detailed security analysis of the smart-
watch to server communication and the server API by sending
manipulated commands while observing the behavior of the watch
and app.

Evaluation of SMS commands Some smartwatches support SMS
commands to be able to configure specific settings without the need
for an internet connection of the watch. In the assessment of such
commands, we inserted a valid SIM card into the smartwatch and
sent SMS commands with a standard mobile phone to the watch.We
also configured the smartwatches with a mobile number that is used
in a mobile phone to analyze incoming SMS for the smartwatch.

4.3 Reverse Engineering Smartphone Apps
Analyzing the app to server communication requires us to take
a closer look at the implementation of smartphone applications.
Mainly, we looked at the Android apps, as this platform allows
for more powerful reverse engineering. Where applicable, we also
checked the corresponding iOS for the same vulnerabilities. To an-
alyze Android applications, we used the Frida reverse engineering
framework for hooking function calls and mitmproxy for intercept-
ing TLS traffic from both Android and iOS applications. We also
used JADX to decompile the .apk files. The dynamic analysis was
performed using a Google Nexus 5X.

Listing 2: Setting up a proxy with Frida.
var builder = Java.use('okhttp3.OkHttpClient$Builder ');

var proxy = Java.use('java.net.Proxy');

var proxyType = Java.use('java.net.Proxy$Type ');

var iSockAddr = Java.use('java.net.InetSocketAddress ');

var sockAddr = Java.use('java.net.SocketAddress ');

var sa = Java.cast(iSockAddr.$new(IP, PORT), sockAddr);

var type = proxyType.valueOf("HTTP");

var pr = proxy.$new(type , sa);

builder.proxy.overload("java.net.Proxy").implementation =

function(a) {return this.proxy(pr);}

Sniffing TLS encrypted Traffic The first goal was to be able to
sniff the traffic between the apps and the backend by installing a
proxy server. Since some apps – i.e., SeTracker – explicitly circum-
vent the usage of the Android system proxy using the OkHttp3
API, we used Frida to hook the constructor of the inner class
okhttp3.OkHttpClient.Builder, setting up a proxy for requests,
as shown in Listing 2. Since this Builder is used to construct all
OkHttp client objects, all HTTP and HTTPS requests made through
this API will be sent to mitmproxy running at IP:PORT. Another
challenge here lies within the usage of certificate pinning for TLS
connection. If an app uses certificate pinning, mitmproxy cannot
decrypt the redirected traffic. Fortunately, Frida scripts to disable
certificate pinning for specific apps exist – i.e., by Jamie Holding
[12]. After this, we were able to decrypt all relevant traffic using
mitmproxy.

Listing 3: Hooking an MD5 method call using Frida.
sU = Java.use('com.tgelec.securitysdk.config.SignUtils ');

sU.MD5.overload("java.lang.String").implementation =

function(a) {

var b = this.MD5(a);

console.log("[+] MD5 of " + a + " is " + b);

return b;

}

Reverse Engineering API Calls After sniffing and decrypting the
app to server communication, the next goal was to send crafted API
calls to perform in-depth security tests. However, for some API calls
encountered during the analysis, information exceeding the simple
request was necessary. For example, the SeTracker app appends a
parameter called sign to each request. Since the app dynamically
generates this parameter, decompiling the .apk file was necessary
and hooking the MD5 method call, as shown in Listing 3.

Using JADX, we recovered some of the source code of the tested
apps. With this information, we could identify additional API end-
points that were not used by the apps during our tests as well as
information regarding the API usage. While the decompiler could

STALK: Security Analysis of Smartwatches for Kids ARES 2020, August 25–28, 2020, Virtual Event, Ireland

Brand Model Original Equipment Manufacturer Android Application

StarlianTracker GM11 3G Electronics Co., Ltd. SeTracker, SeTracker2
Polywell S12 3G Electronics Co., Ltd. SeTracker, SeTracker2
JBC Kleiner Abenteurer 3G Electronics Co., Ltd. SeTracker, SeTracker2
Pingonaut Panda2 Guangdong Appscomm Co., Ltd. Pingonaut
ANIO ANIO4 Touch 3G Electronics Co., Ltd. ANIO
XPLORA XPLORA GO Qihoo 360 Technology Co., Ltd. XPLORA 3 & 3S

Table 1: Tested watches and corresponding applications as recommended by the product manual.
not recover all source code, we were at least able to identify classes
and method signatures. Using Frida, we were able to hook inter-
esting methods and identify inputs and output. This information
assisted in the analysis of the API calls.

5 Evaluation
This section summarizes our findings for the tested watch platforms.
Since three watches operate with the SeTracker app and the 3
Electronics platform, the corresponding results are combined in
one section. Even though the ANIO watch is also manufactured by
3G Electronics, the smartphone app is different, and we will show
that the underlying platform is slightly extended (see Section 5.3).
The evaluation results of the watch to backend communication can
be seen in Table 2, the results of the app and API evaluation can be
seen in Table 3.

5.1 SeTracker / 3G Electronics
Listing 4: Text-based protocol used by the StarlianTracker
GM11 smartwatches, manufactured by 3G Electronics.
[3G* <ID> * <length > * <tag >,<param1 >,<param2 >,..]

