TY - JOUR A1 - Gitzen, Harald A1 - Schmidt, Jennifer A1 - Martin, Alexandra T1 - Subjective and physiological reactivity to emotional stressors in somatic symptom disorder JF - International Journal of Psychophysiology N2 - Objective: We examined whether autonomic flexibility to experimentally presented stressors is reduced in somatic symptom disorder (SSD) as this would point to reduced vagal control as a proposed indicator of emotion regulation deficits. Method: In this experimental study, the influence of health-related and social stressors on subjective and physiological reactivity was investigated in 29 subjects with SSD without any medical condition SSD(mc−), 33 subjects with SSD with medical condition SSD(mc+) and 32 healthy controls at the age from 18 to 70 years. Self-report and physiological variables were measured before and after/during stressor exposure, using state ratings of symptom intensity, disability, tension and mood, heart rate (HR), and heart rate variability (HRV). Results: Overall, the tension increased and the mood worsened after exposure to stressors compared to pre-exposure. Compared to HC, the two SSD groups showed higher symptom intensity, disability, tension and worse mood. The SSD(mc−) group revealed higher HR than HC (p = .012, d = −0.77). Compared to pre-exposure, symptom impairment increased after social stressor exposure in SSD(mc−) (p < .001, d = 1.36). HRV-root mean square of successive differences (RMSSD) only decreased in HC during exposure (p = .003, d = −1.09), not in the SSD groups. The two SSD groups did not differ in their reactivity to stressors. Conclusion: HRV in SSD, seems to respond less flexibly to stressors, potentially reflecting overall physiological disturbance through reduced parasympathetic influence on HR. Stress reactivity in SSD(mc−) and SSD(mc+) do not seem to differ. Y1 - 2024 U6 - http://dx.doi.org/10.1016/j.ijpsycho.2023.112273 VL - 2024 IS - 195 SP - 112273 EP - 112273 ER - TY - JOUR A1 - Tallau, Christian A1 - Hartwein, Georg A1 - Hirschfeld, Justus T1 - Auswirkungen des Zinsanstiegs auf das Verhalten von Immobilieninvestoren und Projektentwicklern. JF - Immobilien & Finanzierung Y1 - 2024 SN - 1618-7741 VL - 2024 IS - 1 SP - 28 EP - 31 ER - TY - JOUR A1 - Kiel, Frederik A1 - Trinschek, Sarah A1 - Kuchmizhak, Aleksandr A1 - Gurevich, Evgeny T1 - Colouration of diamond surfaces by laser-induced periodic surface structuring JF - Optics & Laser Technology Y1 - 2024 U6 - http://dx.doi.org/10.1016/j.optlastec.2023.109882 IS - 168 SP - 109882 ER - TY - JOUR A1 - Riecken, Andrea A1 - Lohmann, Anne A1 - Terkowski, Lara-Lee T1 - Bedarfsermittlungsinstrumente in der Eingliederungshitfe - Wirkungskontrolle inklusive? JF - NDV - Nachrichtendienst des Deutschen Vereins für öffentliche und private Fürsorge e.V. Y1 - 2024 VL - 104 IS - 1 SP - 10 EP - 18 ER - TY - JOUR A1 - Bredehöft, Claas T1 - Environmental impacts of tidal power plants - Current status of the environmental impacts of conventional tidal power plants JF - Educational Journal of Renewable Energy Short Reviews N2 - Meanwhile, renewable energy sources such as hydropower, solar and wind energy and biomass are increasingly being used to reduce dependence on fossil fuels and thus counteract the ongoing global warming. However, these are also associated with environmental impacts. To that effect, this article takes a closer look at tidal power plants, which are classified as hydroelectric power plants, by conducting a systematic literature review. The results show that the strength and form of the environmental impact depends on the specific location and type of plant. Tidal power plants have an impact on the habitats of marine animals and thus influence their behavior and population. In addition, the operation of tidal power plants changes the sediment distribution, causes a reduction in current velocities and a change in current direction in the surrounding area and leads to a change in wave height. The construction of the power plants is associated with noise, which primarily causes changes in the behavior of some species. Furthermore, the electromagnetic fields generated can also affect marine life. In order to assess the environmental impact of tidal power plants in comparison to other renewable energies, further studies should focus on the environmental impact of the different technologies in relation to the energy yield. T3 - EGU Master