TY - CHAP A1 - Wiethölter, Jost A1 - Salingré, Jan A1 - Feldmann, Carsten A1 - Schwanitz, Johannes A1 - Niessing, Jörg ED - Köpke, Julius ED - Plattfaut, Ralf ED - Gdowska, Katarzyna ED - Munoz-Gama, Jorge ED - van der Werf, Jan Martijn ED - López-Pintado, Orlenys ED - Rehse, Jana-Rebecca ED - Gonzalez-Lopez, Fernanda ED - Smit, Koen T1 - Exploring Customer Journey Mining and RPA: Prediction of Customers’ Next Touchpoint T2 - Business Process Management: Blockchain, Robotic Process Automation and Educators Forum N2 - In-depth analysis of customer journeys to broaden the understanding of customer behaviors and expectations in order to improve the customer experience is considered highly relevant in modern business practices. Recent studies predominantly focus on retrospective analysis of customer data, whereas more forward-directed concepts, namely predictions, are rarely addressed. Additionally, the integration of robotic process automation (RPA) to potentially increase the efficiency of customer journey analysis is not discussed in the current field of research. To fill this research gap, this paper introduces “customer journey mining”. Process mining techniques are applied to leverage digital customer data for accurate prediction of customer movements through individual journeys, creating valuable insights for improving the customer experience. Striving for improved efficiency, the potential interplay of RPA and customer journey mining is examined accordingly. The research methodology followed is based on a design science research process. An initially defined customer journey mining artifact is operationalized through an illustrative case study. This operationalization is achieved by analyzing a log file of an online travel agency functioning as an orientation for researchers and practitioners while also evaluating the initially defined framework. The data is used to train seven distinct prediction models to forecast the touchpoint a customer is most likely to visit next. Gradient-boosted trees yield the highest prediction accuracy with 43.1%. The findings further indicate technical suitability for RPA implementation, while financial viability is unlikely. KW - Customer Journey Mining KW - Customer Journey Mapping KW - Robotic Process Automation KW - Process Mining KW - Prediction Y1 - 2023 UR - https://link.springer.com/chapter/10.1007/978-3-031-43433-4_12#Abs1 SN - 978-3-031-43432-7 U6 - https://doi.org/https://doi.org/10.1007/978-3-031-43433-4 SN - 1865-1348 SP - 181 EP - 196 PB - Springer ER -