@inproceedings{RauschVerpoortWittrock2016, author = {Rausch, Peter and Verpoort, Sven and Wittrock, Ulrich}, title = {Unimorph piezoelectric deformable mirrors for space telescopes}, series = {Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, Proc. SPIE}, volume = {9904}, booktitle = {Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, Proc. SPIE}, doi = {10.25974/fhms-923}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-9230}, pages = {990468}, year = {2016}, abstract = {We have developed, manufactured and tested a unimorph deformable mirror for space applications based on piezoelectric actuation. The mirror was designed for the correction of low-order Zernike modes with a stroke of several tens of micrometers over a clear aperture of 50 mm. It was successfully tested in thermal vacuum, underwent lifetime tests, and was exposed to random vibrations, sinusoidal vibrations, and to ionizing radiation. We report on design considerations, manufacturing of the mirror, and present the test results. Furthermore, we discuss critical design parameters, and how our mirror could be adapted to serve recently proposed space telescopes such as HDST and TALC.}, language = {de} } @inproceedings{VerpoortWittrock2010, author = {Verpoort, Sven and Wittrock, Ulrich}, title = {Unimorph deformable mirror for telescopes and laser applications in space}, series = {International Conference on Space Optics (ICSO), Rhodes Island, Greece}, booktitle = {International Conference on Space Optics (ICSO), Rhodes Island, Greece}, publisher = {SPIE}, doi = {10.25974/fhms-648}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-6484}, year = {2010}, abstract = {Over the past 5 years we have developed a new type of unimorph deformable mirror. The main advantages of this mirror technology are · very low surface scattering due to the use of superpolished glass · excellent coatings, even suitable for high power lasers, can be applied · active diameter of the mirrors can be between 10 mm and 100 mm · large strokes can be achieved even for small mirror diameters · integrated monolithic tip/tilt functionality based on a spiral arm design We have modeled these mirrors by analytical models as well as by the finite element method. This allows us to quickly design new mirrors tailored to specific applications. One example is a mirror for laser applications that has a diameter of 10 mm and can achieve a stroke in defocus mode of 5 μm. The stroke for these mirrors scales as the square of the mirror diameter, meaning that we can achieve, for example, a stroke of 125 μm for a mirror of 50 mm diameter. We will present design criteria and tradeoffs for these mirrors. We characterize our mirrors by the maximum stroke they can deliver for various Zernike modes, under the boundary condition that the Zernike mode has to be created with a certain fidelity, usually defined by the Mar{\´e}chal criterion.}, language = {en} } @article{RauschVerpoortWittrock2016, author = {Rausch, Peter and Verpoort, Sven and Wittrock, Ulrich}, title = {Unimorph deformable mirror for space telescopes: environmental testing}, series = {Opt. Expr.}, volume = {24}, journal = {Opt. Expr.}, doi = {10.25974/fhms-853}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-8530}, pages = {1528 -- 1542}, year = {2016}, abstract = {We have developed and manufactured a unimorph deformable mirror for space telescopes based on piezoelectric actuation. The mirror features 44 actuators, has an aperture of 50 mm, and is designed to reproduce low-order Zernike modes with a stroke of several tens of µm. We assessed the space compliance by operating the mirror in thermal vacuum, and exposing it to random and sinusoidal vibrations, as well as to ionizing irradiation. Additionally, the operational life time and the laser power handling capability were tested. The mirror was successfully operated in thermal vacuum at 100 K. We report on the conducted tests and the methods used to evaluate the mirror\&\#180;s performance, and discuss the compliance with the demanded requirements}, language = {de} } @article{RauschVerpoortWittrock2015, author = {Rausch, Peter and Verpoort, Sven and Wittrock, Ulrich}, title = {Unimorph deformable mirror for space telescopes: design and manufacturing}, series = {Opt. Expr.}, volume = {23}, journal = {Opt. Expr.}, doi = {10.25974/fhms-822}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-8227}, pages = {19469 -- 19477}, year = {2015}, abstract = {Large space telescopes made of deployable and lightweight structures suffer from aberrations caused by thermal deformations, gravitational release, and alignment errors which occur during the deployment procedure. An active optics system would allow on-site correction of wave-front errors, and ease the requirements on thermal and mechanical stability of the optical train. In the course of a project funded by the European Space Agency we have developed and manufactured a unimorph deformable mirror based on piezoelectric actuation. The mirror is able to work in space environment and is designed to correct for large aberrations of low order with high surface fidelity. This paper discusses design, manufacturing and performance results of the deformable mirror.}, language = {en} } @article{WittrockVorholt2015, author = {Wittrock, Ulrich and Vorholt, Christian}, title = {Spatial hole burning in Yb:YAG thin-disk lasers}, series = {Appl. Phys. B}, volume = {120}, journal = {Appl. Phys. B}, doi = {10.25974/fhms-823}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-8234}, pages = {711 -- 721}, year = {2015}, abstract = {The spatially varying intensity in a standing wave resonator leads to spatial hole burning in the gain medium of a laser. The spatial hole burning changes the gain of different longitudinal modes and can thus determine the optical spectrum of the laser. We simulate this longitudinal mode competition in standing wave resonators of thin-disk lasers. The resulting optical spectra of the laser are compared to measured optical spectra. We examine two types of resonators: I-resonators and V-resonators with different angles of incidence. In V-resonators, the non-normal incidence of the laser beam on the disk lifts the degeneracy of the polarization. Experiments show that the slight gain advantage for the p-polarization does not lead to polarized emission. For both types of resonators, the measured spectra are in good agreement with the simulated ones. The simulations allow to study the influence of spectral intra-cavity losses on the optical spectrum of a thin-disk laser.