5.1.1 Watch to Backend
Communication Security All three of the analyzed 3G Electron-

ics platform smartwatches communicate via TCP/IP and a non-
standardized protocol. The analysis shows that the protocol used
by the first watch, the StarlianTracker GM11, is based on ASCII com-
mands whereby each protocol message is encapsulated in brackets
and includes the protocol identifier 3G, the device ID, the length
in bytes of the command, and the command itself. The command
consists of a tag with optional parameters separated by commas.
An asterisk separates the different elements. The format is shown
in Listing 4. This protocol does not use any encryption or authenti-
cation mechanism. The security relies only on the underlying GSM
network layer.

The next two watches listed in Table 1 communicate via a dif-
ferent –binary– protocol with the server. We did not analyze this
protocol since the server also accepts text-based protocol messages
for these two watches.

API Security Instead of authentication, the API requires identi-
fication by the device ID. The ID of a smartwatch is derived from
the International Mobile Equipment Identity (IMEI) number and
consists of 10 digits. It is also encoded inside the so-called registra-
tion number required for the initial pairing of the watch and the
server. Consequently, an attacker who wants to attack a specific
smartwatch has to find out the IMEI or the registration ID, which is
usually printed on the backside of the watch. During our research,
we also found several IMEIs and registration IDs on Amazon ratings
and YouTube testimonials.

Our tests show that it is possible to check if a device ID is assigned
to a smartwatch and currently paired with a phone. In case the
attacker sends a message containing an unassigned watch ID to the
server, the server responds with a corresponding error message. If
the provided ID was already registered, but later unpaired from the
app, the server responds with the email address and, if stored, the
avatar image of the last app user who paired the smartwatch with
their smartphone. By iterating the device ID, an attacker can scan
the server for active IDs, email addresses, and user icons.

Due to the lack of an authentication process, an attacker can
send arbitrary messages to the server and impersonate one or more
smartwatches by reference to the device ID. It is possible to tamper
the data, which the app displays. This includes but is not limited to:

• Modifying the shown location of the smartwatch
• Sending voice messages to the app
• Changing the displayed battery status, time and date of the
last update from the watch

If an attacker forces the StarlianTracker smartwatch to connect to
their rogue GSM network, establishing a MitM position, they can
additionally send new messages or tamper valid server messages
to the smartwatch. This adds, at least, the following attack vectors:

• Send voice and text messages to the smartwatch
• Modify SOS and phone book contacts of the watch
• Initiate a hidden call from the watch (Remote Monitoring)

5.1.2 App to Backend
Communication Security The SeTracker and SeTracker2 Android

applications use a REST API over HTTPS to communicate with
the application server. These applications were the only apps we
tested that employed certificate pinning. The iOS applications also
use certificate pinning, which prevented further analysis on that
platform. However, under Android, API calls can still be observed
using FRIDA (see Section 4.3). We found that the app adds a sign
parameter, which is checked server-side, to each API request. The
application generates the sign parameter by first sorting them al-
phabetically and then applying the calculation shown in Equation 1.
Obviously, this is not a cryptographically strong signature, but
merely a measure to obfuscate the request. It is, therefore, not a
sufficient security measure to prevent any motivated attacks.

Equation 1: Request signing example. Parameters are
loginname=login and password=pass.

in = SECPROloдinname=<loдin>password=<pass>SECPRO

siдn = MD5(MD5(MD5(in)))

API Security Authentication to the API is achieved by submitting
the username and a single-round MD5 hash of the user password to
the server. Generally, the use of unsalted MD5 hashes for password
hashing is insecure as the hash can be cracked efficiently using

ARES 2020, August 25–28, 2020, Virtual Event, Ireland Christoph Saatjohann, Fabian Ising, Luise Krings, and Sebastian Schinzel

3G Electronics Pingonaut Panda2 ANIO4 Touch XPLORA Go

Encryption $ $ $ "

Authentication $ $ $ –

Active IDs Disclosure –
Phone Position Tampering G# #
Send Voice Messages to App # G#

Other Vulnerabilities Sends data outside EU Disclosure of private data Location disclosure,
Sends data outside EU

" Effective $ Not Used/Not working
 Vulnerable G# Partly Vulnerable # Not Vulnerable – Not Testable

Table 2: Results of the watch to backend communication evaluation
brute force or rainbow tables. Additionally, client-side hashing of
passwords does not provide any more security than the use of plain
passwords as the hash effectively becomes the password. This is
especially true if the password hash is stored on the server and
compared to the hash sent by the client to check authorization
[6]. The API response contains the MD5 hash of the password,
indicating that 3G Electronics stores the password hash on the
server. In return to a login request, the API returns a session ID
(sid), which is used for authentication and which seems to be
checked for all relevant calls, in this case preventing unauthorized
access to other users’ data.

