TY - JOUR A1 - Schwanitz, Johannes A1 - Michalik, Alexander T1 - Kausale Zeitreihenanalysen mit dem Elastizitätsdiagramm am Beispiel der Preisreaktionen von Kraftstoffen JF - Controller Magazin Y1 - 2017 SN - 1616-0495 VL - 42. Jahrgang IS - 1 SP - 85 EP - 88 ER - TY - CHAP A1 - Wiethölter, Jost A1 - Salingré, Jan A1 - Feldmann, Carsten A1 - Schwanitz, Johannes A1 - Niessing, Jörg ED - Köpke, Julius ED - Plattfaut, Ralf ED - Gdowska, Katarzyna ED - Munoz-Gama, Jorge ED - van der Werf, Jan Martijn ED - López-Pintado, Orlenys ED - Rehse, Jana-Rebecca ED - Gonzalez-Lopez, Fernanda ED - Smit, Koen T1 - Exploring Customer Journey Mining and RPA: Prediction of Customers’ Next Touchpoint T2 - Business Process Management: Blockchain, Robotic Process Automation and Educators Forum N2 - In-depth analysis of customer journeys to broaden the understanding of customer behaviors and expectations in order to improve the customer experience is considered highly relevant in modern business practices. Recent studies predominantly focus on retrospective analysis of customer data, whereas more forward-directed concepts, namely predictions, are rarely addressed. Additionally, the integration of robotic process automation (RPA) to potentially increase the efficiency of customer journey analysis is not discussed in the current field of research. To fill this research gap, this paper introduces “customer journey mining”. Process mining techniques are applied to leverage digital customer data for accurate prediction of customer movements through individual journeys, creating valuable insights for improving the customer experience. Striving for improved efficiency, the potential interplay of RPA and customer journey mining is examined accordingly. The research methodology followed is based on a design science research process. An initially defined customer journey mining artifact is operationalized through an illustrative case study. This operationalization is achieved by analyzing a log file of an online travel agency functioning as an orientation for researchers and practitioners while also evaluating the initially defined framework. The data is used to train seven distinct prediction models to forecast the touchpoint a customer is most likely to visit next. Gradient-boosted trees yield the highest prediction accuracy with 43.1%. The findings further indicate technical suitability for RPA implementation, while financial viability is unlikely. KW - Customer Journey Mining KW - Customer Journey Mapping KW - Robotic Process Automation KW - Process Mining KW - Prediction Y1 - 2023 UR - https://link.springer.com/chapter/10.1007/978-3-031-43433-4_12#Abs1 SN - 978-3-031-43432-7 U6 - http://dx.doi.org/https://doi.org/10.1007/978-3-031-43433-4 SN - 1865-1348 SP - 181 EP - 196 PB - Springer ER - TY - CHAP A1 - Ziegenbein, Ralf A1 - Schwanitz, Johannes A1 - Lengers, Jochen T1 - Tool-Based Management T2 - Ralf Ziegenbein, Handbuch Lean-Konzepte für den Mittelstand Y1 - 2014 SN - 978-3-938137-43-7 SP - 281 EP - 304 PB - Fachhochschule Münster CY - Münster ET - 1 ER - TY - CHAP A1 - Schwanitz, Johannes T1 - Analyse des Preisanpassungsverhaltens von Kraftstoffen mithilfe des Elastizitätsdiagramms T2 - Stefan Kirmße, Andreas Rinker, Olaf Scheer, Patrick Tegeder: Aktuelle Entwicklungslinien in der Finanzwirtschaft - Teil 1 Y1 - 2017 SN - 978-3-8314-0868-9 SP - 517 EP - 531 PB - Fritz Knapp CY - Frankfurt a.M. ET - 1 ER - TY - CHAP A1 - Schwanitz, Johannes T1 - Bedeutung und Einsatz von Managementtools im Workplace Support T2 - Michael Lister, Bernd Rolfes, Stefan Kirmße: Management in Kreditinstituten und Unternehmen – ein Querschnitt aktueller Entwicklungen Y1 - 2016 SN - 978-3-8314-0867-2 SP - 455 EP - 461 PB - Fritz Knapp CY - Frankfurt a.M. ET - 1. ER - TY - CHAP A1 - Wiethölter, Jost A1 - Salingré, Jan A1 - Feldmann, Carsten A1 - Schwanitz, Johannes A1 - Niessing, Joerg T1 - Exploring Customer Journey Mining and RPA: Prediction of Customers’ Next Touchpoint T2 - Business Process Management: Blockchain, Robotic Process Automation and Educators Forum. BPM 2023. Lecture Notes in Business Information Processing, vol 491. J. Köpke (ed.) Y1 - 2023 SN - 978-3-031-43432-7 U6 - http://dx.doi.org/10.1007/978-3-031-43433-4_12 SP - 181 EP - 196 PB - Springer CY - Cham ER -