TY - CHAP A1 - Verpoort, Sven A1 - Rausch, Peter A1 - Wittrock, Ulrich T1 - Novel unimorph deformable mirror for space applications T2 - International Conference on Space Optics (ICSO), Proc. SPIE N2 - We have developed a new type of unimorph deformable mirror, designed to correct for low-order Zernike modes. The mirror has a clear optical aperture of 50 mm combined with large peak-to-valley Zernike amplitudes of up to 35 μm. Newly developed fabrication processes allow the use of prefabricated super-polished and coated glass substrates. The mirror's unique features suggest the use in several stronomical applications like the precompensation of atmospheric aberrations seen by laser beacons and the use in woofer-tweeter systems. Additionally, the design enables an efficient correction of the inevitable wavefront error imposed by the floppy structure of primary mirrors in future large space-based telescopes. We have modeled the mirror by using analytical as well as finite element models. We will present design, key features and manufacturing steps of the deformable mirror. Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-6516 UR - https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10564/1056414/Novel-unimorph-deformable-mirror-for-space-applications/10.1117/12.2309089.full VL - 10564 SP - 1056414-1 PB - SPIE ER - TY - CHAP A1 - Rausch, Peter A1 - Verpoort, Sven A1 - Wittrock, Ulrich T1 - Novel unimorph adaptive mirrors for astronomy applications T2 - Proc. SPIE 8447, Adaptive Optics Systems III, 844764 N2 - We have developed a new type of unimorph deformable mirror for the correction of low-order Zernike modes. The mirror features a clear aperture of 50 mm combined with large peak-to-valley amplitudes of up to 35 μm. Newly developed fabrication processes allow the use of prefabricated, coated, super-polished glass substrates. The mirror's unique features suggest the use in several astronomical applications like the compensation of atmospheric aberrations seen by laser beacons, low light astronomy, and the use in woofer-tweeter systems. Additionally, the design enables an efficient correction of the inevitable wave-front error imposed by the floppy structure of primary mirrors in future large space telescopes. We have modeled the mirror by using analytical as well as finite element models. We will present design, key features and manufacturing steps of the deformable mirror. Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-6203 PB - SPIE ER - TY - CHAP A1 - Rausch, Peter A1 - Verpoort, Sven A1 - Wittrock, Ulrich T1 - Characterization of a miniaturized unimorph deformable mirror for high power cw-solid state lasers T2 - Proc. SPIE 8253, MEMS Adaptive Optics VI, 825309 N2 - We have developed a new type of unimorph deformable mirror for real-time intra-cavity phase control of high power cw-lasers. The approach is innovative in its combination of super-polished and pre-coated highly reflective substrates, the miniaturization of the unimorph principle, and the integration of a monolithic tip/tilt functionality. Despite the small optical aperture of only 9 mm diameter, the mirror is able to produce a stroke of several microns for low order Zernike modes, paired with a residual static root-mean-square aberration of less than 0.04 µm. In this paper, the characteristics of the mirror such as the influence functions, the dynamic behavior, and the power handling capability are reported. The mirror was subjected to a maximum of 490 W of laser-light at a wavelength of 1030 nm. Due to the high reflectivity of over 99.998 percent the mirror is able to withstand intensities up to 1.5 MW/cm2. Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-6226 PB - SPIE ER - TY - CHAP A1 - Rausch, Peter A1 - Verpoort, Sven A1 - Wittrock, Ulrich T1 - Performance verification and environmental testing of a unimorph deformable mirror for space applications. T2 - Proceedings of the 10th International Conference on Space Optics - ICSO, Tenerife, Spain N2 - Concepts for future large space telescopes require an active optics system to mitigate aberrations caused by thermal deformation and gravitational release. Such a system would allow on-site correction of wave-front errors and ease the requirements for thermal and gravitational stability of the optical train. In the course of the ESA project "Development of Adaptive Deformable Mirrors for Space Instruments" we have developed a unimorph deformable mirror designed to correct for low-order aberrations and dedicated to be used in space environment. We briefly report on design and manufacturing of the deformable mirror and present results from performance verifications and environmental testing. KW - space optics KW - adaptive optics KW - deformable mirror KW - unimorph Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-7716 UR - http://www.icsoproceedings.org PB - FH Münster ER - TY - CHAP A1 - Rausch, Peter A1 - Verpoort, Sven A1 - Wittrock, Ulrich T1 - Unimorph piezoelectric deformable mirrors for space telescopes T2 - Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, Proc. SPIE N2 - We have developed, manufactured and tested a unimorph deformable mirror for space applications based on piezoelectric actuation. The mirror was designed for the correction of low-order Zernike modes with a stroke of several tens of micrometers over a clear aperture of 50 mm. It was successfully tested in thermal vacuum, underwent lifetime tests, and was exposed to random vibrations, sinusoidal vibrations, and to ionizing radiation. We report on design considerations, manufacturing of the mirror, and present the test results. Furthermore, we discuss critical design parameters, and how our mirror could be adapted to serve recently proposed space telescopes such as HDST and TALC. Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-9230 VL - 9904 SP - 990468 ER -