During our tests of the 3G API, we found that almost all param-
eters of the REST API were vulnerable to SQL injections. Some
API endpoints even return the SQL error message and filter pa-
rameters containing SQL keywords. Interestingly, while analyzing
the Android apps, we found that they employ client-side filtering
for SQL keywords. These keywords include typical SQL control
sequences like *, select, --, union, and ;. They also include con-
ditional operators like and, or, and like. This filter list, however, is
not exhaustive and does not reliably prevent SQL injection exploits.
For ethical and legal reasons, we did not exploit this vulnerability
to access any data. However, it is safe to assume that a motivated
attacker can use this vulnerability to access other user accounts and
track arbitrary watches. That 3G Electronics uses keyword filtering
shows that they are aware of injection attacks but fail to employ
adequate countermeasures – e.g., prepared statements.

Further analysis of the SeTracker and SeTracker2 API reveals
additional API endpoints that we did not observe during the traf-
fic analysis. One interesting example is the sendOrder endpoint,
which is used to send commands to the watch. In particular, two
commands stood out. One triggered a 15-second recording on the
smartwatch, which can later be downloaded using another end-
point. The watch gives no visual or audible indication that this
recording is in progress. The other command allows specifying a
phone number to call from the watch. This command causes the
watch screen to turn off, and the specified number is called – a re-
mote monitoring functionality. The called number is not restricted
to the watch’s phone book. In previous versions of SeTracker, this
functionality was actively marketed as amonitor function. However,
we could not trigger this from the app in the current version.

5.1.3 Privacy and Compliance Violations
Smartwatch Communication As far as we could analyze the com-

munication, the communication server for the smartwatch is an

Amazon AWS instance located in Frankfurt, Germany. That cor-
responds to the marketing claims made by the German re-sellers
of these watches (see Section 2.3). Since smartwatches of different
labels use the same server, we assume that this server is owned and
maintained by 3G Electronic, located in Shenzhen, China.

Furthermore, during our research, we found a URL to the man-
agement console of the server. Even without valid login credentials,
it is possible to see all the functionalities of the console. These
functionalities include, but are not limited to:

• Location tracking of smartwatches by the user ID
• List all paired watches for a specific app user
• Reset the password for any app user

Consequently, we can not verify that the data is stored only in
Europe, respectively, as remote access is possible.

During startup, the smartwatch opens a connection to a second
server, and transmit the following information to it:

• 3G Electronics internal smartwatch platform name
• Device ID and firmware version
• IMEI
• Communication server IP and port
• Mobile network identifier: country and provider
• APN configuration
• Cell phone number of the watch

According to WHOIS information, the server belongs to Aliyun
Computing Co. Ltd., a subsidiary of the Chinese Alibaba group.

First of all, at least the cell phone number is personal information
that is affected by the GDPR. Furthermore, with the transmitted
data, it is possible to conduct all the attacks described above.

App Communication The SeTracker and SeTracker2 apps do not
provide a privacy agreement upon installation or login. Therefore,
users cannot ascertain what data the app will gather and how it will
be stored and used. Since the watches used with this application
are white-label products, it might be the responsibility of the actual
watch vendors to provide privacy statements – which was not the
case for our watches. Nevertheless, it seems questionable that an
application collecting and processing sensitive data on children
does not provide a detailed privacy statement.

During our analysis of the Android application, we found that
the exact location (latitude and longitude) of the Android phone is
periodically disclosed to the API server to retrieve a value called
adInfo. We assume this is to deliver advertisement – of which there
is plenty in the app – to the client. Since this is not indicated to the
user, who is only presented with an Android location permission
request upon first starting the app, we find this worrying.

STALK: Security Analysis of Smartwatches for Kids ARES 2020, August 25–28, 2020, Virtual Event, Ireland

SeTracker Pingonaut ANIO watch XPLORA 3 & 3S
SeTracker SeTracker2

App Version (Android) 4.5.4 2.6.5 1.10.1 1.1.8 1.8.6.25761
App Version (iOS) Could not be tested 1.9.0 2.5.1 1.7.7

Encryption " " (!) "

Certificate Pinning " $ $ $

Authorization " " " "

Authorization Bypass # # #
Remote Monitoring # # #
Phone Position Disclosure – – – –

Other Vulnerabilities SQL Injections, MD5 hashed Pass-
words, Client-side password hashing – Forced Browsing

No certificate check
RC4 encryption vulnerable
to known-plaintext attacks

" Effective (!) Used (with issues) $ Not Used/Not working
 Vulnerable G# Partly Vulnerable # Not Vulnerable – Not Applicable

Table 3: Results of the application and API evaluation
SMS Communication We found several SMS commands for 3G

Electronics watches listed on websites and forums2. The watch
requires a password sent along with the command to execute it.
We could partly confirm the vulnerabilities found in [2], all our
watches are delivered with the default password 123456, and only
one manual recommends to change this password.

During our evaluation, we found out that the monitor function,
which should start a hidden call to a specific phone number from
the watch, was not implemented as an SMS command in any of
our watches. For the StarlianTracker and the JBC watches, it was
possible to activate the automatic answer function. After this, it
is possible to call the watch with a muted phone, and the only
indication that the watch records the environment is the display,
which shows the active call. In our opinion, this functionality is
close to a remote monitor function because it is doubtful that the
kid, or any other person near the watch, is continuously observing
the display. The behavior of the Polywell watch was a bit different.
Before the watch answers the call, the ringtone is played for one
second, notifying any person around the smartwatch.

