@article{HoernschemeyerSoefkerRienietsNiestenetal.2022, author = {H{\"o}rnschemeyer, Birgitta and S{\"o}fker-Rieniets, Anne and Niesten, Jan and Arendt, Rosalie and Kleckers, Jonas and Klemm, Christian and Stretz, Celestin Julian and Reicher, Christa and Grimsehl-Schmitz, Winona and Wirbals, Daniel and Bach, Vanessa and Finkbeiner, Matthias and Haberkamp, Jens and Budde, Janik and Vennemann, Peter and Walter, Gotthard and Flamme, Sabine and Uhl, Mathias}, title = {The ResourcePlan — An Instrument for Resource-Efficient Development of Urban Neighborhoods}, series = {Sustainability}, volume = {14}, journal = {Sustainability}, number = {3}, publisher = {MDPI}, doi = {10.25974/fhms-14854}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-148545}, year = {2022}, abstract = {In Germany, the current sectoral urban planning often leads to inefficient use of resources, partly because municipalities lack integrated planning instruments and argumentation strength toward politics, investors, or citizens. The paper develops the ResourcePlan as (i) legal and (ii) a planning instrument to support the efficient use of resources in urban neighborhoods. The integrative, multi-methodological approach addresses the use of natural resources in the building and infrastructural sectors of (i) water (storm- and wastewater) management, (ii) construction and maintenance of buildings and infrastructure, (iii) urban energy system planning, and (iv) land-use planning. First, the development as legal instrument is carried out, providing (i) premises for integrating resource protection at all legal levels and (ii) options for implementing the ResourcePlan within German municipal structures. Second, the evaluation framework for resource efficiency of the urban neighborhoods is set up for usage as a planning instrument. The framework provides a two-stage process that runs through the phases of setting up and implementing the ResourcePlan. (Eco)system services are evaluated as well as life cycle assessment and economic aspects. As a legal instrument, the ResourcePlan integrates resource protection into municipal planning and decision-making processes. The multi-methodological evaluation framework helps to assess inter-disciplinary resource efficiency, supports the spatial identification of synergies and conflicting goals, and contributes to transparent, resource-optimized planning decisions.}, language = {de} } @article{QuestArendtKlemmetal.2022, author = {Quest, Gemina and Arendt, Rosalie and Klemm, Christian and Bach, Vanessa and Budde, Janik and Vennemann, Peter and Finkbeiner, Matthias}, title = {Integrated Life Cycle Assessment (LCA) of Power and Heat Supply for a Neighborhood: A Case Study of Herne, Germany}, series = {energies}, volume = {15}, journal = {energies}, number = {16}, issn = {1996-1073}, doi = {10.3390/en15165900}, pages = {5900}, year = {2022}, abstract = {(1) The use of renewable energy for power and heat supply is one of the strategies to reduce greenhouse gas emissions. As only 14\% of German households are supplied with renewable energy, a shift is necessary. This shift should be realized with the lowest possible environmental impact. This paper assesses the environmental impacts of changes in energy generation and distribution, by integrating the life cycle assessment (LCA) method into energy system models (ESM). (2) The integrated LCA is applied to a case study of the German neighborhood of Herne, (i) to optimize the energy supply, considering different technologies, and (ii) to determine the environmental impacts of the base case (status quo), a cost-optimized scenario, and a CO2-optimized scenario. (3) The use of gas boilers in the base case is substituted with CHPs, surface water heat pumps and PV-systems in the CO2-optimized scenario, and five ground-coupled heat pumps and PV-systems for the cost-optimized scenario. This technology shift led to a reduction in greenhouse gas emissions of almost 40\% in the