@inproceedings{SaatjohannIsingKringsetal.2020, author = {Saatjohann, Christoph and Ising, Fabian and Krings, Luise and Schinzel, Sebastian}, title = {STALK: security analysis of smartwatches for kids}, series = {ARES 2020: The 15th International Conference on Availability, Reliability and Security / Editors: Melanie Volkamer, Christian Wressnegger}, booktitle = {ARES 2020: The 15th International Conference on Availability, Reliability and Security / Editors: Melanie Volkamer, Christian Wressnegger}, isbn = {978-1-4503-8833-7}, doi = {10.1145/3407023.3407037}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-123548}, pages = {1 -- 10}, year = {2020}, abstract = {Smart wearable devices become more and more prevalent in the age of the Internet of Things. While people wear them as fitness trackers or full-fledged smartphones, they also come in unique versions as smartwatches for children. These watches allow parents to track the location of their children in real-time and offer a communication channel between parent and child. In this paper, we analyzed six smartwatches for children and the corresponding backend platforms and applications for security and privacy concerns. We structure our analysis in distinct attacker scenarios and collect and describe related literature outside academic publications. Using a cellular network Man-in-the-Middle setup, reverse engineering, and dynamic analysis, we found several severe security issues, allowing for sensitive data disclosure, complete watch takeover, and illegal remote monitoring functionality.}, language = {en} } @inproceedings{PuschnerSaatjohannWillingetal.2021, author = {Puschner, Endres and Saatjohann, Christoph and Willing, Markus and Dresen, Christian and K{\"o}be, Julia and Rath, Benjamin and Paar, Christof and Eckardt, Lars and Haverkamp, Uwe and Schinzel, Sebastian}, title = {Listen to Your Heart: Evaluation of the Cardiologic Ecosystem}, series = {ARES 2021: The 16th International Conference on Availability, Reliability and Security}, booktitle = {ARES 2021: The 16th International Conference on Availability, Reliability and Security}, doi = {10.1145/3465481.3465753}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-139012}, year = {2021}, abstract = {Modern implantable cardiologic devices communicate via radio frequency techniques and nearby gateways to a backend server on the internet. Those implanted devices, gateways, and servers form an ecosystem of proprietary hardware and protocols that process sensitive medical data and is often vital for patients' health. This paper analyzes the security of this Ecosystem, from technical gateway aspects, via the programmer, to configure the implanted device, up to the processing of personal medical data from large cardiological device producers. Based on a real-world attacker model, we evaluated different devices and found several severe vulnerabilities. Furthermore, we could purchase a fully functional programmer for implantable cardiological devices, allowing us to re-program such devices or even induce electric shocks on untampered implanted devices. Additionally, we sent several Art. 15 and Art. 20 GDPR inquiries to manufacturers of implantable cardiologic devices, revealing non-conforming processes and a lack of awareness about patients' rights and companies' obligations. This, and the fact that many vulnerabilities are still to be found after many vulnerability disclosures in recent years, present a worrying security state of the whole ecosystem.}, language = {en} } @inproceedings{EbbersIsingSaatjohannetal.2021, author = {Ebbers, Simon and Ising, Fabian and Saatjohann, Christoph and Schinzel, Sebastian}, title = {Grand Theft App: Digital Forensics of Vehicle Assistant Apps}, series = {ARES 2021: The 16th International Conference on Availability, Reliability and Security}, booktitle = {ARES 2021: The 16th International Conference on Availability, Reliability and Security}, doi = {10.1145/3465481.3465754}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-139031}, year = {2021}, abstract = {Due to the increasing connectivity of modern vehicles, collected data is no longer only stored in the vehicle itself but also transmitted to car manufacturers and vehicle assistant apps. This development opens up new possibilities for digital forensics in criminal investigations