With another command, it is possible to pair a smartwatch with a
different server. After the execution of this command, the watch will
communicate with the newly set IP and port. Due to this mechanism,
it is possible to provide an alternative server that will enable the
use of third-party applications. At least one of these apps explicitly
advertises a remote monitoring function [9] that we successfully
tested with the StarlianTracker watch. We were not able to use the
app for the Polywell and JBC watches because both communicate
via the 3G binary protocol, which is not supported by this third-
party app.

5.2 Pingonaut Panda2

Listing 5: Text-based protocol used by the Panda2 smart-
watches. N/A indicates an unknown protocol field.
#@H <N/A>@H#; <IMEI >; <N/A>; 862182; <command >; <param1 >;

<param2 >; ..

5.2.1 Watch to Backend
Communication Security The Pingonaut Panda2 smartwatch

communicates via TCP/IP and a non-standardized protocol with the

2https://findmykids.org/blog/setting-of-gps-watch-for-kids-using-sms-commands

server. The text-based protocol contains some parameters which we
could not decipher. However, we identified the essential parts of the
protocol to tamper messages and to send newly crafted messages.
The layout is shown in Listing 5.

The protocol is not encrypted and relies solely on the security
of the underlying cellphone network. This is especially interesting
because Pingonaut claims that they use a TLS connection between
the watch and the server [19].

API Security Our analysis shows that the protocol does not have
any authentication mechanism. The identification of the smart-
watch is based on the IMEI of the watch. The format of such a
15 digit IMEI is defined as eight digits for the Type Allocation
Code (TAC), which is usually unique for a particular product model.
The following six digits comprise the serial number of the product,
whereby the last digit is a checksum. That means that only six
digits – the serial number – are relevant for the Pingonaut Panda2
identification. We confirmed this with a second Panda2, where only
these six digits differ.

Pairing a newwatch to the app requires a PIN, which is displayed
on the watch. We found out that the server sends this PIN to any
unpaired IMEI in response to an init protocol message. By sub-
mitting such requests with invalid IMEIs, more precisely with an
invalid checksum, we successfully registered several ghost smart-
watches in our app account, which will never be produced. As an
attacker, it is possible to pair valid IMEIs of not yet manufactured
smartwatches, leading to a Denial-of-Service (DoS) attack on all
smartwatches, which will be sold in the future.

Also, this behavior reveals active IMEIs to an attacker. For active
IMEIs, the server responds with the following private data if present:

• Unread text messages for the watch
• Speed dial numbers with names stored on the watch
• Do not disturb time intervals
• Stored alarm times

For the analysis of the API security, we replayed messages to the
server and crafted new messages. We found that due to the lack
of authentication, we could send arbitrary protocol messages to
the server. Therefore, an attacker can impersonate any smartwatch.
The impersonation attack includes:

• Modifying the shown location of the smartwatch
• Changing the displayed battery status

https://findmykids.org/blog/setting-of-gps-watch-for-kids-using-sms-commands

ARES 2020, August 25–28, 2020, Virtual Event, Ireland Christoph Saatjohann, Fabian Ising, Luise Krings, and Sebastian Schinzel

We could not replay our modified message a few days later,
indicating server-side plausibility checks.

During the initial pairing of the smartwatch with the app, the
server sends a Send-SMS command to thewatch. After receiving this
command, the watch sends an SMS with the IMEI to the Pingonaut
SMS gateway, which in turn acknowledges the phone number of
the smartwatch. After this procedure, the user can call the watch
from the app. The app will enter the stored number into the dialer
app, and the user only needs to start the call.

We found out that the Pingonaut SMS Gateway does not verify
the incoming SMS and accepts the sender’s phone number as the
number of the smartwatch assigned to the IMEI inside the message.
In this way, an attacker can silently change the storedwatch number
for a specific or several IMEIs. In our opinion, the user typically
does not verify the called number for the watch and will rely on
the stored phone number to call the smartwatch. With this attack,
it is possible to redirect phone calls to Pingonaut smartwatches.

Similar to the 3G Electronics watches, in a MitM scenario, the
attacker can do the following:

• Send text messages to the smartwatch
• Modify short dial numbers and add numbers which are al-
lowed to call the watch

• Add do not disturb time intervals
• Change alarm times

5.2.2 App to Backend
Communication Security The Pingonaut application uses a REST

API over HTTPS to communicate with the backend servers. While
TLS is used, no additional authentication of the application server –
i.e., certificate pinning – is employed.

API Security User authentication for the Pingonaut API is per-
formed via an API endpoint that takes the username, password, app
version, and the app type (kids) as parameters. In response, a bearer
token – a JSON Web Token (JWT) using the HS256 algorithm –
is returned, which has to be appended to further requests in the
Authorization HTTP header. We checked the JWT for common
vulnerabilities, including algorithm confusion, leakage of sensitive
data, and weak secrets, but where unable to bypass the authoriza-
tion. A nitpick here is the long (14 days) validity of the JWT, which
the server does not invalidate when it issues a new one, causing all
tokens to be valid for the whole 14 days. This increases the severity
of any possible token disclosure.