Journal of Renewable Energy Short Reviews - 2024_01 KW - tidal power plants KW - environmental impacts KW - tidal barrage KW - tidal stream KW - hydropwer plants Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-176379 SP - 3 EP - 8 ER - TY - JOUR A1 - Bresgott, Jannes T1 - How can artificial intelligence be used to find areas for wind turbines and solve other challenges associated with wind energy? JF - Educational Journal of Renewable Energy Short Reviews N2 - This article discusses the use of artificial intelligence in the wind energy industry, particularly in addressing challenges and optimizing the expansion of renewable energies in Germany. It highlights the application of artificial intelligence in wind forecasts and yield predictions, bird detection, wind turbine and farm design, condition monitoring, and predictive maintenance. Additionally, it introduces the “WindGISKI” research project, which aims to use artificial intelligence to identify new areas for wind turbines. The project utilizes a neural network to analyze and predict flight routes, potentially reducing bird mortality. The document also emphasizes the potential broader applications of “WindGISKI” in other fields of activity, such as land use planning and city development. Overall, it underscores the significant role of artificial intelligence in addressing challenges in wind energy and outlines the potential for artificial intelligence to drive the expansion of renewable energies while addressing key obstacles. T3 - EGU Master Journal of Renewable Energy Short Reviews - 2024_02 KW - wind turbine KW - WindGISKI KW - artificial intelligence Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-176393 SP - 9 EP - 13 ER - TY - JOUR A1 - Brinkschmidt, Florian T1 - Technologies for structural health monitoring of wind turbine blades - An overview of different techniques JF - Educational Journal of Renewable Energy Short Reviews N2 - Wind turbine structures take a major role in the modern conversion to renewable energy sources and contribute to the creation of a greener world. In recent years, the development and installation of wind turbines have seen rapid growth. However, with the increasing capacity and size of wind farms worldwide, there are growing concerns about the safety and reliability of these installations. Therefore, structural health monitoring and the detection of damage to wind turbines have gained considerable importance in research. Wind turbine blades are particularly susceptible to various types of damage due to environmental influences. This article provides an overview of signal responses, sensors used and non-destructive testing techniques in the field of damage detection on wind turbine blades. The intention of the article is to give an insight into the possibilities of structural health monitoring and at the same time to point out unsolved problems in this field. T3 - EGU Master Journal of Renewable Energy Short Reviews - 2024_03 KW - structural health monitoring KW - wind turbine blades KW - damage detection KW - measurement KW - non-destructive testing Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-176401 SP - 14 EP - 21 ER - TY - JOUR A1 - Finke, Tessa T1 - Drawing up a catalog of criteria for special solutions for fish passages based on the DWA-M 509 leaflet JF - Educational Journal of Renewable Energy Short Reviews N2 - The preservation of water bodies continuity is fundamental for aquatic communities, particularly for fish populations. Various structures impede watercourse continuity, impacting fish migration and habitat distribution. Conventional fish passages often fall short in diverse scenarios, prompting the development of specialized solutions. This article proposes a criteria catalog for these special fish passage solutions based on DWA leaflet DWA-A 509. It discusses the need for these solutions, presents a selection of specialized options, and outlines criteria from DWA-M 509, construction guidelines, and economic perspectives. It scrutinizes criteria ranging from target fish species to cost considerations. Three examples, including the Runserau fish lift, the bristle ramp fish lock, and the Fishcon sluice, illustrate these specialized solutions, their functionalities, advantages, and drawbacks. Additionally, the article compiles criteria from industry standards and guidelines into a comprehensive evaluation catalog. The criteria, when