involving modern vehicles. This paper deals with the digital forensic analysis of vehicle assistant apps of eight car manufacturers. We reconstruct the driver's activities based on the data stored on the smartphones and in the manufacturer's backend. For this purpose, data of the Android and iOS apps of the car manufacturers Audi, BMW, Ford, Mercedes, Opel, Seat, Tesla, and Volkswagen were extracted from the smartphone and examined using digital forensic methods following forensics guidelines. Additionally, manufacturer data was retrieved using Subject Access Requests. Using the extensive data gathered, we reconstruct trips and refueling processes, determine parking positions and duration, and track the locking and unlocking of the vehicle. Our findings show that the digital forensic investigation of smartphone applications is a useful addition to vehicle forensics and should therefore be taken into account in the strategic preparation of future digital forensic investigations.}, language = {en} } @inproceedings{SaatjohannIsingGierlingsetal.2022, author = {Saatjohann, Christoph and Ising, Fabian and Gierlings, Matthias and Noss, Dominik and Schimmler, Sascha and Klemm, Alexander and Grundmann, Leif and Frosch, Tilman and Schinzel, Sebastian}, title = {Sicherheit medizintechnischer Protokolle im Krankenhaus}, series = {SICHERHEIT 2022. Hrsg. Christian Wressnegger, Delphine Reinhardt, Thomas Barber, Bernhard C. Witt, Daniel Arp, Zoltan Mann}, booktitle = {SICHERHEIT 2022. Hrsg. Christian Wressnegger, Delphine Reinhardt, Thomas Barber, Bernhard C. Witt, Daniel Arp, Zoltan Mann}, publisher = {Gesellschaft f{\"u}r Informatik e.V.}, address = {Bonn}, isbn = {978-3-88579-717-3}, issn = {1617-5468}, doi = {10.18420/sicherheit2022_09}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-150072}, year = {2022}, abstract = {Medizinische Einrichtungen waren in den letzten Jahren immer wieder von Cyber-Angriffen betroffen. Auch wenn sich diese Angriffe derzeit auf die Office-IT-Infrastruktur der Einrichtungen konzentrieren, existiert mit medizinischen Systemen und Kommunikationsprotokollen eine weitere wenig beachtete Angriffsoberfl{\"a}che. In diesem Beitrag analysieren wir die weit verbreiteten medizintechnischen Kommunikations-Protokolle DICOM und HL7 sowie Protokoll-Implementierungen auf ihre IT-Sicherheit. Daf{\"u}r pr{\"a}sentieren wir die Ergebnisse der Sicherheitsanalyse der DICOM- und HL7-Standards, einen Fuzzer "MedFUZZ" f{\"u}r diese Protokolle sowie einen Schwachstellenscanner "MedVAS", der Schwachstellen in medizintechnischen Produktivumgebungen auffinden kann.}, language = {de} } @inproceedings{SaatjohannIsingSchinzel2024, author = {Saatjohann, Christoph and Ising, Fabian and Schinzel, Sebastian}, title = {KIM: Kaos In der Medizin}, series = {Sicherheit, Schutz und Zuverl{\"a}ssigkeit: Konferenzband der 12. Jahrestagung des Fachbereichs Sicherheit der Gesellschaft f{\"u}r Informatik e.V. (GI)}, booktitle = {Sicherheit, Schutz und Zuverl{\"a}ssigkeit: Konferenzband der 12. Jahrestagung des Fachbereichs Sicherheit der Gesellschaft f{\"u}r Informatik e.V. (GI)}, doi = {10.25974/fhms-17807}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:836-opus-178072}, year = {2024}, abstract = {Die sichere E-Mail-Infrastruktur f{\"u}r {\"A}rzt*innen, Apotheker*innen, Krankenversicherungen und Kliniken in Deutschland, KIM - Kommunikation im Gesundheitswesen - ist mit {\"u}ber 200 Millionen E-Mails in den vergangenen zwei Jahren eine der am meisten genutzten Anwendungen in der Telematikinfrastruktur. Mit dem Ausgeben von S/MIME-Zertifikaten f{\"u}r alle medizinische Beteiligten in Deutschland verspricht KIM sichere Ende-zu-Ende-Verschl{\"u}sselung von E-Mails zwischen Heilberufler*innen in ganz Deutschland. In diesem Paper analysieren wir die KIM-Spezifikation sowie eine beispielhafte KIM-Installation in einer deutschen Zahnarztpraxis. Wir zeigen, dass KIM kryptografisch ein sehr hohes Sicherheitslevel erf{\"u}llt, doch in der Verarbeitung der E-Mails bei den Clients eine schwerwiegende Sicherheitsl{\"u}cke besteht. Weiterhin zeigen wir zwei Sicherheitsl{\"u}cken in dem KIM-Verarbeitungsmodul eines großen deutschen Unternehmens f{\"u}r medizinische Software. Diese Defizite zeigen außerdem M{\"a}ngel in dem verpflichtenden Zulassungsprozess der KIM-Komponenten auf.}, language = {de} }