All API endpoints (except registration and password reset) re-
quire a correct authentication header, and permissions seem to be
enforced correctly. Therefore, we were unable to compromise other
accounts or devices using the API.

5.3 ANIO4 Touch
5.3.1 Watch to Backend

Communication Security We found that the ANIO4 Touch uses
the 3G Electronics ASCII-based protocol, which reveals that it is a
white-label smartwatch manufactured by 3G Electronics.

In addition to the known protocol messages, we found one new
server response, which the server regularly sends to the watch.
We identified the payload of the message as the current weather
information, including the name of the nearest city.

API Security Since the watch uses the same protocol, nearly all
results listed for the 3G Electronics watches (see Section 5.1.1) are
also valid for the ANIO watch. In contrast to the StarlianTracker
GM11 watch, an initiation of a hidden call is not possible as a MitM
attacker due to firmware modifications made for the ANIO watch.
The second limitation is the user icon, which is not supported by
the ANIO backend and consequently can not be downloaded by an
attacker.

However, due to the weather extension of the protocol, an at-
tacker can send any request to the ANIO server and will get the
nearest city of the current smartwatch location.

5.3.2 App to Backend
Communication Security The ANIO watch application uses a

REST API over HTTPS to communicate with the application server.
We found that the app does not check the server certificate and
uses no server authentication at all. This is a critical vulnerability,
as any active MitM can read and modify the API communication.

Listing 6: Abbreviated response to a request for devices asso-
ciated with a user ID. Interesting data marked in bold.
[{

"name":"Test Watch","gender":"f","companyId":"3G",
"phone":"<redacted >","hardwareId":"<redacted >",

"controlPassword":"<redacted >",

"lastConnected":"2020 -02 -25 T13 :29:17.000Z",

"id":<redacted>,"anioUserId":<redacted>,
"lastLocation":{"lng":<redacted>,"lat":<redacted>},
"lastLocationDate":"2020 -02 -25 T14 :29:17.000Z",

"regCode":"<redacted>",
}]

API Security Even though the ANIO watch is a 3G Electronics
white-label product, ANIO provides their own API. The user end-
point provides registration, login, logout, push token registration,
and password change calls. These calls require a valid authorization
header – which can be obtained via the login call – where appropri-
ate. The device endpoint provides functions for deleting, listing,
locating, and configuring devices and is also protected by the same
authorization header. Additionally, API endpoints for providing a
privacy policy and promotional content exist.

The authorization checks employed by the ANIO API do not
prevent a user from accessing other users’ data. The server checks if
a user is logged in, but does not implement permission management.
The only information necessary to access other users’ data is the
user ID. As IDs are incremented with each new user, they can be
iterated by asking the server for user information for any ID. This
vulnerability is also known as insecure direct object reference [21].

Using this, an attacker can perform any operation and request
any data. This includes locating a watch and viewing the location
history, reading and sending chat messages between watch and
server, and deleting and registering watches.

Therefore, a complete takeover of watches is possible using this
API. A JSON response to a request for devices associated with a user
id can be seen in Listing 6. The lastLocation parameter reveals the
last location the watch reported to the server. The regCode param-
eter, which is also present in the response, is the only information
necessary to register the watch with a user ID.

While the ANIO watch is a 3G Electronics white-label product,
and theAPI contains an endpoint similar to the sendOrder endpoint

STALK: Security Analysis of Smartwatches for Kids ARES 2020, August 25–28, 2020, Virtual Event, Ireland

of 3G’s API with a CALL command, we were unable to trigger a
remote monitoring function on the watch.

5.3.3 Privacy and Compliance Violations
Smartwatch Communication According to public WHOIS infor-

mation, the communication server is hosted on an Amazon AWS
instance located in Frankfurt, Germany. The server IP and used
ports are not the same as for the 3G Electronics watches. Since
ANIO extended the protocol, we assume that they host their own
dedicated AWS instance for the ANIO watches.

Due to the weather extension of the protocol, an attacker can re-
quest the nearest city of the current smartwatch location. Although
this location is not very accurate, this behavior is still a privacy
violation.

As described for the other 3G Electronics watches, the smart-
watch connects to an update server located in China and sends
private data to this server (see Section 5.1.3).

SMS Communication We tested the known SMS commands for
3G Electronics (see Section 5.1.3). Most of them are not implemented
in the ANIO firmware. Notably, we could not trigger the remote
monitoring and the automatic call answer. Furthermore, setting a
different communication server is not possible.

5.4 XPLORA GO
During our analysis of the XPLORA GO watch, we found that the
protocol used by both the watch to backend and the app to backend
communication was not human-readable. Additionally, the app is
highly obfuscated, which makes the analysis challenging.

5.4.1 Watch to Backend
Communication Security The watch communicates with two

servers in the backend. The first connection is made via HTTP, the
second via a raw TCP connection on port 443. Both connections
use Base64 encoded payloads, which seem to be encrypted or at
least obfuscated. Based on the analysis of the app in the following,
we assume encryption with RC4. We found that only a few bytes
change between similar messages. Therefore, we assume the usage
of a static key and re-use of the keystream for every message, which
would allow known-plaintext attacks.

