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Image-sharpness metrics can be used to optimize optical systems and to control wavefront sensorless
adaptive optics systems. We show that for an aberrated system the numerical value of an image-sharpness
metric can be improved by adding specific aberrations. The optimum amplitudes of the additional aber-
rations depend on the power spectral density of the spatial frequencies of the object. © 2019 Optical Society of

America
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1. INTRODUCTION

It is often desirable to state the performance of an optical system
by a single number. This immediately allows ranking different
optical systems, optimizing an optical system during its design,
or finding the optimum state of an active or adaptive optics
system. The wavefront variance σ2 is such a single number, cal-
culated from the wavefront W in the exit pupil: σ2 = W2 −W2.
The wavefront variance is a useful measure for the optical perfor-
mance for systems near the diffraction-limit, i.e., for wavefront
aberration of less than about λ/8 RMS. For such systems, other
performance metrics can be approximated from the wavefront
variance. One example is the Strehl ratio S with the Maréchal
approximation S ≈

(
1− 2π2σ2/λ2)2 [1], where λ is the wave-

length. Therefore, near the diffraction-limit maximizing the
Strehl ratio is equivalent to minimizing the wavefront variance.

The measurement of the wavefront variance requires a wave-
front sensor, and the measurement of the Strehl ratio requires a
point object. Both requirements can be circumvented by using
performance metrics directly calculated from the intensity distri-
bution in the image plane I(x), where x is the position vector in
the image plane.

Aberration balancing describes the deliberate addition of spe-
cific aberrations to an aberrated system in order to optimize a
performance metric, commonly to minimize the wavefront vari-
ance [2]. In this paper we introduce the concept of aberration bal-
ancing for maximizing an image-sharpness metric. In Section 2
we employ Fourier optics to derive how the image-sharpness
metric depends on the properties of the optical system and the
object. In Sections 3 and 4 we use Zernike modes to explore the
landscape of the image-sharpness metric for a point object and
for an extended object. We show that for a severely aberrated
system the metric can be improved by adding specific Zernike
modes, although this increases the wavefront variance. Sec-
tion 5 summarizes our results and discusses their implications,
especially in controlling severely aberrated wavefront-sensorless

adaptive and active optics systems.

2. THE IMAGE-SHARPNESS METRIC

The most common image-sharpness metric is defined as:

S1 :=
∫∫

I(x)2dx . (1)

We found the first references to this metric in Schade [3] and Fell-
gett [4] for the evaluation of photographic images. We follow the
notation of Muller and Buffington who first proposed to use S1
as a feedback signal in astronomical telescopes to compensate for
atmospheric seeing [5]. They used a modified Fresnel-Kirchhoff
integral to prove that the global maximum of S1 is obtained for
zero aberration. Hamaker offered an alternative proof based on
Fourier optics [6]. We first follow Hamaker’s line of thought
with a different notation. The optical transfer function OTF is
the frequency response of an optical system:

Î(s) = OTF(s) Ô(s) , (2)

where I and O are the intensity distributions of the image and
of the object, respectively, and the symbolˆdenotes the Fourier
transform. The vector s denotes the spatial frequency in the 2-D
frequency domain. Applying Parseval’s theorem to Eq. 1 and
using Eq. 2 we get:

S1 :=
∫∫

I(x)2dx ∝
∫∫ ∣∣ Î(s)∣∣2 ds

∝
∫∫ ∣∣OTF(s)Ô(s)

∣∣2 ds ∝
∫∫

MTF(s)2 ∣∣Ô(s)
∣∣2 ds , (3)

because the modulation transfer function MTF is equal to |OTF|.
We use the proportionality symbol ∝ to drop any constant mul-
tiplication factor.

∣∣Ô(s)
∣∣2 is the power spectral density of the

spatial frequencies of the object. Hamaker showed that the
MTF of an aberrated system for any spatial frequency is always
smaller than its diffraction-limited value [6]. This can also be
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proven by using Schwarz’s inequality [7]. Thus, independently
of the object, S1 is maximum for a diffraction-limited system. In
this paper we further investigate Eq. 3 and discuss two aspects:
1. what this equation implicates for an aberrated system, and 2.
the dependence of S1 on the power spectral density of the object.

