TY - CHAP A1 - Ising, Fabian A1 - Poddebniak, Damian A1 - Kappert, Tobias A1 - Saatjohann, Christoph A1 - Schinzel, Sebastian T1 - Content-Type: multipart/oracle -- Tapping into Format Oracles in Email End-to-End Encryption T2 - 32nd USENIX Security Symposium N2 - S/MIME and OpenPGP use cryptographic constructions repeatedly shown to be vulnerable to format oracle attacks in protocols like TLS, SSH, or IKE. However, format oracle attacks in the End-to-End Encryption (E2EE) email setting are considered impractical as victims would need to open many attacker-modified emails and communicate the decryption result to the attacker. But is this really the case? In this paper, we survey how an attacker may remotely learn the decryption state in email E2EE. We analyze the interplay of MIME and IMAP and describe side-channels emerging from network patterns that leak the decryption status in Mail User Agents (MUAs). Concretely, we introduce specific MIME trees that produce decryption-dependent net work patterns when opened in a victim’s email client. We survey 19 OpenPGP- and S/MIME-enabled email clients and four cryptographic libraries and uncover a side-channel leaking the decryption status of S/MIME messages in one client. Further, we discuss why the exploitation in the other clients is impractical and show that it is due to missing feature support and implementation quirks. These unintended defenses create an unfortunate conflict between usability and security. We present more rigid countermeasures for MUA developers and the standards to prevent exploitation. Y1 - 2023 UR - https://www.usenix.org/conference/usenixsecurity23 PB - USENIX Association ER - TY - CHAP A1 - Kaspereit, Jonas A1 - Öndarö, Gurur A1 - Luvizotto Cesar, Gustavo A1 - Ebbers, Simon A1 - Ising, Fabian A1 - Saatjohann, Christoph A1 - Jonker, Mattijs A1 - Holz, Ralph A1 - Schinzel, Sebastian T1 - LanDscAPe: Exploring LDAP Weaknesses and Data Leaks at Internet Scale T2 - 33rd USENIX Security Symposium (USENIX Security 24) N2 - The Lightweight Directory Access Protocol (LDAP) is the standard technology to query information stored in directories. These directories can contain sensitive personal data such as usernames, email addresses, and passwords. LDAP is also used as a central, organization-wide storage of configuration data for other services. Hence, it is important to the security posture of many organizations, not least because it is also at the core of Microsoft’s Active Directory, and other identity management and authentication services. We report on a large-scale security analysis of deployed LDAP servers on the Internet. We developed LanDscAPe, a scanning tool that analyzes security-relevant misconfigurations of LDAP servers and the security of their TLS configurations. Our Internet-wide analysis revealed more than 10k servers that appear susceptible to a range of threats, including insecure configurations, deprecated software with known vulnerabilities, and insecure TLS setups. 4.9k LDAP servers host personal data, and 1.8k even leak passwords. We document, classify, and discuss these and briefly describe our notification campaign to address these concerning issues. Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-181577 UR - https://www.usenix.org/system/files/usenixsecurity24-kaspereit.pdf SN - 978-1-939133-44-1 ER - TY - CHAP A1 - Saatjohann, Christoph A1 - Ising, Fabian A1 - Schinzel, Sebastian T1 - KIM: Kaos In der Medizin T2 - Sicherheit, Schutz und Zuverlässigkeit: Konferenzband der 12. Jahrestagung des Fachbereichs Sicherheit der Gesellschaft für Informatik e.V. (GI) N2 - Die sichere E-Mail-Infrastruktur für Ärzt*innen, Apotheker*innen, Krankenversicherungen und Kliniken in Deutschland, KIM - Kommunikation im Gesundheitswesen - ist mit über 200 Millionen E-Mails in den vergangenen zwei Jahren eine der am meisten genutzten Anwendungen in der Telematikinfrastruktur. Mit dem Ausgeben von S/MIME-Zertifikaten für alle medizinische Beteiligten in Deutschland verspricht KIM sichere Ende-zu-Ende-Verschlüsselung von E-Mails zwischen Heilberufler*innen in ganz Deutschland. In diesem Paper analysieren wir die KIM-Spezifikation sowie eine beispielhafte KIM-Installation in einer deutschen Zahnarztpraxis. Wir zeigen, dass KIM kryptografisch ein sehr hohes Sicherheitslevel erfüllt, doch in der Verarbeitung der E-Mails bei den Clients eine schwerwiegende Sicherheitslücke besteht. Weiterhin zeigen wir zwei Sicherheitslücken in dem KIM-Verarbeitungsmodul eines großen deutschen Unternehmens für medizinische Software. Diese Defizite zeigen außerdem Mängel in dem verpflichtenden Zulassungsprozess der KIM-Komponenten auf. Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-178072 ER - TY - CHAP A1 - Müller, Jens A1 - Ising, Fabian A1 - Mla­de­nov, Vla­dis­lav A1 - Mainka, Chris­ti­an A1 - Schinzel, Sebastian A1 - Schwenk, Jörg T1 - Of­fice Do­cu­ment Se­cu­ri­ty and Pri­va­cy T2 - 14th USE­NIX Work­shop on Of­fen­si­ve Tech­no­lo­gies (WOOT 2020) N2 - OOXML and ODF are the de facto standard data formats for word processing, spreadsheets, and presentations. Both are XML-based, feature-rich container formats dating back to the early 2000s. In this work, we present a systematic analysis of the capabilities of malicious office documents. Instead of focusing on implementation bugs, we abuse legitimate features of the OOXML and ODF specifications. We categorize our attacks into five classes: (1) Denial-of-Service attacks affecting the host on which the document is processed. (2) Invasion of privacy attacks that track the usage of the document. (3) Information disclosure attacks exfiltrating personal data out of the victim's computer. (4) Data manipulation on the victim's system. (5) Code execution on the victim's machine. We evaluated the reference implementations – Microsoft Office and LibreOffice – and found both of them to be vulnerable to each tested class of attacks. Finally, we propose mitigation strategies to counter these attacks. KW - Cyber Security KW - Open Document Format KW - docx Y1 - 2020 UR - https://www.usenix.org/conference/woot20/presentation/muller PB - USENIX ER - TY - JOUR A1 - Gierling, Markus A1 - Saatjohann, Christoph A1 - Dresen, Christian A1 - Köbe, Julia A1 - Rath, Benjamin A1 - Eckardt, Lars A1 - Schinzel, Sebastian T1 - Reviewing Cyber Security Research of Implantable Medical Rhythm Devices regarding Patients’ Risk JF - 86. Jahrestagung und Herztage 2020 der DGK N2 - Introduction: The recent publication of several critical cyber security issues in cardiac implantable devices and the resulting press coverage upsets affected users and their trust in medical device producers. Reviewing the published security vulnerabilities regarding networked medical devices, it raises the question, if the reporting media, the responsible security researchers, and the producers handle security vulnerabilities appropriately. Are the media reports of security vulnerabilities in medical devices meaningful in a way that patients can assess their respective risk for an attack via the security vulnerability? The collaboration between IT-security experts and clinicians aims at reviewing published security vulnerabilities of rhythm devices, and evaluate overall patients risks. Methodology: We performed a literature review on security vulnerabilities in implantable medical devices with a focus on cardiac devices. We analyzed (Fig. 1) the (1) requirements for an attacker and the (2) technical feasibility and clustered them in three different scenarios: The first scenario requires that the attacker physically approaches a victim with a programming device. The second scenario requires proximity to the victim, e.g., within a few meters. The third and strongest attacker scenario is a remote attack that doesn’t require any physical proximity to the victim. We then compare the attacker scenarios and (3) the overall patients’ risks with the press coverage (overhyped, adequate, underhyped). (4) The resulting overall patients’ risk was rated by clinicians (security vulnerability of patients’ data, dangerous programming possible). Results: Out of the three analyzed incidents, we found one to be underhyped, one to be overhyped, and one was appropriate compared to the medial coverage (Fig. 2). The most occurring technical issues were based on the absence of