Due to the URLs called and the size of the messages, we assume
that large data items like audio or image files were sent via the
HTTP connection.

During our research, the XPLORA GO smartwatch was auto-
matically updated via an over-the-air update. With this firmware
update, the HTTP communication was changed to a more secure
TLS 1.2 connection to the server. This corresponds to a Blog article
from Xplora Technologies in November 2019, which advertises the
security and privacy level of the watch, including the usage of TLS
between watch and server [20].

API Security In the given time frame, we could not decrypt the
protocol messages. Consequently, for the API security evaluation,
we tried to replay original messages to the server, which was possi-
ble in general, but not in a reliable way. For example, the replay of
a voice message with a length of seven seconds from the watch to
the app resulted in the display of six voice messages with different
lengths – between one and six seconds – inside the app. Despite the
different shown lengths, the playback of each of the voice messages

reveals the complete audio file. We also found that after truncating
the payload of the message, the full voice message is still played.
We, therefore, assume that the audio file is stored only once.

Since the device ID is sent in plain as an HTTP request parameter,
we replayed messages with tampered IDs. Our analysis shows that
the server does not accept the messages for modified IDs. Due to
the lack of a second XPLORA smartwatch, we could not determine
if this is due to an authentication mechanism or if the tested IDs
were not assigned.

5.4.2 App to Backend
Communication Security The app to backend communication

is encrypted using TLS with no certificate pinning. By reverse
engineering the Android app, we found that any traffic between
the app and the backend is additionally encrypted using RC4 inside
the TLS stream. The key is derived from specific message values.
However, the same key is used for all messages in a session. Also, the
keystream is reset for each message. This allows known-plaintext
attacks, defeating the RC4 encryption. Additionally, an attacker that
can reverse engineer the app can also reverse the key generation
algorithm, allowing them to decrypt and spoof messages. However,
since the TLS encryption remains unimpaired, we do not see these
as critical vulnerabilities.

API Security The application communicates with the backend
via a REST API. Every message needs to be RC4 encrypted to be
accepted by the server. For encryption of the login request, the app
derives a static key in conjunction with a timestamp. Both the user
authorization and the selection of the RC4 key are provided by an
eight-byte token, which is returned by the login call. Additionally,
a ten-digit number (qid) – which remains static between sessions –
is returned by the login call and is entered into the key derivation:

loдinkey = MD5(statickey | |timestamp)

session − key = MD5(token | |qid)

Server and app re-use this key for all messages in a session – until
a new login is performed. All API endpoints – except the login –
require a valid token, and permissions seem to be checked correctly.
Therefore, we were unable to compromise other accounts or devices
using the API.

6 Conclusion
During our analysis of smartwatches for children, we found that
several of them contain severe security vulnerabilities in either
the way the watch communicates with the server, the way the
app communicates with the backend, or the way the API on the
server is secured. On three out of four tested watch platforms, the
impersonation of watches was possible. This allows an attacker to
spoof the location of watches. On two platforms, an attacker can
even send voice messages from the watch to the smartphone app.

We also found the security of the APIs used by the applications to
be concerning. We found critical vulnerabilities (SQL injections and
insecure direct object reference) in two of them, allowing complete
takeover of watches on at least the ANIO watch platform.

Specifically, the security of the ANIO4 Touch is severely lack-
ing, as the application does not employ certificate checking for
the TLS connection to the backend. It was possible to spoof any
messages from watch to backend, and the API was vulnerable to

ARES 2020, August 25–28, 2020, Virtual Event, Ireland Christoph Saatjohann, Fabian Ising, Luise Krings, and Sebastian Schinzel

insecure direct object reference, allowing an attacker to track ar-
bitrary watches and eavesdrop on the communication between
parents and children.

Examples with better security are the Pingonaut Panda2, where
we were unable to identify severe vulnerabilities on the application
side, and the XPLORA GO, where we were unable to identify any
critical vulnerability.

We were surprised by the small number of OEMs. While we
explicitly bought three German premium smartwatches, we found
out that these smartwatches were produced by large Chinese OEMs.
This is also interesting with regard to financial aspects. While one
can buy a 3G Electronics smartwatch for 30 Euro, the same hardware
is also sold for 140 Euro advertised as a secure premium product.

All in all, we found the security and privacy of smartwatches for
children to be severely lacking and hope that all manufacturers will
take the vulnerabilities to heart and fix them to protect children
and their parents from attacks. However, as one can see in the ongo-
ing press coverage where vulnerabilities were published for years,
public authorities must increase the awareness and take action to
force the manufactures to provide secure and legal products.

6.1 Future work
While we had success analyzing the traffic of most tested smart-
watches, we experienced problems in analyzing the XPLORA GO
watch. Even though we were able to analyze the RC4 encrypted
traffic between app and backend through reverse engineering, we
were unable to do the same for the watch to backend communica-
tion due to time constraints and the absence of watch firmware we
could reverse engineer. It might be possible to solve these issues
by either obtaining the firmware or mounting a known-plaintext
attack against the encrypted traffic.