}, language = {en} } @article{VorholtWittrock2017, author = {Vorholt, Christian and Wittrock, Ulrich}, title = {Single-frequency oscillation of thin-disk lasers due to phase-matched pumping}, series = {Opt. Expr.}, volume = {25}, journal = {Opt. Expr.}, doi = {10.25974/fhms-1025}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-10258}, pages = {21388 -- 21399}, year = {2017}, abstract = {We present a novel pump concept that should lead to single-frequency operation of thin-disk lasers without the need for etalons or other spectral filters. The single-frequency operation is due to matching the standing wave pattern of partially coherent pump light to the standing wave pattern of the laser light inside the disk. The output power and the optical efficiency of our novel pump concept are compared with conventional pumping. The feasibility of our pump concept was shown in previous experiments.}, language = {en} } @article{PerchermeierWittrock2013, author = {Perchermeier, Julian and Wittrock, Ulrich}, title = {Precise measurements of the thermo-optical aberrations of an Yb:YAG thin-disk laser}, series = {Opt. Lett.}, volume = {38}, journal = {Opt. Lett.}, publisher = {OSA}, doi = {10.25974/fhms-685}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-6854}, pages = {2422 -- 2424}, year = {2013}, abstract = {We report on interferometric measurements of the thermo-optical aberrations of the laser medium of an Yb:YAG thin-disk laser in pumped and cw lasing conditions at several pump-power levels with a mean repeatability of 5 nm. These measurements build the basis for future intracavity compensation of the aberrations with our deformable mirror in order to improve the fundamental-mode efficiency.}, language = {en} } @article{AlbersWittrock2011, author = {Albers, Klaus and Wittrock, Ulrich}, title = {Optical pump concepts for highly efficient quasi-three-level lasers}, series = {Appl. Phys. B}, volume = {105}, journal = {Appl. Phys. B}, publisher = {Springer}, doi = {10.25974/fhms-646}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-6467}, pages = {245 -- 254}, year = {2011}, abstract = {Efficient quasi-three-level laser operation requires the generation of the highest possible pump rate from a given pump source. We derive the fundamental scaling laws for the pump rate and we extract optimization criteria for pump concepts from these laws. The analysis is then applied to the thin-disk laser. Based on the results, a novel pump concept for thin-disk lasers is proposed, which allows for several tens of pump beam passes and reduces the optical complexity of conventional pump concepts. Furthermore, the beam quality of the pump source is preserved almost completely, facilitating the highest possible pump rate.}, language = {en} } @inproceedings{VerpoortWittrock2011, author = {Verpoort, Sven and Wittrock, Ulrich}, title = {Novel unimorph deformable mirror with monolithic tip-tilt functionality for solid state lasers}, series = {MEMS Adaptive Optics V, Proc. SPIE}, volume = {7931}, booktitle = {MEMS Adaptive Optics V, Proc. SPIE}, publisher = {SPIE}, doi = {10.25974/fhms-647}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-6471}, pages = {793107}, year = {2011}, abstract = {We present a new type of unimorph deformable mirror with monolithic tip-tilt functionality. The tip-tilt actuation is based on a spiral arm design. The mirror will be used in high-power laser resonators for real-time intracavity phase control. The additional tip-tilt correction with a stroke up to 6 μm simplifies the resonator alignment significantly. The mirror is optimized for a laser beam footprint of about 10 mm. We have modeled and optimized this mirror by finite element calculations and we will present design criteria and tradeoffs for this mirrors. The mirror is manufactured from a super-polished glass substrate with very low surface scattering and excellent dielectric coating.}, language = {en} } @inproceedings{VerpoortRauschWittrock2012, author = {Verpoort, Sven and Rausch, Peter and Wittrock, Ulrich}, title = {Novel unimorph deformable mirror for space applications}, series = {International Conference on Space Optics (ICSO), Proc. SPIE}, volume = {10564}, booktitle = {International Conference on Space Optics (ICSO), Proc. SPIE}, publisher = {SPIE}, doi = {10.25974/fhms-651}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-6516}, pages = {1056414-1}, year = {2012}, abstract = {We have developed a new type of unimorph deformable mirror, designed to correct for low-order Zernike modes. The mirror has a clear optical aperture of 50 mm combined with large peak-to-valley Zernike amplitudes of up to 35 μm. Newly developed fabrication processes allow the use of prefabricated super-polished and coated glass substrates. The mirror's unique features suggest the use in several stronomical applications like the precompensation of atmospheric aberrations seen by laser beacons and the use in woofer-tweeter systems. Additionally, the design enables an efficient correction of the inevitable wavefront error imposed by the floppy structure of primary mirrors in future large space-based telescopes. We have modeled the mirror by using analytical as well as finite element models. We will present design, key features and manufacturing steps of the deformable mirror.}, language = {en} }