cost-optimized, and more than 50\% in the CO2-optimized, scenario. However, technology shifts, e.g., due to oversized battery storage, risk higher impacts in other categories, such as terrestrial eco toxicity, by around 22\%. Thus, it can be recommended to use smaller battery storage systems. (4) By combining ESM and LCA, additional environmental impacts beyond GHG emissions can be quantified, and therefore trade-offs between environmental impacts can be identified. Furthermore, only applying ESM leads to an underestimation of greenhouse gas emissions of around 10\%. However, combining ESM and LCA required significant effort and is not yet possible using an integrated software.}, language = {en} } @techreport{HoernschemeyerSoefkerRienietsNiestenetal.2023, author = {H{\"o}rnschemeyer, Birgitta and S{\"o}fker-Rieniets, Anne and Niesten, Jan and Arendt, Rosalie and Kleckers, Jonas and Stretz, Celestin and Klemm, Christian and Budde, Janik and Wagner, R{\"u}diger and Vonhoegen, Laura and Reicher, Christa and Grimsehl-Schmitz, Winona and Wirbals, Daniel and Stieglitz-Broll, Eva-Maria and Agatz, Kerstin and Bach, Vanessa and Finkbeiner, Matthias and Lewe, Mareike and Henrichs, Malte and Haberkamp, Jens and Walter, Gotthard and Flamme, Sabine and Vennemann, Peter and Zamzow, Malte and Seis, Wolfgang and Matzinger, Andreas and Sonnenberg, Hauke and Rouault, Pascale and Maßmann, Stefanie and Fuchs, Lothar and Plogmeier, Christoph and Steinkamp, Arne and Şereflioğlu, Şenay and M{\"u}ller, Claus and Spital, Matthias and Uhl, Mathias}, title = {Leitfaden RessourcenPlan - Teil 1: Konzeption RessourcenPlan. Ergebnisse des Projekts R2Q RessourcenPlan im Quartier}, publisher = {FH M{\"u}nster}, address = {M{\"u}nster}, organization = {IWARU Institut f{\"u}r Infrastruktur·Wasser·Ressourcen·Umwelt}, doi = {10.25974/fhms-15746}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-157463}, year = {2023}, language = {de} } @techreport{HoernschemeyerZamzowSeisetal.2023, author = {H{\"o}rnschemeyer, Birgitta and Zamzow, Malte and Seis, Wolfgang and Matzinger, Andreas and Maßmann, Stefanie and Plogmeier, Christoph and Arendt, Rosalie and Lewe, Mareike and Teichner, Pascal and Giesen, Alexander and Soumagn{\´e}, Sarah and Bach, Vanessa and Finkbeiner, Matthias and Uhl, Mathias}, title = {Leitfaden RessourcenPlan - Teil 2.1: Ressourcenmanagement Niederschlagswasser. Ergebnisse des Projekts R2Q RessourcenPlan im Quartier}, doi = {10.25974/fhms-15753}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-157531}, year = {2023}, language = {de} } @techreport{KleckersSteinkampArendtetal.2023, author = {Kleckers, Jonas and Steinkamp, Arne and Arendt, Rosalie and Rummler, Julia and Bach, Vanessa and Finkbeiner, Matthias and Haberkamp, Jens}, title = {Leitfaden RessourcenPlan - Teil 2.2: Ressourcenmanagement Schmutzwasser. Ergebnisse des Projekts R2Q RessourcenPlan im Quartier}, doi = {10.25974/fhms-15754}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-157544}, year = {2023}, language = {de} } @techreport{KlemmBuddeBeckeretal.2023, author = {Klemm, Christian and Budde, Janik and Becker, Gregor and Arendt, Rosalie and Bach, Vanessa and Finkbeiner, Matthias and Vennemann, Peter}, title = {Leitfaden RessourcenPlan - Teil 2.4: Ressourcenmanagement Energie. Ergebnisse des Projekts R2Q RessourcenPlan im Quartier}, doi = {10.25974/fhms-15756}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-157560}, year = {2023}, language = {de} } @techreport{HoernschemeyerKleckersStretzetal.2023, author = {H{\"o}rnschemeyer, Birgitta and Kleckers, Jonas and Stretz, Celestin and Klemm, Christian and Budde, Janik and Arendt, Rosalie and Lewe, Mareike and Albers, Flemming}, title = {Leitfaden RessourcenPlan - Teil 3.3: Maßnahmen des Quartiersmanagements: Maßnahmensteckbriefe. Ergebnisse des Projekts R2Q RessourcenPlan im Quartier}, doi = {10.25974/fhms-15760}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-157603}, year = {2023}, language = {de} }