The MTF is zero for frequencies higher than the cutoff fre-
quency scut. Also the MTF is an even function symmetric about
the origin [1]. Thus the integration may be restricted to the first
quadrant of the frequency domain and Eq. 3 can be written as:

S1 ∝
∫∫ scut

0
MTF(s)2 ∣∣Ô(s)

∣∣2 ds . (4)

3. BALANCING AN ABERRATED SYSTEM

The power spectral density of a point object is simply∣∣Ô(s)
∣∣2 = 1. The substitution in Eq. 4 yields:

S1,p ∝
∫∫ scut

0
MTF(s)2ds , (5)

where the subscript p (point) distinguishes it from Eq. 4. This
equation can be expressed in words as:

When imaging a point object, the image-sharpness metric
S1 is proportional to the volume of the square of the MTF
in the first quadrant of the frequency domain.

We consider a homogeneously illuminated circular pupil. The
discussion and the results can be appropriately adapted for a
different pupil. We express the wavefront in terms of the Zernike
modes, using the notation of Wyant and Creath [8]. The Zernike
modes are orthogonal with respect to the wavefront variance
σ2, which means that adding a Zernike mode to the wavefront
or increasing the amplitude of an existing Zernike mode will
always increase σ2. As already mentioned, the Strehl ratio S can
be calculated from the wavefront variance if the aberration is
less than about λ/8 RMS. Therefore, S is also orthogonal with
respect to the Zernike modes near the diffraction-limit.

The situation changes if the aberration is more than λ/8 RMS.
The Maréchal approximation becomes invalid and the Strehl
ratio can be multiple-valued for the same wavefront variance
[9]. An increase of σ2 may lead to an increase of S instead of
a decrease. This means that if the aberration cannot be fully
compensated, the designer or the operator of the optical system
may be able to improve the Strehl ratio by inducing further
aberration, although this increases the wavefront variance. This
technique is called aberration balancing.

To demonstrate aberration balancing with Zernike modes
using the image-sharpness metric S1, we simulate the wavefront
for different Zernike modes and calculate the point spread func-
tion (PSF). From the PSFs we then calculate the merit function
(MF) as a normalized version of S1:

MF :=

∫∫
I(x)2dx(∫∫
I(x)dx

)2

∫∫
dx . (6)

This is the definition of the structural density factor of an image
by Linfoot [10]. The normalization and the simulation processes
are discussed in the Appendices A and B, respectively. We show
characteristic results in Fig. 1 as color rendering plots of the
merit function. These plots are 2-D cuts in the multi-dimensional
Zernike domain, with the color indicating the magnitude of MF.

The global maximum of the merit function is always obtained
for zero aberration. We discussed in [11] that circular or elliptical

Fig. 1. (Color online) Color rendering plots of the merit function
for pairs of Zernike modes when imaging a point object. The
white contour lines near the global maximum are always circular
or elliptical. The black contour lines for large aberration are
circular or elliptical only in (a). (a) The pair Z4/Z5. For a constant
amplitude of Z5, MF has a maximum always for Z4 = 0 (e.g., the
X mark for Z5 = 0.7λ), and vice versa. (b) The pair Z3/Z4. When
|Z4| ≥ 0.4λ, MF has two maxima for opposite amplitudes of Z3
(e.g., the two X marks for Z4 = 0.7λ). (c) The pair Z4/Z11. When
|Z11| ≥ 0.25λ, MF has a maximum for a non-zero amplitude of
Z4 (e.g., the X mark for Z11 = 0.7λ).

contour lines in a 2-D plot of the merit function mean that the
two Zernike modes influence the merit function independently.
For the pair of primary astigmatisms Z4 and Z5 in Fig. 1a, this is
true for the whole amplitude range. This is also true for every
pair of Zernike modes of the same radial order and opposite
azimuthal order, e.g., the two primary comas Z6/Z7 , and the
two primary trefoils Z9/Z10 (not shown).