During our research, we found that some 3G electronics watches
– i.e., the JBC watch – use a newer protocol version to commu-
nicate with the backend. This protocol is not ASCII-based and,
therefore, harder to analyze. However, since the server does not
check which protocol version a watch uses, all findings remain
valid. Nevertheless, an analysis of this new protocol might lead to
new vulnerabilities.

The vulnerabilities we found in children’s smartwatches might
be present in other devices with similar capabilities such as trackers
for cars, pets, or, as sometimes practiced, spouse tracking. Since
some companies for kids smartwatches sell such devices as well, we
assume that at least some of the vulnerable backends are also used
for these devices. This might lead to interesting research directions
and the identification of new vulnerabilities and attacker scenarios.

Additionally, looking into other wearable devices, especially
devices with medical functionality, might be interesting. Since these
devices provide sensitive services and deal with sensitive data, their
security is of utmost public concern.

Finally, based on the existing work done in analyzing devices
employing GSM communication, other non-wearable devices could
be analyzed. This includes medical base stations, IoT devices, and
even cars. As all of these devices communicate over GSM with a
vendor-provided backend, they should be analyzed for the same
vulnerabilities.

Acknowledgments
The authors would like to thank Götz Kappen for providing feed-
back and hardware for a GPS spoofing setup. Additionally, wewould
like to thank Hanno Böck for providing valuable feedback during
our research.

Christoph Saatjohann and Fabian Ising were supported by the
research project “MITSicherheit.NRW” funded by the European
Regional Development Fund North Rhine-Westphalia (EFRE.NRW).
Fabian Ising was also supported by a graduate scholarship of Mün-
ster University of Applied Sciences.

References
[1] Illinois General Assembly. 2014. 720 ILCS 5 - Article 14. Eavesdrop-

ping. http://www.ilga.gov/legislation/ilcs/ilcs4.asp?DocName=072000050HArt%
2E+14&ActID=1876&ChapterID=0&SeqStart=34200000&SeqEnd=35400000.

[2] Tod Beardsley. 2019. IoT Vuln Disclosure: Children’s GPS Smart
Watches (R7-2019-57). https://blog.rapid7.com/2019/12/11/
iot-vuln-disclosure-childrens-gps-smart-watches-r7-2019-57/

[3] Christopher Bleckmann-Dreher. 2019. Watchgate - How stupid smartwatches
threaten the security and safety of our children. Troopers 2019. https://www.
troopers.de/troopers19/agenda/yugzay.

[4] Giuseppe Cattaneo, Giancarlo Maio, and Umberto Petrillo. 2013. Security Is-
sues and Attacks on the GSM Standard: a Review. JOURNAL OF UNIVER-
SAL COMPUTER SCIENCE 19 (01 2013), 2437–2452. https://doi.org/10.3217/
jucs-019-16-2437

[5] European Commission. 2019. Alert Number: A12/0157/19 - Smart watch for chil-
dren (ENOX Safe-KID-one). https://ec.europa.eu/consumers/consumers_safety/
safety_products/rapex/alerts/?event=viewProduct&reference=A12/0157/19

[6] MITRE Corporation. 2012. CWE-836: Use of Password Hash Instead of Password
for Authentication. https://cwe.mitre.org/data/definitions/836.html

[7] Bundesministerium der Justiz und für Verbraucherschutz. 2012. §90 TKG -
Missbrauch von Sende- oder sonstigen Telekommunikationsanlagen. https:
//www.gesetze-im-internet.de/tkg_2004/__90.html.

[8] Orr Dunkelman, Nathan Keller, and Adi Shamir. 2010. A Practical-Time Attack on
the A5/3 Cryptosystem Used in Third Generation GSM Telephony. Cryptology
ePrint Archive, Report 2010/013. https://eprint.iacr.org/2010/013.

[9] FindMyKids. 2019. FindMyKids GPS Child Tracking App: Features & Benefits.
https://findmykids.org/blog/en/gps-child-tracking-app Retrieved: 2020-03-21.

[10] Forbrukerrådet. 2017. #WatchOut - Analysis of smartwatches for
children. https://fil.forbrukerradet.no/wp-content/uploads/2017/10/
watchout-rapport-october-2017.pdf

[11] ANIO GmbH. 2020. Kinder-Smartwatches: Sicherheitsgewinn oder
Sicherheits-Risiko? https://www.aniowatch.com/2020/04/04/
kinder-smartwatches-sicherheitsgewinn-oder-sicherheits-risiko Retrieved:
2020-04-13.

[12] Jamie Holding. 2019. Advanced Certificate Bypassing in An-
droid with Frida. https://blog.jamie.holdings/2019/01/19/
advanced-certificate-bypassing-in-android-with-frida/

[13] Martin Hron. 2019. The secret life of GPS trackers. https://decoded.avast.io/
martinhron/the-secret-life-of-gps-trackers.

[14] Medtronic 2019. User Guide: My CareLink Heart App. Medtronic,
https://www.medtronic.com/content/dam/medtronic-com/de-de/patients/
documents/carelink/mycarelink-heart-app_user-guide_medtronic.pdf.

[15] Maik Morgenstern. 2019. Produktwarnung! Chinesische Kinderuhr
verrät tausende Kinder. https://www.iot-tests.org/de/2019/11/
produktwarnung-chinesische-kinderuhr-verraet-tausende-kinder.

