TY - JOUR A1 - Kazasidis, Orestis A1 - Verpoort, Sven A1 - Soloviev, Oleg A1 - Vdovin, Gleb A1 - Verhaegen, Michel A1 - Wittrock, Ulrich T1 - Extended-image-based correction of aberrations using a deformable mirror with hysteresis JF - Opt. Expr. N2 - With a view to the next generation of large space telescopes, we investigate guide-star-free, image-based aberration correction using a unimorph deformable mirror in a plane conjugate to the primary mirror. We designed and built a high-resolution imaging testbed to evaluate control algorithms. In this paper we use an algorithm based on the heuristic hill climbing technique and compare the correction in three different domains, namely the voltage domain, the domain of the Zernike modes, and the domain of the singular modes of the deformable mirror. Through our systematic experimental study, we found that successive control in two domains effectively counteracts uncompensated hysteresis of the deformable mirror. KW - active optics, metrics, aberration compensation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-14759 UR - https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-26-21-27161&id=398820 VL - 26 SP - 27161 EP - 27178 ER - TY - CHAP A1 - Kazasidis, Orestis A1 - Verpoort, Sven A1 - Wittrock, Ulrich T1 - Algorithm design for image-based wavefront control without wavefront sensing T2 - SPIE Optical Instrument Science, Technology, and Applications, Proc. SPIE N2 - Active optics is an enabling technology for future large space telescopes. Image-based wavefront control uses an image-sharpness metric to evaluate the optical performance. A control algorithm iteratively adapts a corrective element to maximize this metric, without reconstructing the wavefront. We numerically study a sharpness metric in the space of Zernike modes, and reveal that for large aberrations the Zernike modes are not orthogonal with respect to this metric. The findings are experimentally verified by using a unimorph deformable mirror as corrective element. We discuss the implications for the correction process and the design of control algorithms. KW - active optics, adaptive optics, sharpness metrics, aberration compensation, algorithm design Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-14760 UR - https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10695/1069502/Algorithm-design-for-image-based-wavefront-control-without-wavefront-sensing/10.1117/12.2312523.full VL - 10695 SP - 1069502 ER - TY - BOOK ED - Wittrock, Ulrich T1 - Adaptive optics for industry and medicine. Proceedings of the 4th International Workshop on Adaptive Optics for Industry and Medicine Y1 - 2005 UR - https://www.springer.com/de/book/9783540239789 SN - 3-540-23978-2 PB - Springer CY - Berlin ER - TY - JOUR A1 - Wittrock, Ulrich T1 - Laryngeally echolocating bats (Brief Communication Arising) JF - Nature Y1 - 2010 U6 - http://dx.doi.org/10.1038/nature09156 VL - 466 SP - E6 ER - TY - CHAP A1 - Verpoort, Sven A1 - Wittrock, Ulrich T1 - Miniaturized adaptive mirror for solid state laser resonators T2 - Proceedings of the 7th International Workshop on Adaptive Optics for Industry and Medicine, Shatura, Russia Y1 - 2009 ER - TY - JOUR ED - Wittrock, Ulrich ED - Kynast, Ulrich ED - Jüstel, Thomas ED - Bredol, Michael T1 - 6th Laser Ceramics Symposium T2 - Opt. Mat. Y1 - 2012 UR - https://www.sciencedirect.com/journal/optical-materials/vol/34/issue/6 VL - 34 SP - 935 EP - 1002 PB - Elsevier B.V. ER - TY - JOUR A1 - Wittrock, Ulrich T1 - Grenzen? Welche Grenzen? Prof. Ulrich Wittrock, Leiter des Labors für Photonik an der Fachhochschule Münster, fragt nach den ultimativen Grenzen der Lasertechnik JF - Laser Community - das Lasermagazin von Trumpf Y1 - 2014 VL - 02:14 ER - TY - JOUR A1 - Wittrock, Ulrich T1 - Limitations? What Limitations? Prof. Ulrich Wittrock, head of the Photonics Laboratory at the Münster University of Applied Sciences, seeks out the ultimate boundaries of laser technology JF - Laser Community - the laser magazine from Trumpf Y1 - 2014 VL - 02:14 ER - TY - CHAP A1 - Verpoort, Sven A1 - Wittrock, Ulrich T1 - Deformable mirrors for high power lasers T2 - Proceedings of the 8th International Workshop on Adaptive Optics for Industry and Medicine (AOIM) N2 - It has been shown that the beam quality and the efficiency of high-power solid-state lasers could be enhanced by the use of deformable mirrors in order to compensate for optical aberrations. An intracavity compensation requires a deformable mirror which is capable of handling very high laser intensities. The active diameter of the deformable mirror should be a few millimeters in order to match typical fundamental mode laser beam diameters. There is a wide variety of commercially available deformable mirrors, but neither meets all requirements. KW - Deformable mirror, adaptive mirror, unimorph mirror, high-power laser Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-106953 UR - http://congresos.um.es/aoim/aoim2011/schedConf/presentations ER - TY - CHAP A1 - Kazasidis, Orestis A1 - Verpoort, Sven A1 - Wittrock, Ulrich T1 - Image-based wavefront correction for space telescopes T2 - International Conference on Space Optics - ICSO 2018 N2 - With a view to future large space telescopes, we investigate image-based wavefront correction with active optics. We use an image-sharpness metric as