For other Zernike pairs, the contour lines may be circular or
elliptical only near the global maximum. The color rendering
plots in Figs. 1b and c show that for the pairs Z3/Z4 and Z4/Z11
of sufficiently large amplitudes, the amplitude of one Zernike
mode that delivers the maximum merit function depends on the
amplitude of the other Zernike mode. For the pair of defocus
(Z3) and astigmatism 0° (Z4) in Fig. 1b , we detect an X-shaped
ridge. When |Z4| ≥ 0.4λ, there exist two local maxima of the
merit function which are obtained for opposite amplitudes of Z3.
These two defocus Z3 amplitudes correspond to the two planes
of tangential and sagittal focus. Also for the pair of primary
astigmatism 0° (Z4) and secondary astigmatism 0° (Z11) in Fig.
1c, the maximum MF depends on the amplitudes of both Zernike
modes. When |Z11| ≥ 0.25λ, the maximum merit function value
is obtained for a non-zero amplitude of Z4.

We also calculated the MTF from the PSF. The subsequent
calculation of the volume of the square of the MTF in the first
quadrant of the frequency domain (not shown) confirmed the
results shown in Fig. 1 obtained with MF, as expected from Eq.
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5. Further discussion involving the wavefront, the PSF, and the
MTF can be found in [12].

4. OBJECT-DEPENDENT ABERRATION BALANCING

Equation 4 is the key to understanding aberration balancing and
it can be expressed in words as:

The image-sharpness metric S1 weightens the square of
the MTF by the power spectral density of the object, for
each spatial frequency. Maximizing S1, and consequently
maximizing the merit function MF of Eq. 6, is equivalent
to maximizing the weighted volume of MTF2

∣∣Ô∣∣2 in the
first quadrant of the frequency domain.

The power spectral density of an extended object is different
from that of a point object. This leads to object-dependent aberra-
tion balancing. For example, if the object has low power spectral
density in a particular range of spatial frequencies, the MTF may
be low in this frequency range as well, without severely impact-
ing the merit function. To demonstrate object-dependent aberra-
tion balancing, we create a synthetic extended object, shown in
Fig. 4a of Appendix B, that comprises two bodies, which could
be a planet and its moon. An extended object can be regarded as
the superposition of many point objects. Therefore its image is
the superposition of the images of all point objects. We simulate
an aberrated image as the 2-D convolution of the planet-moon
object with an aberrated PSF. The generation of the planet-
moon object and the image simulation are further described in
Appendix B.

Figure 2a shows the color rendering plot of the merit func-
tion for the Zernike modes of primary astigmatism 0° (Z4) and
secondary astigmatism 0° (Z11) when imaging the planet-moon
object. This plot differs from Fig. 1c, because the power spectral
density of the planet-moon object differs from that of a point
object. The merit function when Z11 = 0.7λ is plotted in Fig.
2b (black dashed line). It corresponds to the black dashed line
in Fig. 2a. The maximum MF is obtained for Z4 = 0.6λ. For
comparison, we also plot MF when imaging a point object (red
dotted line in Fig. 2b, that corresponds to the black dashed line
in Fig. 1c), which has a maximum for Z4 = 0.7λ. This clearly
demonstrates that, when Z11 = 0.7λ, the optimum amplitude of
Z4 depends on the object.

In Fig. 3 we simulate two aberrated images of the planet-
moon object when Z11 = 0.7λ. In Fig. 3a, Z4 = 0, which cor-
responds to the best (smallest) wavefront variance. In Fig. 3b,
Z4 = 0.6λ, which corresponds to worse (higher) wavefront
variance but to the best (maximum) merit function for uncom-
pensated Z11 = 0.7λ (the X mark of the black dashed line in
Fig. 2b). Adding primary astigmatism 0° (Z4) in the presence
of secondary astigmatism 0° (Z11) leads to a sharper image. In
Fig. 3a the planet and the moon are indistinguishable. In Fig.
3b the moon is distinguished from the planet as a small blob.
The moon is better identified as a secondary peak in Fig. 3c
which shows the pixel profiles along the red lines of Figs. 3a and
b. In addition, structural characteristics of the planet become
recognizable in Fig. 3b. These characteristics are clearer in the
diffraction-limited image (Fig. 4b).