basic security primitives. The patient damage for all of the analyzed incidents was fatal in the worst-case scenario. Further, the patient damage and the overall patient risks are disjunct due to the missing capability of performing large scale attacks. Conclusion: The resulting overall patients’ risks may not adequately reflect the patient damage in the considered cases. Often, the overall patient risk is not as severe as the necessary attacker capabilities are high and it would require strongly motivated attackers to perform the attack. Therefore, most of the reviewed cases are considered with a smaller overall patient risk than implied by press reports. Reviewing the ongoing IT-Security trends regarding implantable medical devices shows an increasing focus on researching in the field of medical device security. Therefore, further findings in the near future are to be expected. To deal with this fact in a responsible way, proper proactive knowledge management is mandatory. We recommend medical staff to critically reflect reports in mass media due to possible sensationalism. Therefore, we propose a joint approach in combining the technical expertise of cyber security experts with clinical aspects of medical experts, to ensure a solid understanding of a newly published vulnerability. The combination of both communities promises to result in better predictions for patients’ risks from security vulnerabilities in implanted cardiac devices. KW - Cyber Security KW - Cardiac Implantable Devices Y1 - 2020 U6 - http://dx.doi.org/10.1007/s00392-020-01621-0 VL - Band 109, Supplement 1, April 2020 SP - 1 EP - 2 ER - TY - JOUR A1 - Willing, Markus A1 - Dresen, Christian A1 - Gerlitz, Eva A1 - Haering, Maximilian A1 - Smith, Matthew A1 - Binnewies, Carmen A1 - Guess, Tim A1 - Haverkamp, Uwe A1 - Schinzel, Sebastian T1 - Behavioral responses to a cyber attack in a hospital environment JF - Nature -- Scientific Reports N2 - Technical and organizational steps are necessary to mitigate cyber threats and reduce risks. Human behavior is the last line of defense for many hospitals and is considered as equally important as technical security. Medical staff must be properly trained to perform such procedures. This paper presents the first qualitative, interdisciplinary research on how members of an intermediate care unit react to a cyberattack against their patient monitoring equipment. We conducted a simulation in a hospital training environment with 20 intensive care nurses. By the end of the experiment, 12 of the 20 participants realized the monitors’ incorrect behavior. We present a qualitative behavior analysis of high performing participants (HPP) and low performing participants (LPP). The HPP showed fewer signs of stress, were easier on their colleagues, and used analog systems more often than the LPP. With 40% of our participants not recognizing the attack, we see room for improvements through the use of proper tools and provision of adequate training to prepare staff for potential attacks in the future. Y1 - 2021 U6 - http://dx.doi.org/10.1038/s41598-021-98576-7 ER - TY - JOUR A1 - Brinkmann, Marcus A1 - Dresen, Christian A1 - Merget, Robert A1 - Poddebniak, Damian A1 - Müller, Jens A1 - Somorovsky, Juraj A1 - Schwenk, Jörg A1 - Schinzel, Sebastian T1 - ALPACA: Application Layer Protocol Confusion - Analyzing and Mitigating Cracks in TLS Authentication JF - 30th USENIX Security Symposium Y1 - 2021 UR - https://www.usenix.org/conference/usenixsecurity21/presentation/brinkmann ER - TY - JOUR A1 - Schinzel, Sebastian T1 - Seitenkanäle mit Untiefen: Manche Webanwendungen spielen Angreifern unfreiwillig Informationen zu JF - ADMIN Magazin Y1 - 2012 ER - TY - JOUR A1 - Schinzel, Sebastian A1 - Weidemann, Frederik A1 - Wiegenstein, Andreas A1 - Schumacher, Markus T1 - SAP-Security - Sicherheitslöcher in eigenem ABAP-Code stopfen JF - iX - Magazin für professionelle Informationstechnik Y1 - 2011 IS - 07 ER - TY - JOUR A1 - Schinzel, Sebastian A1 - Thünemann, Maximilian A1 - Löhr, Dennis T1 - Internetzensus - Das Internet scannen und auf Schwachstellen untersuchen JF - iX - Security kompakt Y1 - 2014 SN - 4018837005 IS - 4 ER -