merit function to evaluate the image quality, and the Zernike modes as control variables. In severely aberrated systems, the Zernike modes are not orthogonal to each other with respect to this merit function. Using wavefront maps, the PSF, and the MTF, we discuss the physical causes for the non-orthogonality of the Zernike modes with respect to the merit function. We show that for combinations of Zernike modes with the same azimuthal order, a flatter wavefront in the central region of the aperture is more important than the RMS wavefront error across the full aperture for achieving a better merit function. The non-orthogonality of the Zernike modes with respect to the merit function should be taken into account when designing the algorithm for image-based wavefront correction, because it may slow down the process or lead to premature convergence. KW - active optics, adaptive optics, sharpness metrics, aberration compensation, algorithm design Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-109036 UR - https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11180/111807Z/Image-based-wavefront-correction-for-space-telescopes/10.1117/12.2536206.full?SSO=1 SP - 111807Z PB - Proc. SPIE ER - TY - JOUR A1 - Kazasidis, Orestis A1 - Verpoort, Sven A1 - Wittrock, Ulrich T1 - Aberration balancing using an image-sharpness metric JF - J. Opt. Soc. Am. A N2 - Image-sharpness metrics can be used to optimize optical systems and to control wavefront sensorless adaptive optics systems. We show that for an aberrated system, the numerical value of an image-sharpness metric can be improved by adding specific aberrations. The optimum amplitudes of the additional aberrations depend on the power spectral density of the spatial frequencies of the object. KW - adaptive optics; image-sharpness Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-109198 UR - https://www.osapublishing.org/josaa/abstract.cfm?uri=josaa-36-8-1418 VL - 36 IS - 8 SP - 1418 EP - 1422 ER - TY - JOUR A1 - Verpoort, Sven A1 - Bittner, Matthias A1 - Wittrock, Ulrich T1 - Fast focus-shifter based on a unimorph deformable mirror JF - Applied Optics N2 - On-the-fly remote laser processing plays an increasingly important role in modern fabrication techniques. These processes require guiding of the focus of a laser beam along the contours of the workpiece in three dimensions. State-of-the-art galvanometer scanners already provide highly dynamic and precise transverse x−y beam steering. However, longitudinal focus shifting (“z-shifting”) relying on conventional optics is restricted to a bandwidth of a few hundred Hz. We have developed and manufactured a fast piezo-based z-shifting mirror with diffraction-limited surface fidelity providing a focus shift of 1z> 60 mm with an actuation rate of 2 kHz. KW - beam steering KW - deformable mirrors KW - optical components KW - laser machining KW - laser materials processing Y1 - 2020 UR - https://www.osapublishing.org/ao/abstract.cfm?uri=ao-59-23-6959 U6 - http://dx.doi.org/10.1364/AO.397495 SN - 1559-128X VL - 59 IS - 23 SP - 6959 EP - 6965 ER - TY - JOUR A1 - Kazasidis, Orestis A1 - Verpoort, Sven A1 - Wittrock, Ulrich T1 - Sensor for dynamic focus control of a deformable mirror JF - Appl. Opt. N2 - We recently presented a novel unimorph deformable mirror which allows for dynamic focus shift with an actuation rate of 2 kHz. Such mirrors suffer from hysteresis and creep. Therefore, they have to be operated in closed-loop. For this purpose, we developed a defocus sensor based on an astigmatic detection system. In this paper, we present the sensor design and discuss its performance. KW - deformable mirrors KW - diode lasers KW - laser beams KW - laser machining KW - sensor performance Y1 - 2020 UR - https://www.osapublishing.org/ao/abstract.cfm?uri=ao-59-18-5625 U6 - http://dx.doi.org/10.1364/AO.392970 IS - 59 SP - 5625 EP - 5630 ER - TY - JOUR A1 - Trinschek, Sarah A1 - Vorholt, Christian A1 - Wittrock, Ulrich T1 - Nonlinear dynamics in intra-cavity pumped thin-disk lasers JF - Optics Express N2 - Cross-saturation of the gain media in intra-cavity pumped lasers leads to complex dynamics of the laser power. We present experimental results and a detailed theoretical analysis of this nonlinear dynamics for an intra-cavity pumped Yb:YAG thin-disk laser in the framework of a rate-equation model. The gain medium of this laser is residing in the resonator of a conventional, diode-pumped Yb:YAG thin-disk laser. Continuous-wave operation, periodic pulse trains, and chaotic fluctuations of the optical power of both lasers were observed. The dynamics is not driven by external perturbations but arises naturally in this laser system. Further examination revealed that these modes of operation can be controlled by the resonator length of the diode-pumped laser but that the system can also show hysteresis and multi-stability. Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-132355 UR - https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-29-4-5755&id=447544 VL - 29 IS - 4 SP - 5755 EP - 5773 ER - TY - JOUR A1 - Pues, Patrick A1 - Laube, Michael A1 - Fischer, Stefan A1 - Schröder, Franziska A1 - Schwung, Sebastian A1 - Rytz, Daniel A1 - Fiehler, Torben A1 - Wittrock, Ulrich A1 - Jüstel, Thomas T1 - Luminescence and up-conversion of single crystalline Lu3Al5O12:Pr3+ JF - Journal of Luminescence N2 - This work deals with the spectroscopic properties of praseodymium doped single crystalline lutetium aluminum garnet (LuAG:Pr3+). A special focus was set on temperature- and time-dependent spectroscopy. Beyond the well-known down-conversion luminescence of LuAG:Pr3+, also UV-A/B up-conversion luminescence under excitation with a 488 nm laser was thoroughly investigated. Furthermore, the results of the spectroscopic investigations on the single crystalline material were supplemented and compared with measurements on a microscale powder sample. In addition, to the spectroscopic investigations, mechanistic considerations are presented to obtain a closer look at the up-conversion process in LuAG:Pr3+. We promote the thesis of a temperature-dependent energy transfer up-conversion mechanism. KW - Pr3+ luminescence KW - Single crystal KW - Photoluminescence KW - Up-conversion KW - Temperature-dependent spectroscopy Y1 - 2021 U6 - http://dx.doi.org/10.1016/j.jlumin.2021.117987 VL - 234 SP - 117987 EP - 117995 ER - TY - CHAP A1 - Leitz, Sinje A1 - Gerhards, Maximilian A1 - Verpoort, Sven A1 - Wittrock, Ulrich A1 - Freudling, Maximilian A1 - Grzesik, Andreas A1 - Erhard, Markus A1 - Hallibert, Pascal T1 - Vibration and shock testing of a 50 mm aperture unimorph deformable mirror T2 - Proceedings of the International Conference on Space Optics (ICSO) N2 - We present our latest results on a refined unimorph deformable mirror which was developed in the frame of the ESA GSTP activity ”Enabling Technologies for Piezo-Based Deformable Mirrors in Active Optics Correction Chains”. The identified baseline concept with the soft piezoceramic material PIC151 successfully sustained all vibration requirements (17.8 gRMS random and 20 g sine) and shock testing (300 g SRS). We cover the mirror design development which reduces the stress in the brittle piezo-ceramic by 90 % compared to the design from a former GSTP activity. We briefly address the optical characterization of the deformable mirror, namely the achieved Zernike amplitudes as well as the unpowered surface deformation (1.7 µm) and active flattening (12.3 nmRMS). The mirror produces low-order Zernike modes with a stroke of several tens of micrometer over a correction aperture of 50 mm, which makes the mirror a versatile tool for space telescopes. KW - active optics KW - adaptive optics KW - deformable mirror KW - vibration damping KW - space telescopes Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-137401 UR - https://icso2020.com/ VL - 11852 SP - 118524N ER - TY - CHAP A1 - Freudling, Maximilian A1 - Grzesik, Andreas A1 - Erhard, Markus A1 - Gerhards, Maximilian A1 - Leitz, Sinje A1 - Verpoort, Sven A1 - Wittrock, Ulrich A1 - Hallibert, Pascal T1 - Space-qualified piezo based deformable mirror for future instruments with active optics T2 - Proceedings of the International Conference on Space Optics (ICSO) N2 - This paper presents the results of the technology development project “Enabling Technologies for Piezo-Based Deformable Mirrors in Active Optics Correction Chains” conducted by OHB System AG together with its partner Münster University of Applied Sciences (MUAS). The project was funded by ESA within their General Support Technology Programme (GSTP). We address in this paper mainly the definition, flow-down and verification of the requirements for the Deformable Mirror (DM). The requirements were derived from a set of real space mission applications. The deformation of the mirror is performed by piezo-ceramic actuators in an unimorph configuration. The finally developed DM is able produce Zernike modes with a stroke of several tens of µm over a clear optical aperture of 50 mm in diameter. It underwent successfully a full environmental qualification campaign including thermal cycling, shock- and vibration testing, as well as exposure to proton and γ–ray radiation. Thermal and performance tests were performed in the temperature range from 100 K to 300 K. Furthermore, the DM sustained all vibration (random 17.8 g RMS and sinus) and shock (300 g) testing. Thereby all criticalities which were identified a previous study have been overcome successfully. A Technology Readiness Level (TRL) of 5 is reached, as the component has been validated in relevant environment. Based on the high level of maturity, this deformable mirror is now ready for the incorporation in future flight instruments. The achieved TRL of 5 is sufficient for the status of a PDR at payload level and gives thus a very good basis for all kinds of potential B2, C/D payload developments. KW - deformable mirror KW - active optics KW - space qualification KW - space telescopes KW - adaptive optics Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-137410 UR - https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11852/1185231/Space-qualified-Piezo-Based-Deformable-Mirror-for-future-Instruments-with/10.1117/12.2599467.full VL - 11852 SP - 1185231-11 ER - TY - CHAP A1 - Wittrock, Ulrich A1 - Welp, Petra T1 - Adaptive laser resonator control with deformable MOEMS mirrors T2 - MEMS/MOEMS Components and Their Applications III, Proc. SPIE N2 - Adaptive laser resonators with deformable MOEMS mirrors under closed-loop control are discussed and experimental results are presented. The requirements for deformable mirrors and for closed-loop control systems of these mirrors are analyzed. Several deformable mirrors have been characterized and the results are presented. Currently available membrane mirrors deform under laser load and need further development before they can be used for aberration correction of solid state lasers above some tens of Watts. Nevertheless, the results are encouraging and the requirements are within reach of currently available technology. Finally, we demonstrate an Nd.YVO4-laser with a closed-loop adaptive resonator and more than 6 W of output power. The closed-loop system was able to compensate artificially introduced aberrations from a phase plate. Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-6537 VL - 6113 SP - 61130C PB - SPIE ER - TY - JOUR A1 - Albers, Klaus A1 - Wittrock, Ulrich T1 - Optical pump concepts for highly efficient quasi-three-level lasers JF - Appl. Phys. B N2 - Efficient quasi-three-level laser operation requires the generation of the highest possible pump rate from a given pump source. We derive the fundamental scaling laws for the pump rate and we extract optimization criteria for pump concepts from these laws. The analysis is then applied to the thin-disk laser. Based on the results, a novel pump concept for thin-disk lasers is proposed, which allows for several tens of pump beam passes and reduces the optical complexity of conventional pump concepts. Furthermore, the beam quality of the pump source is preserved almost completely, facilitating the highest possible pump rate. Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-6467 VL - 105 SP - 245 EP - 254 PB - Springer ER - TY - CHAP A1 - Verpoort, Sven A1 - Wittrock, Ulrich T1 - Novel unimorph deformable mirror with monolithic tip-tilt functionality for solid state lasers T2 - MEMS Adaptive Optics V, Proc. SPIE N2 - We present a new type of unimorph deformable mirror with monolithic tip-tilt functionality. The tip-tilt actuation is based on a spiral arm design. The mirror will be used in high-power laser resonators for real-time intracavity phase control. The additional tip-tilt correction with a stroke up to 6 μm simplifies the resonator alignment significantly. The mirror is optimized for a laser beam footprint of about 10 mm. We have modeled and optimized this mirror by finite element calculations and we will present design criteria and tradeoffs for this mirrors. The mirror is manufactured from a super-polished glass substrate with very low surface scattering and excellent dielectric coating. Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-6471 VL - 7931 SP - 793107 PB - SPIE ER - TY - CHAP A1 - Verpoort, Sven A1 - Wittrock, Ulrich T1 - Unimorph deformable mirror for telescopes and laser applications in space T2 - International Conference on Space Optics (ICSO), Rhodes Island, Greece N2 - Over the past 5 years we have developed a new type of unimorph deformable mirror. The main advantages of this mirror technology are · very low surface scattering due to the use of superpolished glass · excellent coatings, even suitable for high power lasers, can be applied · active diameter of the mirrors can be between 10 mm and 100 mm · large strokes can be achieved even for small mirror diameters · integrated monolithic tip/tilt functionality based on a spiral arm design We have modeled these mirrors by analytical models as well as by the finite element method. This allows us to quickly design new mirrors tailored to specific applications. One example is a mirror for laser applications that has a diameter of 10 mm and can achieve a stroke in defocus mode of 5 μm. The stroke for these mirrors scales as the square of the mirror diameter, meaning that we can achieve, for example, a stroke of 125 μm for a mirror of 50 mm diameter. We will present design criteria and tradeoffs for these mirrors. We characterize our mirrors by the maximum stroke they can deliver for various Zernike modes, under the boundary condition that the Zernike mode has to be created with a certain fidelity, usually defined by the Maréchal criterion. Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-6484 UR - www.icsoproceedings.org PB - SPIE ER - TY - JOUR A1 - Verpoort, Sven A1 - Wittrock, Ulrich T1 - Actuator patterns for unimorph and bimorph deformable mirrors JF - Appl. Opt. N2 - The actuator pattern of an adaptive mirror determines the amplitudes and the fidelities of the mirror deformations that can be achieved. In this study, we analyze and compare different electrode patterns of piezoelectric unimorph deformable mirrors using a numerical finite element model. The analysis allows us to determine the optimum actuator pattern, and it is also applicable to bimorph mirrors. The model is verified by comparing its predictions with experimental results of our prototype of a novel unimorph deformable mirror. Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-6490 UR - http://www.opticsinfobase.org VL - 49 SP - G37 EP - G46 PB - OSA ER - TY - CHAP A1 - Verpoort, Sven A1 - Welp, Petra A1 - Wittrock, Ulrich T1 - Novel unimorph deformable mirror for solid state laser resonators T2 - MEMS Adaptive Optics III, Proc. SPIE N2 - We present a novel unimorph deformable mirror with a diameter of only 10 mm that will be used in adaptive resonators of high power solid state lasers. The relationship between applied voltage and deformation of a unimorph mirror depends on the piezoelectric material properties, layer thicknesses, boundary conditions, and the electrode pattern. An analytical equation for the deflection of the piezoelectric unimorph structure is derived, based on the electro-elastic and thin plate theory. The validity of the proposed analytical model has been proven by numerical finite-element modelling and experimental results. Our mirror design has been optimized to obtain the highest possible stroke and a high resonance frequency. Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-6504 VL - 72090N PB - SPIE ER - TY - CHAP A1 - Verpoort, Sven A1 - Rausch, Peter A1 - Wittrock, Ulrich T1 - Novel unimorph deformable mirror for space applications T2 - International Conference on Space Optics (ICSO), Proc. SPIE N2 - We have developed a new type of unimorph deformable mirror, designed to correct for low-order Zernike modes. The mirror has a clear optical aperture of 50 mm combined with large peak-to-valley Zernike amplitudes of up to 35 μm. Newly developed fabrication processes allow the use of prefabricated super-polished and coated glass substrates. The mirror's unique features suggest the use in several stronomical applications like the precompensation of atmospheric aberrations seen by laser beacons and the use in woofer-tweeter systems. Additionally, the design enables an efficient correction of the inevitable wavefront error imposed by the floppy structure of primary mirrors in future large space-based telescopes. We have modeled the mirror by using analytical as well as finite element models. We will present design, key features and manufacturing steps of the deformable mirror. Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-6516 UR - https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10564/1056414/Novel-unimorph-deformable-mirror-for-space-applications/10.1117/12.2309089.full VL - 10564 SP - 1056414-1 PB - SPIE ER - TY - JOUR A1 - Heuck, Hans-Martin A1 - Neumayer, Paul A1 - Kühl, Thomas A1 - Wittrock, Ulrich T1 - Chromatic aberration in petawatt-class lasers JF - Appl. Phys. B N2 - In order to avoid optical damage and non-linear effects, high-power, high-energy lasers of the petawatt class like PHELIX (petawatt high-energy laser for heavy-ion experiments) use large-aperture optics. Usually, chromatic aberration associated with these optical elements is neglected. By means of numerical simulations, we show how the chromatic aberration affects the focal intensity pattern. In particular, we make quantitative predictions of how chromatic aberration decreases the focused peak intensity. Furthermore, we prove the feasibility of a new interferometer that measures the temporal pulse front distortions which arise from expansion telescopes. We also propose a scheme that pre-compensates these distortions. Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-6523 VL - 84 SP - 421 EP - 428 PB - Springer ER - TY - JOUR A1 - Perchermeier, Julian A1 - Wittrock, Ulrich T1 - Precise measurements of the thermo-optical aberrations of an Yb:YAG thin-disk laser JF - Opt. Lett. N2 - We report on interferometric measurements of the thermo-optical aberrations of the laser medium of an Yb:YAG thin-disk laser in pumped and cw lasing conditions at several pump-power levels with a mean repeatability of 5 nm. These measurements build the basis for future intracavity compensation of the aberrations with our deformable mirror in order to improve the fundamental-mode efficiency. Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-6854 VL - 38 SP - 2422 EP - 2424 PB - OSA ER - TY - CHAP A1 - Rausch, Peter A1 - Verpoort, Sven A1 - Wittrock, Ulrich T1 - Novel unimorph adaptive mirrors for astronomy applications T2 - Proc. SPIE 8447, Adaptive Optics Systems III, 844764 N2 - We have developed a new type of unimorph deformable mirror for the correction of low-order Zernike modes. The mirror features a clear aperture of 50 mm combined with large peak-to-valley amplitudes of up to 35 μm. Newly developed fabrication processes allow the use of prefabricated, coated, super-polished glass substrates. The mirror's unique features suggest the use in several astronomical applications like the compensation of atmospheric aberrations seen by laser beacons, low light astronomy, and the use in woofer-tweeter systems. Additionally, the design enables an efficient correction of the inevitable wave-front error imposed by the floppy structure of primary mirrors in future large space telescopes. We have modeled the mirror by using analytical as well as finite element models. We will present design, key features and manufacturing steps of the deformable mirror. Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-6203 PB - SPIE ER - TY - CHAP A1 - Heuck, Hans-Martin A1 - Wittrock, Ulrich A1 - Fils, Jérome A1 - Borneis, Stefan A1 - Witte, Klaus A1 - Eisenbart, Udo A1 - Javorkova, Dasa A1 - Bagnoud, Vincent A1 - Götte, Stefan A1 - Tauschwitz, Andreas A1 - Onkels, Eckehard T1 - Adaptive optics at the PHELIX laser T2 - Adaptive Optics for Laser Systems and Other Applications, Proc. SPIE N2 - GSI Darmstadt currently builds a high-energy petawatt Nd:glass laser system, called PHELIX (Petawatt High-Energy Laser for Heavy-Ion Experiments). PHELIX will offer the world-wide unique combination of a high current, high-energy heavy-ion beam with an intense laser beam. Aberrations due to the beam transport and due to the amplification process limit the focusability and the intensity at the target. We have investigated the aberrations of the different amplification stages. The pre-amplifier stage consists of three rod-amplifiers which cause mainly defocus, but also a small part of coma and astigmatism. The main amplifier consists of five disk amplifiers with a clear aperture of 315 mm. These large disk-amplifiers cause pump-shot aberrations which occur instantly. After a shot, the disk amplifiers need a cooling time of several hours to relax to their initial state. This limits the repetition rate and causes long-term aberrations. We will present first measurements of the pump-shot and long-term aberrations caused by the pre- and the main amplifier in a single-pass configuration. In this context, we will present the adaptive optics system which is implemented in the PHELIX beam line and discuss its capability to compensate for the pump-shot and long-term aberrations. Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-6215 VL - 6584 SP - 658402 PB - SPIE ER - TY - CHAP A1 - Rausch, Peter A1 - Verpoort, Sven A1 - Wittrock, Ulrich T1 - Characterization of a miniaturized unimorph deformable mirror for high power cw-solid state lasers T2 - Proc. SPIE 8253, MEMS Adaptive Optics VI, 825309 N2 - We have developed a new type of unimorph deformable mirror for real-time intra-cavity phase control of high power cw-lasers. The approach is innovative in its combination of super-polished and pre-coated highly reflective substrates, the miniaturization of the unimorph principle, and the integration of a monolithic tip/tilt functionality. Despite the small optical aperture of only 9 mm diameter, the mirror is able to produce a stroke of several microns for low order Zernike modes, paired with a residual static root-mean-square aberration of less than 0.04 µm. In this paper, the characteristics of the mirror such as the influence functions, the dynamic behavior, and the power handling capability are reported. The mirror was subjected to a maximum of 490 W of laser-light at a wavelength of 1030 nm. Due to the high reflectivity of over 99.998 percent the mirror is able to withstand intensities up to 1.5 MW/cm2. Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-6226 PB - SPIE ER - TY - CHAP A1 - Rausch, Peter A1 - Verpoort, Sven A1 - Wittrock, Ulrich T1 - Performance verification and environmental testing of a unimorph deformable mirror for space applications. T2 - Proceedings of the 10th International Conference on Space Optics - ICSO, Tenerife, Spain N2 - Concepts for future large space telescopes require an active optics system to mitigate aberrations caused by thermal deformation and gravitational release. Such a system would allow on-site correction of wave-front errors and ease the requirements for thermal and gravitational stability of the optical train. In the course of the ESA project "Development of Adaptive Deformable Mirrors for Space Instruments" we have developed a unimorph deformable mirror designed to correct for low-order aberrations and dedicated to be used in space environment. We briefly report on design and manufacturing of the deformable mirror and present results from performance verifications and environmental testing. KW - space optics KW - adaptive optics KW - deformable mirror KW - unimorph Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-7716 UR - http://www.icsoproceedings.org PB - FH Münster ER - TY - JOUR A1 - Kazasidis, Orestis A1 - Wittrock, Ulrich T1 - Interferometric measurement of the temperature coefficient of the refractive index dn/dT and the coefficient of thermal expansion of Pr:YLF laser crystals JF - Opt. Expr. N2 - We report interferometric measurements of the temperature coefficient of the refractive index (dn=dT) and the coefficient of thermal expansion (a) of a praseodymium-doped yttrium lithium fluoride (Pr:YLF) crystal and of a fused silica reference sample. Our phase-resolved interferometric method yields a large number of data points and thus allows a precise measurement and a good error estimation. Furthermore, both dn=dT and a are obtained simultaneously from a single measurement which reduces errors that can occur in separate measurements. Over the temperature range from 20 °C to 80 °C, the value of dn=dT of Pr:YLF decreases from -5.2 x 10-6 /K to -6.2 x 10-6 /K for the ordinary refractive index and from -7.6 x 10-6 /K to -8.6 x 10-6 /K for the extraordinary refractive index. The coefficient of thermal expansion for the a-axis of Pr:YLF increases from 16.4 x 10-6 /K to 17.8 x 10-6 /K over the same temperature range. KW - refractive index change KW - thermal expansion coefficient KW - laser crystal KW - praseodymium KW - yttrium lithium fluoride Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-7720 VL - 22 SP - 30683 EP - 30696 PB - Optical Society of America ER - TY - JOUR A1 - Buske, Ivo A1 - Wittrock, Ulrich T1 - Diffraction analysis of aberrated laser resonators JF - Appl. Phys. B N2 - A numerical analysis of laser resonators with aberrations is presented. {T}he analysis shows that aberrations lead to large diffraction losses of laser resonators which are laid out to produce diffraction-limited beam quality. {S}tatic or dynamic compensation of the aberrations is possible and would yield much higher output power. Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-8252 VL - 83 SP - 229 EP - 233 ER - TY - JOUR A1 - Vorholt, Christian A1 - Wittrock, Ulrich T1 - Intra-cavity pumped Yb:YAG thin-disk laser with 1.74% quantum defect JF - Opt. Lett. N2 - We present, to the best of our knowledge, the first intracavity pumped Yb:YAG thin-disk laser. It operates at 1050.7 nm with a quantum defect of just 1.74% due to pumping at 1032.4 nm. Low absorption of the pump light at the pump wavelength of 1032.4 nm is compensated for by placing the disk inside the resonator of another Yb:YAG thin-disk laser which is diode-pumped at 940 nm. The intra-cavity pumped laser has an output power of 10.3 W and a slope efficiency of 8.3% Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-8284 VL - 40 SP - 4819 EP - 4822 ER - TY - CHAP A1 - Vorholt, Christian A1 - Wittrock, Ulrich T1 - Wavelength control by angle-tuning of the laser radiation in an intra-cavity pumped Yb:YAG thin-disk laser T2 - Advanced Solid State Lasers (ASSL), paper AM5A.39 N2 - In an intra-cavity pumped thin-disk laser the pump radiation forms a standing wave pattern inside the intra-cavity pumped disk.We demonstrate experimentally that the grating period of the standing wave pattern of the pump radiation can control the laser wavelength. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-8298 UR - https://www.osapublishing.org/abstract.cfm?uri=ASSL-2015-AM5A.39 ER - TY - JOUR A1 - Rausch, Peter A1 - Verpoort, Sven A1 - Wittrock, Ulrich T1 - Unimorph deformable mirror for space telescopes: design and manufacturing JF - Opt. Expr. N2 - Large space telescopes made of deployable and lightweight structures suffer from aberrations caused by thermal deformations, gravitational release, and alignment errors which occur during the deployment procedure. An active optics system would allow on-site correction of wave-front errors, and ease the requirements on thermal and mechanical stability of the optical train. In the course of a project funded by the European Space Agency we have developed and manufactured a unimorph deformable mirror based on piezoelectric actuation. The mirror is able to work in space environment and is designed to correct for large aberrations of low order with high surface fidelity. This paper discusses design, manufacturing and performance results of the deformable mirror. KW - Active or adaptive optics KW - Telescopes KW - Space optics KW - Space instrumentation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-8227 VL - 23 SP - 19469 EP - 19477 ER - TY - JOUR A1 - Wittrock, Ulrich A1 - Vorholt, Christian T1 - Spatial hole burning in Yb:YAG thin-disk lasers JF - Appl. Phys. B N2 - The spatially varying intensity in a standing wave resonator leads to spatial hole burning in the gain medium of a laser. The spatial hole burning changes the gain of different longitudinal modes and can thus determine the optical spectrum of the laser. We simulate this longitudinal mode competition in standing wave resonators of thin-disk lasers. The resulting optical spectra of the laser are compared to measured optical spectra. We examine two types of resonators: I-resonators and V-resonators with different angles of incidence. In V-resonators, the non-normal incidence of the laser beam on the disk lifts the degeneracy of the polarization. Experiments show that the slight gain advantage for the p-polarization does not lead to polarized emission. For both types of resonators, the measured spectra are in good agreement with the simulated ones. The simulations allow to study the influence of spectral intra-cavity losses on the optical spectrum of a thin-disk laser. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-8234 VL - 120 SP - 711 EP - 721 ER - TY - JOUR A1 - Rausch, Peter A1 - Verpoort, Sven A1 - Wittrock, Ulrich T1 - Unimorph deformable mirror for space telescopes: environmental testing JF - Opt. Expr. N2 - We have developed and manufactured a unimorph deformable mirror for space telescopes based on piezoelectric actuation. The mirror features 44 actuators, has an aperture of 50 mm, and is designed to reproduce low-order Zernike modes with a stroke of several tens of µm. We assessed the space compliance by operating the mirror in thermal vacuum, and exposing it to random and sinusoidal vibrations, as well as to ionizing irradiation. Additionally, the operational life time and the laser power handling capability were tested. The mirror was successfully operated in thermal vacuum at 100 K. We report on the conducted tests and the methods used to evaluate the mirror´s performance, and discuss the compliance with the demanded requirements KW - active or adaptive optics KW - telescopes thermal effects vibration analysis KW - radiation KW - space optics KW - space instrumentation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-8530 VL - 24 SP - 1528 EP - 1542 ER - TY - CHAP A1 - Rausch, Peter A1 - Verpoort, Sven A1 - Wittrock, Ulrich T1 - Unimorph piezoelectric deformable mirrors for space telescopes T2 - Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, Proc. SPIE N2 - We have developed, manufactured and tested a unimorph deformable mirror for space applications based on piezoelectric actuation. The mirror was designed for the correction of low-order Zernike modes with a stroke of several tens of micrometers over a clear aperture of 50 mm. It was successfully tested in thermal vacuum, underwent lifetime tests, and was exposed to random vibrations, sinusoidal vibrations, and to ionizing radiation. We report on design considerations, manufacturing of the mirror, and present the test results. Furthermore, we discuss critical design parameters, and how our mirror could be adapted to serve recently proposed space telescopes such as HDST and TALC. Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-9230 VL - 9904 SP - 990468 ER - TY - CHAP A1 - Sauvage, Marc A1 - Amiaux, Jérome A1 - Austin, James A1 - Bello, Mara A1 - Bianucci, Giovanni A1 - Chesné, Simon A1 - Citterio, Oberto A1 - Collette, Christophe A1 - Correia, Sébastien A1 - Durand, Gilles A. A1 - Molinari, Sergio A1 - Pareschi, Giovanni A1 - Penfornis, Yann A1 - Sironi, Giorgia A1 - Valsecchi, Guiseppe A1 - Verpoort, Sven A1 - Wittrock, Ulrich T1 - A development roadmap for critical technologies needed for TALC: a deployable 20m annular space telescope T2 - Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, Proc. SPIE N2 - Astronomy is driven by the quest for higher sensitivity and improved angular resolution in order to detect fainter or smaller objects. The far-infrared to submillimeter domain is a unique probe of the cold and obscured Universe, harboring for instance the precious signatures of key elements such as water. Space observations are mandatory given the blocking effect of our atmosphere. However the methods we have relied on so far to develop increasingly larger telescopes are now reaching a hard limit, with the JWST illustrating this in more than one way (e.g. it will be launched by one of the most powerful rocket, it requires the largest existing facility on Earth to be qualified). With the Thinned Aperture Light Collector (TALC) project, a concept of a deployable 20 m annular telescope, we propose to break out of this deadlock by developing novel technologies for space telescopes, which are disruptive in three aspects: • An innovative deployable mirror whose topology, based on stacking rather than folding, leads to an optimum ratio of collecting area over volume, and creates a telescope with an eight times larger collecting area and three times higher angular resolution compared to JWST from the same pre-deployed volume; • An ultra-light weight segmented primary mirror, based on electrodeposited Nickel, Composite and Honeycomb stacks, built with a replica process to control costs and mitigate the industrial risks; • An active optics control layer based on piezo-electric layers incorporated into the mirror rear shell allowing control of the shape by internal stress rather than by reaction on a structure. We present in this paper the roadmap we have built to bring these three disruptive technologies to technology readiness level 3. We will achieve this goal through design and realization of representative elements: segments of mirrors for optical quality verification, active optics implemented on representative mirror stacks to characterize the shape correction capabilities, and mechanical models for validation of the deployment concept. Accompanying these developments, a strong system activity will ensure that the ultimate goal of having an integrated system can be met, especially in terms of (a) scalability toward a larger structure, and (b) verification philosophy. Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-9248 VL - 9904 SP - 99041L ER - TY - CHAP A1 - Durand, G. A1 - Amiaux, J. A1 - Sauvage, M. A1 - Austin, J. A1 - Chesne, S. A1 - Collette, C. A1 - Helgouashl, S. A1 - Pareschi, J. A1 - Penfornis, Y. A1 - Valsecchi, G. A1 - Wittrock, U. T1 - TALC a far-infrared 20m space telescope and the ELICSIR consortium to reach TRL 3 T2 - Proceedings of the 37th ESA Antenna Workshop, Noordwijk, Netherlands N2 - Further space exploration in the far-infrared (FIR) requires larger apertures in order to improve the spatial resolution of captured images. To this purpose, the Thinned Aperture Light Collector (TALC) concept of a deployable annular telescope has been recently developed at CEA, which offers novel perspectives for FIR space missions. The consortium ELICSIR consortium of European institutes and companies has been created to improve the technological readiness level (TRL) of its key systems and components. Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-9253 UR - http://esaconferencebureau.com/2016-events/16c18/introduction ER - TY - JOUR A1 - Vorholt, Christian A1 - Wittrock, Ulrich T1 - Single-frequency oscillation of thin-disk lasers due to phase-matched pumping JF - Opt. Expr. N2 - We present a novel pump concept that should lead to single-frequency operation of thin-disk lasers without the need for etalons or other spectral filters. The single-frequency operation is due to matching the standing wave pattern of partially coherent pump light to the standing wave pattern of the laser light inside the disk. The output power and the optical efficiency of our novel pump concept are compared with conventional pumping. The feasibility of our pump concept was shown in previous experiments. KW - diode-pumped laser KW - solid-state laser KW - ytterbium laser Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-10258 VL - 25 SP - 21388 EP - 21399 ER -