Maximizing the MTF for 0.1 scut, which corresponds to the
separation between planet and moon, would lead to a worse
(smaller) merit function but an even sharper moon peak. How-
ever, this would not be appropriate because imaging is about
finding something that is not known a priori. By maximizing

Fig. 2. (Color online) (a) Color rendering plot of the merit func-
tion for the pair Z4/Z11, when imaging the planet-moon object
of Fig. 4a. The white contour lines near the global maximum
are elliptical. For large aberration the black contour lines are
no longer elliptical. (b) The black dashed line plotted against
the left y-axis is a cut through the black dashed line in (a) when
Z11 = 0.7λ. The red dotted line plotted against the right y-axis
corresponds to MF when imaging a point object and Z11 = 0.7λ.
It is a cut through the plot in Fig. 1c. The maxima of the two
plots (the X marks) are obtained for different amplitudes of Z4.

Fig. 3. Simulated images with 0.7λ of secondary astigmatism 0°
(Z11). (a) The amplitudes of all the other Zernike modes are zero.
The moon is hidden in the halo of the planet. (b) Adding 0.6λ
of primary astigmatism 0° (Z4) the moon is distinguished from
the planet as a small blob. (c) Pixel profiles along the lines of (a)
and (b). The moon appears as a secondary intensity peak for the
dotted line that corresponds to (b). The image becomes sharper,
although the wavefront variance increases by adding Z4.
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MF, the moon detection is possible without the pre-knowledge
of its existence.

5. CONCLUSIONS

We have demonstrated aberration balancing with Zernike modes
using an image-sharpness metric defined as merit function in
Eq. 6. To date, the term “aberration balancing” has been used to
describe the minimization of the wavefront variance by deliber-
ately adding one or more Seidel modes to an aberrated system.
Unlike Zernike modes, Seidel modes are not balanced with re-
spect to the wavefront variance. The Zernike modes are orthog-
onal with respect to our merit function only near the diffraction
limit, i.e., for wavefront aberration of less than about λ/8 RMS.
We have shown that for large aberration the merit function may
be improved by adding specific Zernike modes. We also call
this effect “aberration balancing”, but instead of the wavefront
variance we link it to the maximization of the image-sharpness
metric. An experimental demonstration was presented in [11]
for balancing spherical aberration with defocus.

To the best of our knowledge, this is the first study explor-
ing the landscape of an image-sharpness metric away from the
global optimum, i.e., in a severely aberrated system. When
imaging a point object, the merit function is proportional to
the volume of the square of the MTF in the first quadrant of
the frequency domain, because the power spectral density of a
point object is a constant function. When imaging an extended
object, the square of the MTF is weighted by the power spec-
tral density of the object, for each spatial frequency. Therefore,
the optimum amplitudes of the additional Zernike modes de-
pend on the power spectral density of the object, which leads to
object-dependent aberration balancing.

Object-dependent aberration balancing is of interest for
severely aberrated adaptive and active optics systems, where
low-order Zernike modes can partially balance uncorrectable
high-order Zernike modes, with amplitudes depending on the
object. Using this technique, previously unrecognizable charac-
teristics of the object can become detectable. In the simplified
example of Fig. 3, inspired by astronomy, a moon that was hid-
den in the halo of its planet comes into sight.

The image-sharpness metric is calculated from the intensity
distribution in the image plane and therefore no additional sen-
sor is required. This also means that this control method is free
from non-common path errors which can affect systems that rely
on wavefront sensors.

Our results can be used to immediately improve the per-
formance of wavefront-sensorless adaptive and active optics
systems that use the Zernike modes to control the wavefront cor-
rector and have to correct large aberration, i.e., more than λ/8
RMS. In the simplest case, these systems sequentially maximize
the merit function in separate Zernike modes, e.g., in [13]. Figure
1 indicates that in the case of large aberration a single iteration of
the Zernike modes is not sufficient to reach the global maximum
of this image-sharpness metric. Therefore, the algorithm should
be adapted to account for the merit function landscape.

Using this merit function is equivalent to maximizing the
power spectral density of the image. Aberration balancing can
be also performed using Fourier-based metrics, which allow
noise filtering and contrast maximization for a particular range
of spatial frequencies.

