@article{RauschVerpoortWittrock2016, author = {Rausch, Peter and Verpoort, Sven and Wittrock, Ulrich}, title = {Unimorph deformable mirror for space telescopes: environmental testing}, series = {Opt. Expr.}, volume = {24}, journal = {Opt. Expr.}, doi = {10.25974/fhms-853}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-8530}, pages = {1528 -- 1542}, year = {2016}, abstract = {We have developed and manufactured a unimorph deformable mirror for space telescopes based on piezoelectric actuation. The mirror features 44 actuators, has an aperture of 50 mm, and is designed to reproduce low-order Zernike modes with a stroke of several tens of µm. We assessed the space compliance by operating the mirror in thermal vacuum, and exposing it to random and sinusoidal vibrations, as well as to ionizing irradiation. Additionally, the operational life time and the laser power handling capability were tested. The mirror was successfully operated in thermal vacuum at 100 K. We report on the conducted tests and the methods used to evaluate the mirror\&\#180;s performance, and discuss the compliance with the demanded requirements}, language = {de} } @inproceedings{RauschVerpoortWittrock2016, author = {Rausch, Peter and Verpoort, Sven and Wittrock, Ulrich}, title = {Unimorph piezoelectric deformable mirrors for space telescopes}, series = {Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, Proc. SPIE}, volume = {9904}, booktitle = {Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, Proc. SPIE}, doi = {10.25974/fhms-923}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-9230}, pages = {990468}, year = {2016}, abstract = {We have developed, manufactured and tested a unimorph deformable mirror for space applications based on piezoelectric actuation. The mirror was designed for the correction of low-order Zernike modes with a stroke of several tens of micrometers over a clear aperture of 50 mm. It was successfully tested in thermal vacuum, underwent lifetime tests, and was exposed to random vibrations, sinusoidal vibrations, and to ionizing radiation. We report on design considerations, manufacturing of the mirror, and present the test results. Furthermore, we discuss critical design parameters, and how our mirror could be adapted to serve recently proposed space telescopes such as HDST and TALC.}, language = {de} }