[16] David Rupprecht, Katharina Kohls, Thorsten Holz, and Christina Pöpper. 2020.
IMP4GT: IMPersonation Attacks in 4G NeTworks. In ISOC Network and Dis-
tributed System Security Symposium (NDSS). ISOC, San Diego, CA, USA, 15.

[17] D. Rupprecht, K. Kohls, T. Holz, and C. Pöpper. 2019. Breaking LTE on Layer
Two. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, San Francisco,
CA, USA, 1121–1136. https://doi.org/10.1109/SP.2019.00006

[18] Fabian A. Scherschel. 2018. Achtung, Uhr hört mit. c’t Magazin für Comput-
ertechnik 8 (2018), 062.

[19] Pingonaut Team. 2020. Test bestanden! https://pingonaut.com/de/news/
test-bestanden. Retrieved: 2020-03-15.

[20] Xplora Technologies. 2019. Sicher und zuverlässig! https://shop.myxplora.de/
blogs/news/sicher-und-zuverlassig Retrieved: 2020-03-15.

[21] The Open Web Application Security Project (OWASP). 2013. OWASP Top 10 -
2013. https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2013.pdf.

http://www.ilga.gov/legislation/ilcs/ilcs4.asp?DocName=072000050HArt%2E+14&ActID=1876&ChapterID=0&SeqStart=34200000&SeqEnd=35400000
http://www.ilga.gov/legislation/ilcs/ilcs4.asp?DocName=072000050HArt%2E+14&ActID=1876&ChapterID=0&SeqStart=34200000&SeqEnd=35400000
https://blog.rapid7.com/2019/12/11/iot-vuln-disclosure-childrens-gps-smart-watches-r7-2019-57/
https://blog.rapid7.com/2019/12/11/iot-vuln-disclosure-childrens-gps-smart-watches-r7-2019-57/
https://www.troopers.de/troopers19/agenda/yugzay
https://www.troopers.de/troopers19/agenda/yugzay
https://doi.org/10.3217/jucs-019-16-2437
https://doi.org/10.3217/jucs-019-16-2437
https://ec.europa.eu/consumers/consumers_safety/safety_products/rapex/alerts/?event=viewProduct&reference=A12/0157/19
https://ec.europa.eu/consumers/consumers_safety/safety_products/rapex/alerts/?event=viewProduct&reference=A12/0157/19
https://cwe.mitre.org/data/definitions/836.html
https://www.gesetze-im-internet.de/tkg_2004/__90.html
https://www.gesetze-im-internet.de/tkg_2004/__90.html
https://eprint.iacr.org/2010/013
https://findmykids.org/blog/en/gps-child-tracking-app
https://fil.forbrukerradet.no/wp-content/uploads/2017/10/watchout-rapport-october-2017.pdf
https://fil.forbrukerradet.no/wp-content/uploads/2017/10/watchout-rapport-october-2017.pdf
https://www.aniowatch.com/2020/04/04/kinder-smartwatches-sicherheitsgewinn-oder-sicherheits-risiko
https://www.aniowatch.com/2020/04/04/kinder-smartwatches-sicherheitsgewinn-oder-sicherheits-risiko
https://blog.jamie.holdings/2019/01/19/advanced-certificate-bypassing-in-android-with-frida/
https://blog.jamie.holdings/2019/01/19/advanced-certificate-bypassing-in-android-with-frida/
https://decoded.avast.io/martinhron/the-secret-life-of-gps-trackers
https://decoded.avast.io/martinhron/the-secret-life-of-gps-trackers
https://www.medtronic.com/content/dam/medtronic-com/de-de/patients/documents/carelink/mycarelink-heart-app_user-guide_medtronic.pdf
https://www.medtronic.com/content/dam/medtronic-com/de-de/patients/documents/carelink/mycarelink-heart-app_user-guide_medtronic.pdf
https://www.iot-tests.org/de/2019/11/produktwarnung-chinesische-kinderuhr-verraet-tausende-kinder
https://www.iot-tests.org/de/2019/11/produktwarnung-chinesische-kinderuhr-verraet-tausende-kinder
https://doi.org/10.1109/SP.2019.00006
https://pingonaut.com/de/news/test-bestanden
https://pingonaut.com/de/news/test-bestanden
https://shop.myxplora.de/blogs/news/sicher-und-zuverlassig
https://shop.myxplora.de/blogs/news/sicher-und-zuverlassig
https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2013.pdf

	Abstract
	1 Introduction
	1.1 Related work
	1.2 Responsible Disclosure

	2 Background
	2.1 Mobile Cell Phone Communication
	2.2 Smart Wearable Devices
	2.3 Security Marketing of Kids Smartwatches

	3 Attacker Model
	4 Analysis
	4.1 Selection of Test Samples
	4.2 Intercepting Smartwatch Traffic
	4.3 Reverse Engineering Smartphone Apps

	5 Evaluation
	5.1 SeTracker / 3G Electronics
	5.2 Pingonaut Panda2
	5.3 ANIO4 Touch
	5.4 XPLORA GO

	6 Conclusion
	6.1 Future work

	References

