TY - CHAP A1 - Mesenhöller, Eva A1 - Jacobs, Steffen A1 - Vennemann, Peter A1 - Hussong, Jeanette T1 - Unsteady Ventilation in a Scaled Room Model with Swirl Ceiling Diffusers T2 - CLIMA 2022 conference N2 - Mechanical ventilation of buildings is generally based on steadily operating systems. This field is well known and established. But, an approach based on time-varied supply flow rates might improve indoor air quality, comfort, and energy consumption. Typical time-scales of the variation are in the order of seconds or minutes. Until now, the effects of unsteady ventilation scenarios are not fully described and so, reliable dimensioning rules are missing. Hence, with a better understanding of the flow in unsteady ventilation, systems can be calculated and optimised. To understand the effective mechanisms and derive functional relations between the flow field and variation parameters, full-field optical flow measurements are executed with a particle image velocimetry (PIV) system. Experiments are conducted under isothermal conditions in water in a small-scale room model (1.00 m × 0.67 m × 0.46 m) with two swirl ceiling diffusers, Reynolds-scaling assures similarity. In a series of experiments, the effects of different unsteady ventilation strategies on the flow fields are investigated and compared to steady conditions with the same mean exchange rate. Mean exchange rates, signal types, periods, and amplitudes are varied. Time-averaged normalised velocity fields already indicate notable differences between steady and unsteady cases especially for lower exchange rates: the distribution is more homogeneous in unsteady scenarios compared to steady conditions, and low-velocity areas are reduced while the mean velocity of the room increases. So, unsteady ventilation might be beneficial in terms of improved ventilation and energy savings in partial-load operation. Fast Fourier Transformation (FFT) analyses of the mean velocity for each field over the whole series detect the main frequency of the volume flow variation. By dividing the velocity field into smaller areas, this main frequency is still detected especially in the upper part of the room, but side frequencies play a role in the room as well. KW - unsteady ventilation KW - PIV KW - room airflow KW - mixing ventilation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-151811 UR - https://proceedings.open.tudelft.nl/clima2022/article/view/200 PB - TU Delft OPEN CY - Delft ER - TY - GEN A1 - Mesenhöller, Eva A1 - Vennemann, Peter T1 - Raumströmungsmessung mit Particle Image Velocimetry - Instationärer Betrieb von RLT-Anlagen N2 - Überblick über Methodik, Hintergründe und Ziele des Projekts zu instationärer Raumlüftung sowie bisherige Untersuchungsschwerpunkte auf diesem Gebiet. KW - instationäre Lüftung KW - PIV KW - Lüftungstechnik Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-178587 ER - TY - GEN A1 - Mesenhöller, Eva A1 - Vennemann, Peter A1 - Hussong, Jeanette T1 - Raumströmungsmessung mit Particle Image Velocimetry (PIV) - Instationärer Betrieb von RLT-Anlagen N2 - Posterzusammenfassung der Hintergründe, Ziele, Messprinzipien, Messungen und des Versuchsstandes im Projekt zur Untersuchung instationärer Raumlüftung. KW - PIV KW - instationäre Lüftung KW - Lüftungstechnik Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-178597 ER - TY - GEN A1 - Mesenhöller, Eva A1 - Jacobs, Steffen A1 - Vennemann, Peter T1 - Raumströmung bei instationärem Betrieb von RLT-Anlagen - Experimentelle und numerische Untersuchungen mit PIV und CFD N2 - Posterzusammenfassung der Hintergründe, Ziele, Methoden (messtechnisch und numerisch) und Ergebnisse im Projekt zu instationärer Lüftung. KW - instationäre Lüftung KW - PIV KW - CFD KW - Lüftungstechnik KW - OpenFOAM Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-178605 ER -