applied, assist in the selection of suitable fish passage solutions based on specific site conditions and fish species requirements. This holistic approach aims to optimize fishway selection, fostering the ecological sustainability of watercourses. However, this catalog remains dynamic and open to expansion with evolving research and practical application, urging further exploration and validation of these criteria through diverse case studies and technological advancements in the field. T3 - EGU Master Journal of Renewable Energy Short Reviews - 2024_04 KW - fish passages KW - criteria catalog KW - DWA-M 509 KW - special solution KW - forms of evaluation Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-176410 SP - 22 EP - 27 ER - TY - JOUR A1 - Klemm, Christian A1 - Vennemann, Peter A1 - Wiese, Frauke T1 - Potential-risk and no-regret options for urban energy system design — A sensitivity analysis JF - Sustainable Cities and Society N2 - This study identifies supply options for sustainable urban energy systems, which are robust to external system changes. A multi-criteria optimization model is used to minimize greenhouse gas (GHG) emissions and financial costs of a reference system. Sensitivity analyses examine the impact of changing boundary conditions related to GHG emissions, energy prices, energy demands, and population density. Options that align with both financial and emission reduction and are robust to system changes are called “no-regret” options. Options sensitive to system changes are labeled as “potential-risk” options. There is a conflict between minimizing GHG emissions and financial costs. In the reference case, the emission-optimized scenario enables a reduction of GHG emissions (-93%), but involves higher costs (+160%) compared to the financially-optimized scenario. No-regret options include photovoltaic systems, decentralized heat pumps, thermal storages, electricity exchange between sub-systems and with higher-level systems, and reducing energy demands through building insulation, behavioral changes, or the decrease of living space per inhabitant. Potential-risk options include solar thermal systems, natural gas technologies, high-capacity battery storages, and hydrogen for building energy supply. When energy prices rise, financially-optimized systems approach the least-emission system design. The maximum profitability of natural gas technologies was already reached before the 2022 European energy crisis. KW - sustainable energy KW - urban energy system KW - no-regret KW - sensitivity analysis KW - energy system modeling Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-175686 SN - 2210-6707 VL - 102 SP - 105189 ER - TY - JOUR A1 - Pogorzelski, Jens A1 - Horsthemke, Ludwig A1 - Homrighausen, Jonas A1 - Stiegekötter, Dennis A1 - Gregor, Markus A1 - Glösekötter, Peter T1 - Compact and Fully Integrated LED Quantum Sensor Based on NV Centers in Diamond JF - Compact and Fully Integrated LED Quantum Sensor Based on NV Centers in Diamond N2 - Quantum magnetometry based on optically detected magnetic resonance (ODMR) of nitrogen vacancy centers in diamond nano or microcrystals is a promising technology for sensitive, integrated magnetic-field sensors. Currently, this technology is still cost-intensive and mainly found in research. Here we propose one of the smallest fully integrated quantum sensors to date based on nitrogen vacancy (NV) centers in diamond microcrystals. It is an extremely cost-effective device that integrates a pump light source, photodiode, microwave antenna, filtering and fluorescence detection. Thus, the sensor offers an all-electric interface without the need to adjust or connect optical components. A sensitivity of 28.32nT/Hz−−−√ and a theoretical shot noise limited sensitivity of 2.87 nT/Hz−−−√ is reached. Since only generally available parts were used, the sensor can be easily produced in a small series. The form factor of (6.9 × 3.9 × 15.9) mm3 combined with the integration level is the smallest fully integrated NV-based sensor proposed so far. With a power consumption of around 0.1W, this sensor becomes interesting for a wide range of stationary and handheld systems. This development paves the way for the wide usage of quantum magnetometers in non-laboratory environments and technical applications. KW - Diamond Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:836-opus-175692 VL - 2024 IS - 24(3) ER -