Spurious resolution, appearing as contrast reversal, leads to
decreased MTF for a wide range of spatial frequencies, because
the MTF is a continuous function. Our merit function cannot

distinguish between positive and negative MTF. Therefore,
contrast reversal may lead to a better merit function value. How-
ever, this can happen only for objects with unnaturally sharp
and narrow peaks in their power spectral density.

APPENDIX A: METRIC NORMALIZATION

We define our merit function in Eq. 6 by dividing S1 of Eq. 1
by the square of the total energy in the image plane, and by
multiplying by the area of the image plane. Conservation of
energy ensures that the total energy in the image plane remains
constant independently of the aberration. This is valid for an
infinitely large detector with infinite dynamic range. Due to
the finite detector area, the total energy is not constant. It is
therefore appropriate to use its square as normalization factor.
This normalization can also account for intensity variations and
sensitivity fluctuations.

The multiplication by the area of the image plane renders the
merit function a dimensionless quantity. After the normalization,
MF ≥ 1. MF is minimum (MF = 1) if the intensity distribution
is constant, which means that there is no contrast.

APPENDIX B: PSF AND IMAGE SIMULATION

We simulate the wavefront in the exit pupil of an isoplanatic
imaging system with a homogeneously illuminated circular
pupil in MATLAB over a 300 pixel × 300 pixel grid. Phase aber-
ration is expressed as Zernike modes, with 0.05λ step size for
their amplitudes. The PSF is calculated by applying the 2-D
fast Fourier transform to the exit pupil function. We choose
the width of the diffraction-limited PSF to be 40 pixels, sig-
nificantly larger than the required width of 5 pixels according
to the Nyquist sampling theorem. Thus, the simulations are
free from sampling artifacts. We limit the total grid of the PSF
to 1201 pixel × 1201 pixel, 30 times larger than the diffraction-
limited PSF. The error caused by this truncation is negligi-
ble. The aberrated PSFs are normalized to the maximum of the
diffraction-limited PSF, to allow comparison among PSFs with
different aberration. Each pixel is sampled with 16-bit depth,
which matches the analog-to-digital converter used in the Near
Infrared Camera of the upcoming James Webb Space Telescope
[14].

The planet-moon object is shown in Fig. 4a. It is a synthe-
sis of two bodies: of an image of the Earth taken by the Earth
Polychromatic Imaging Camera on board NASA’s Deep Space
Climate Observatory satellite [15] and of an image of the Moon
taken by the cameras aboard NASA’s Lunar Reconnaissance
Orbiter spacecraft [16]. The images were converted to grayscale
to simulate monochromatic imaging. The separation between
the centers of the bodies is 80 pixels, which corresponds to 0.1
of the cutoff frequency. Their diameter ratio is about 3.7, equal
to the Earth-Moon diameter ratio. The ratio of the mean bright-
nesses of the bodies is 3.6, equal to the ratio of the geometric
albedos of the Earth and of the Moon [17]. The size of the planet-
moon object is 300 pixel × 300 pixel. For the image simulation
we calculate the convolution of the zero-padded planet-moon
object with a PSF. The aberrated images are normalized to the
maximum of the diffraction-limited image, to allow comparison
among images with different aberration. Figure 4b shows the
diffraction-limited image, where some structural characteristics
of the planet are apparent. Figure 4c shows the pixel profiles
along the red lines of Figs. 4a and b.
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Fig. 4. (a) The synthetic extended object, comprising a planet
and its moon. (b) The simulated diffraction-limited image. The
contrast of both images in (a) and (b) has been adjusted with
γ = 0.5 for illustration purposes only. (c) Pixel profiles along
the lines of (a) and (b). The high-frequency spatial informa-
tion of the planet-moon object (solid line) is not transmitted by
the system. Nevertheless, the planet and the moon are clearly
distinguishable in the diffraction-limited image (dotted line).

The discrete version of the merit function defined in Eq. 6 is:

MFdiscrete := ∑ ∑ I2

(∑ ∑ I)2 Nx Ny ,

where Nx Ny is the image area in pixel2. The summation oc-
curs over 1201 pixel × 1201 pixel for the point object and over
300 pixel × 300 pixel for the planet-moon object.
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