@article{Bresgott2024, author = {Bresgott, Jannes}, title = {How can artificial intelligence be used to find areas for wind turbines and solve other challenges associated with wind energy?}, series = {Educational Journal of Renewable Energy Short Reviews}, journal = {Educational Journal of Renewable Energy Short Reviews}, doi = {10.25974/ren_rev_2024_02}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-176393}, pages = {9 -- 13}, year = {2024}, abstract = {This article discusses the use of artificial intelligence in the wind energy industry, particularly in addressing challenges and optimizing the expansion of renewable energies in Germany. It highlights the application of artificial intelligence in wind forecasts and yield predictions, bird detection, wind turbine and farm design, condition monitoring, and predictive maintenance. Additionally, it introduces the "WindGISKI" research project, which aims to use artificial intelligence to identify new areas for wind turbines. The project utilizes a neural network to analyze and predict flight routes, potentially reducing bird mortality. The document also emphasizes the potential broader applications of "WindGISKI" in other fields of activity, such as land use planning and city development. Overall, it underscores the significant role of artificial intelligence in addressing challenges in wind energy and outlines the potential for artificial intelligence to drive the expansion of renewable energies while addressing key obstacles.}, language = {en} } @article{Goray2023, author = {Goray, Lars}, title = {Life cycle energy analysis and ecological impact of wind turbines - a comparison of life cycle assessments}, series = {Educational Journal of Renewable Energy Short Reviews}, journal = {Educational Journal of Renewable Energy Short Reviews}, doi = {10.25974/ren_rev_2023_02}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-172613}, pages = {8 -- 15}, year = {2023}, abstract = {The use of wind power is rapidly expanding worldwide. It is important to examine the impact of wind turbines on the environment to see if they provide a net benefit and to identify potential for improving. Therefore life cycle assessments (LCA) of different wind turbine types are compared in this short review. The results are then shown side by side in tables for comparison. Overall the LCAs show that wind turbines compensate the required energy and emitted pollutants after approx. 6-16 months. The energy payback period (EPP) for 2 MW onshore wind turbines remained roughly the same since 2009 with approximately 7 months. Onshore wind turbines have a higher impact due to emissions but a shorter EPP than offshore wind turbines. The estimated service life of 20 years should be maximized to ensure a high energy yield ratio. The biggest impact on the environment results from the processes to provide the building material e.g. steel and cement. That impact could be reduced by 20 \% if recycled steel would be used. It is shown that wind power is one of the cleanest energy sources. But further investigations in material processing and recycling are important to improve the eco-balance of wind turbines.}, language = {en} } @techreport{Hoge2021, author = {Hoge, Alexander}, title = {Measures for mitigating avian collision rates with wind turbines - Determining an effective technique regarding effort and effect}, doi = {10.25974/ren_rev_2021_08}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-136826}, pages = {42-47}, year = {2021}, abstract = {Because of the rapid expansion and widespread application of wind energy the overall environmental impacts of wind power plants have increased as well. For the further development of wind power, methods to lessen the adverse effects wind power has on avian populations have to be implemented. This review aims to find effective methods to reduce avian collision rates with wind turbines and that therefore can reduce bird fatality rates. For the assessment the different mitigation methods, for which concrete data was found, are compared with each other regarding the hypothetical effort of implementation and effectiveness in reducing avian collision rates with wind turbines. These methods are: (a) Coloring of rotor blades (b) Coloring of the tower base (c) Ultraviolet/violet lightning (d) Temporary shut-down of wind turbines (e) Auditory warning signals (f) Repowering All of the mentioned methods report influence on reducing avian collision rates or at least the behavior of birds in flight. This review found the following three methods to be most effective: (a) Coloring of rotor blades (b) Temporary shut-downs of wind turbines (c) Repowering The most effective method to reduce avian collision rates at horizontal axis wind turbines is to paint one of the rotor blades black and consequently increasing the visibility of the rotor blades. The presented study reports 71,9 percent reduction of found carcasses of birds at the treated turbines. For this method the effort of implementation is low while the effectiveness is high. The effectiveness of the found mitigation methods has been proven and they are suited for application. The method of using lightning or sound fields require more testing to determine their effectiveness. Another topic for research could be how different mitigation methods interact with each other. Is there a significant advantage to be had if multiple mitigation methods are applied at the same wind power plant or turbine? Furthermore the environmental impacts of wind turbines are not limited to birds. Other animals like bats are affected too and might require different methods of mitigation.}, language = {en} } @techreport{Tillenburg2021, author = {Tillenburg, Dennis}, title = {Technical challenges of floating offshore wind turbines - An overview}, doi = {10.25974/ren_rev_2021_03}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-136770}, pages = {13-18}, year = {2021}, abstract = {Floating offshore wind (FOW) holds the key to 80 \% of the total offshore wind resources, located in waters of 60 m and deeper in European seas, where traditional bottom-fixed offshore wind (BFOW) is not economically attractive. Many problems affecting floating offshore wind turbines (FOWT) were quickly overcome based on previous experience with floating oil rigs and bottom-fixed offshore wind. However, this technology is still young and there are still many challenges to overcome. This paper shows that electrical failures are amongst the most significant errors of FOWT. The most common cause was corrosion. It is also stated that the control system is most often affected, and that the Generator is frequently involved. Material corrosion is also the key factor when it comes to the most common overall reason for failures. A particular attention must be paid to mooring line fracture. Mooring lines are especially vulnerable to extreme sea conditions and the resulting fatigue, corrosion, impact damage, and further risks. It must be stated that the primary challenge is that of economics. Over time technological costs will decline making FOW more competitive and hence attractive for greater depth.}, language = {en} }